


A Student’s Guide to Geophysical Equations

The advent of accessible student computing packages has meant that geophysics students
can now easily manipulate datasets and gain first-hand modeling experience – essential
in developing an intuitive understanding of the physics of the Earth. Yet to gain a more
in-depth understanding of the physical theory, and to be able to develop new models and
solutions, it is necessary to be able to derive the relevant equations from first principles.
This compact, handy book fills a gap left by most modern geophysics textbooks,

which generally do not have space to derive all of the important formulae, showing the
intermediate steps. This guide presents full derivations for the classical equations of
gravitation, gravity, tides, Earth rotation, heat, geomagnetism, and foundational seismol-
ogy, illustrated with simple schematic diagrams. It supports students through the suc-
cessive steps and explains the logical sequence of a derivation – facilitating self-study
and helping students to tackle homework exercises and prepare for exams.
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Preface

This work was written as a supplementary text to help students understand the
mathematical steps in deriving important equations in classical geophysics. It is
not intended to be a primary textbook, nor is it intended to be an introduction to
modern research in any of the topics it covers. It originated in a set of handouts, a
kindof “do-it-yourself ”manual, that accompanied a course I taught on theoretical
geophysics. The lecture aids were necessary for two reasons. First, my lectures
were given in German and there were no comprehensive up-to-date texts in the
language; the recommended texts were in English, so the students frequently
needed clarification. Secondly, it was often necessary to explain classical theory
in more detail than one finds in a multi-topic advanced textbook. To keep such a
book as succinct as possible, the intermediate steps in themathematical derivation
of a formula must often be omitted. Sometimes the unassisted student cannot fill
in the missing steps without individual tutorial assistance, which is usually in
short supply at most universities, especially at large institutions. To help my
students in these situations, the “do-it-yourself ” text that accompanied my lec-
tures explained missing details in the derivations. This is the background against
which I prepared the present guide to geophysical equations, in the hope that it
might be helpful to other students at this level of study.
The classes that I taught to senior grades were largely related to potential

theory and primarily covered topics other than seismology, since this was the
domain of my colleagues and better taught by a true seismologist than by a
paleomagnetist! Theoretical seismology is a large topic that merits its own
treatment at an advanced level, and there are several textbooks of classical
and modern vintage that deal with this. However, a short chapter on the
relationship of stress, strain, and the propagation of seismic waves is included
here as an introduction to the topic.
Computer technology is an essential ingredient of progress in modern geo-

physics, but a well-trained aspiring geophysicist must be able to do more than

xi



apply advanced software packages. A fundamental mathematical understanding
is needed in order to formulate a geophysical problem, and numerical computa-
tional skills are needed to solve it. The techniques that enabled scientists to
understand much about the Earth in the pre-computer era also underlie much of
modern methodology. For this reason, a university training in geophysics still
requires the student to work through basic theory. This guide is intended as a
companion in that process.
Historically, most geophysicists came from the field of physics, for which

geophysics was an applied science. They generally had a sound training in
mathematics. The modern geophysics student is more likely to have begun
studies in an Earth science discipline, the mathematical background might be
heavily oriented to the use of tailor-made packaged software, and some students
may be less able to handle advanced mathematical topics without help or
tutoring. To fill these needs, the opening chapter of this book provides a
summary of the mathematical background for topics handled in subsequent
chapters.
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1

Mathematical background

1.1 Cartesian and spherical coordinates

Two systems of orthogonal coordinates are used in this book, sometimes
interchangeably. Cartesian coordinates (x, y, z) are used for a system with
rectangular geometry, and spherical polar coordinates (r, θ, �) are used for
spherical geometry. The relationship between these reference systems is shown
in Fig. 1.1(a). The convention used here for spherical geometry is defined as
follows: the radial distance from the origin of the coordinates is denoted r, the
polar angle θ (geographic equivalent: the co-latitude) lies between the radius
and the z-axis (geographic equivalent: Earth’s rotation axis), and the azimuthal
angle � in the x–y plane is measured from the x-axis (geographic equivalent:
longitude). Position on the surface of a sphere (constant r) is described by the
two angles θ and �. The Cartesian and spherical polar coordinates are linked as
illustrated in Fig. 1.1(b) by the relationships

x ¼ r sin θ cos�

y ¼ r sin θ sin�

z ¼ r cos θ

(1:1)

1.2 Complex numbers

The numbers we most commonly use in daily life are real numbers. Some of
them are also rational numbers. This means that they can be expressed as the
quotient of two integers, with the condition that the denominator of the quotient
must not equal zero. When the denominator is 1, the real number is an integer.
Thus 4, 4/5, 123/456 are all rational numbers. A real number can also be
irrational, which means it cannot be expressed as the quotient of two integers.
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Familiar examples are π, e (the base of natural logarithms), and some square
roots, such as √2, √3, √5, etc. The irrational numbers are real numbers that do
not terminate or repeat when expressed as decimals.
In certain analyses, such as determining the roots of an equation, it is

necessary to find the square root of a negative real number, e.g. √(–y2), where
y is real. The result is an imaginary number. The negative real number can be
written as (–1)y2, and its square root is then √(–1)y. The quantity √(–1) is written
i and is known as the imaginary unit, so that √(–y2) becomes ±iy.

A complex number comprises a real part and an imaginary part. For example,
z = x + iy, in which x and y are both real numbers, is a complex number with a
real part x and an imaginary part y. The composition of a complex number can
be illustrated graphically with the aid of the complex plane (Fig. 1.2). The real
part is plotted on the horizontal axis, and the imaginary part on the vertical axis.
The two independent parts are orthogonal on the plot and the complex number z

rθ

φ

z

x
y

(a)

θ

φ

r

y = r sinθ sinφ

x = r sinθ cosφ

z = r cosθ

r sinθ

(b)

Fig. 1.1. (a) Cartesian and spherical polar reference systems. (b) Relationships
between the Cartesian and spherical polar coordinates.

+x

+y z = x + iy

θ Real
axis

Imaginary
axis

r

r cosθ

r sinθ

Fig. 1.2. Representation of a complex number on an Argand diagram.

2 Mathematical background



is represented by their vector sum, defining a point on the plane. The distance r
of the point from the origin is given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
(1:2)

The line joining the point to the origin makes an angle θ with the real (x-)axis,
and so r has real and imaginary components r cos θ and r sin θ, respectively. The
complex number z can be written in polar form as

z ¼ r cos θ þ i sin θð Þ (1:3)

It is often useful to write a complex number in the exponential form introduced
by Leonhard Euler in the late eighteenth century. To illustrate this we make use
of infinite power series; this topic is described in Section 1.10. The exponential
function, exp(x), of a variable x can be expressed as a power series as in (1.135).
On substituting x = iθ, the power series becomes

exp iθð Þ ¼ 1þ iθð Þ þ iθð Þ2
2!

þ iθð Þ3
3!

þ iθð Þ4
4!

þ iθð Þ5
5!

þ iθð Þ6
6!

þ � � �

¼ 1þ iθð Þ2
2!

þ iθð Þ4
4!

þ iθð Þ6
6!

� � � þ iθð Þ þ iθð Þ3
3!

þ iθð Þ5
5!

þ � � �

¼ 1� θ2

2!
þ θ4

4!
� θ6

6!
þ � � �

� �
þ i θ � θ3

3!
þ θ5

5!
þ � � �

� �
(1:4)

Comparison with (1.135) shows that the first bracketed expression on the
right is the power series for cos θ; the second is the power series for sin θ.
Therefore

exp iθð Þ ¼ cos θ þ i sin θ (1:5)

On inserting (1.5) into (1.3), the complex number z can be written in exponential
form as

z ¼ r exp iθð Þ (1:6)

The quantity r is the modulus of the complex number and θ is its phase.
Conversely, using (1.5) the cosine and sine functions can be defined as the

sum or difference of the complex exponentials exp(iθ) and exp(–iθ):

cos θ ¼ exp iθð Þ þ exp �iθð Þ
2

sin θ ¼ exp iθð Þ � exp �iθð Þ
2i

(1:7)
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1.3 Vector relationships

A scalar quantity is characterized only by its magnitude; a vector has both
magnitude and direction; a unit vector has unit magnitude and the direction of
the quantity it represents. In this overview the unit vectors for Cartesian
coordinates (x, y, z) are written (ex, ey, ez); unit vectors in spherical polar
coordinates (r, θ, �) are denoted (er, eθ, e�). The unit vector normal to a surface
is simply denoted n.

1.3.1 Scalar and vector products

The scalar product of two vectors a and b is defined as the product of their
magnitudes and the cosine of the angle α between the vectors:

a · b ¼ ab cos α (1:8)

If the vectors are orthogonal, the cosine of the angle α is zero and

a · b ¼ 0 (1:9)

The vector product of two vectors is another vector, whose direction is perpen-
dicular to both vectors, such that a right-handed rule is observed. The magnitude
of the vector product is the product of the individual vector magnitudes and the
sine of the angle α between the vectors:

a� bj j ¼ ab sin α (1:10)

If a and b are parallel, the sine of the angle between them is zero and

a� b ¼ 0 (1:11)

Applying these rules to the unit vectors (ex, ey, ez), which are normal to each
other and have unit magnitude, it follows that their scalar products are

ex · ey ¼ ey · ez ¼ ez · ex ¼ 0

ex · ex ¼ ey · ey ¼ ez · ez ¼ 1
(1:12)

The vector products of the unit vectors are

ex � ey ¼ ez

ey � ez ¼ ex

ez � ex ¼ ey

ex � ex ¼ ey � ey ¼ ez � ez ¼ 0

(1:13)
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Avector a with components (ax, ay, az) is expressed in terms of the unit vectors
(ex, ey, ez) as

a ¼ axex þ ayey þ azez (1:14)

The scalar product of the vectors a and b is found by applying the relationships
in (1.12):

a · b ¼ axex þ ayey þ azez
� �

· bxex þ byey þ bzez
� �

¼ axbx þ ayby þ azbz (1:15)

The vector product of the vectors a and b is found by using (1.13):

a� b ¼ axex þ ayey þ azez
� �� bxex þ byey þ bzez

� �
¼ aybz � azby
� �

ex þ azbx � axbzð Þey þ axby � aybx
� �

ez (1:16)

This result leads to a convenient way of evaluating the vector product of two
vectors, by writing their components as the elements of a determinant, as
follows:

a� b ¼
ex ey ez
ax ay az
bx by bz

������
������ (1:17)

The following relationships may be established, in a similar manner to the
above, for combinations of scalar and vector products of the vectors a, b, and c:

a · b� cð Þ ¼ b · c� að Þ ¼ c · a� bð Þ (1:18)

a� b� cð Þ ¼ b c · að Þ � c a · bð Þ (1:19)

a� bð Þ � c ¼ b c · að Þ � a b · cð Þ (1:20)

1.3.2 Vector differential operations

The vector differential operator ∇ is defined relative to Cartesian axes (x, y, z)
as

r ¼ ex
∂
∂x

þ ey
∂
∂y

þ ez
∂
∂z

(1:21)

The vector operator ∇ determines the gradient of a scalar function, which may
be understood as the rate of change of the function in the direction of each of the
reference axes. For example, the gradient of the scalar function φwith respect to
Cartesian axes is the vector

1.3 Vector relationships 5



rφ ¼ ex
∂φ
∂x

þ ey
∂φ
∂y

þ ez
∂φ
∂z

(1:22)

The vector operator ∇ can operate on either a scalar quantity or a vector. The
scalar product of∇ with a vector is called the divergence of the vector. Applied
to the vector a it is equal to

r · a ¼ ex
∂
∂x

þ ey
∂
∂y

þ ez
∂
∂z

� �
· axex þ ayey þ azez
� �

¼ ∂ax
∂x

þ ∂ay
∂y

þ ∂az
∂z

(1:23)

If the vector a is defined as the gradient of a scalar potential φ, as in (1.22), we
can substitute potential gradients for the vector components (ax, ay, az). This
gives

r ·rφ ¼ ∂
∂x

∂φ
∂x

� �
þ ∂

∂y
∂φ
∂y

� �
þ ∂
∂z

∂φ
∂z

� �
(1:24)

By convention the scalar product (∇ ·∇) on the left is written∇2. The resulting
identity is very important in potential theory and is encountered frequently. In
Cartesian coordinates it is

r2φ ¼ ∂2φ
∂x2

þ ∂2φ
∂y2

þ ∂2φ
∂z2

(1:25)

The vector product of ∇ with a vector is called the curl of the vector. The
curl of the vector a may be obtained using a determinant similar to (1.17):

r� a ¼
ex ey ez

∂=∂x ∂=∂y ∂=∂z
ax ay az

������
������ (1:26)

In expanded format, this becomes

r� a ¼ ∂az
∂y

� ∂ay
∂z

� �
ex þ ∂ax

∂z
� ∂az

∂x

� �
ey þ ∂ay

∂x
� ∂ax

∂y

� �
ez (1:27)

The curl is sometimes called the rotation of a vector, because of its physical
interpretation (Box 1.1). Some commonly encountered divergence and curl
operations on combinations of the scalar quantity φ and the vectors a and b
are listed below:

r · φað Þ ¼ rφð Þ · aþ φ r · að Þ (1:28)
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r · a� bð Þ ¼ b · r� að Þ � a · r� bð Þ (1:29)

r� φað Þ ¼ rφð Þ � aþ φ r� að Þ (1:30)

r� a� bð Þ ¼ a r · bð Þ � b r · að Þ � a ·rð Þbþ b ·rð Þa (1:31)

r� rφð Þ ¼ 0 (1:32)

Box 1.1. The curl of a vector

The curl of a vector at a given point is related to the circulation of the vector
about that point. This interpretation is best illustrated by an example, in
which a fluid is rotating about a point with constant angular velocity ω.
At distance r from the point the linear velocity of the fluid v is equal toω × r.
Taking the curl of v, and applying the identity (1.31) with ω constant,

r� v ¼ r� w � rð Þ ¼ w r · rð Þ � w ·rð Þr (1)

To evaluate the first term on the right, we use rectangular coordinates (x, y, z):

w r · rð Þ ¼ w ex
∂
∂x

þ ey
∂
∂y

þ ez
∂
∂z

� �
· xex þ yey þ zez
� �

¼ w ex· ex þ ey· ey þ ez· ez
� � ¼ 3w (2)

The second term is

w ·rð Þr ¼ ωx
∂
∂x

þ ωy
∂
∂y

þ ωz
∂
∂z

� �
· xex þ yey þ zez
� �

¼ ωxex þ ωyey þ ωzez ¼ w (3)

Combining the results gives

r� v ¼ 2w (4)

w ¼ 1

2
r� vð Þ (5)

Because of this relationship between the angular velocity and the linear
velocity of a fluid, the curl operation is often interpreted as the rotation of
the fluid. When ∇ × v = 0 everywhere, there is no rotation. A vector that
satisfies this condition is said to be irrotational.

1.3 Vector relationships 7



r · r� að Þ ¼ 0 (1:33)

r� r� að Þ ¼ r r · að Þ � r2a (1:34)

It is a worthwhile exercise to establish these identities from basic principles,
especially (1.19) and (1.31)–(1.34), which will be used in later chapters.

1.4 Matrices and tensors

1.4.1 The rotation matrix

Consider two sets of orthogonal Cartesian coordinate axes (x, y, z) and (x0, y0,
z0) that are inclined to each other as in Fig. 1.3. The x0-axis makes angles (�1, χ1,
θ1) with each of the (x, y, z) axes in turn. Similar sets of angles (�2, χ2, θ2) and
(�3, χ3, θ3) are defined by the orientations of the y0- and z0-axes, respectively, to
the (x, y, z) axes. Let the unit vectors along the (x, y, z) and (x0, y0, z0) axes be (n1,
n2, n3) and (m1, m2, m3), respectively. The vector r can be expressed in either
system, i.e., r = r(x, y, z) = r(x0, y0, z0), or, in terms of the unit vectors,

r ¼ xn1 þ yn2 þ zn3 ¼ x0m1 þ y0m2 þ z0m3 (1:35)

We can write the scalar product (r · m1) as

r ·m1 ¼ xn1 ·m1 þ yn2 ·m1 þ zn3 ·m1 ¼ x0 (1:36)

The scalar product (n1 · m1) = cos�1 = α11 defines α11 as the direction cosine of
the x0-axis with respect to the x-axis (Box 1.2). Similarly, (n2 · m1) = cos χ1 = α12

z0z

x0
x

y0

y

φ1

χ1

θ1

χ2

θ3

φ2

θ2

φ3

χ3

m1 n1

m2

n2

m3n3

Fig. 1.3. Two sets of Cartesian coordinate axes, (x, y, z) and (x0, y0, z0), with
corresponding unit vectors (n1, n2, n3) and (m1,m2,m3), rotated relative to each other.
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and (n3 · m1) = cos θ1 = α13 define α12 and α13 as the direction cosines of the
x0-axis with respect to the y- and z-axes, respectively. Thus, (1.36) is equivalent to

x0 ¼ α11xþ α12yþ α13z (1:37)

On treating the y0- and z0-axes in the same way, we get their relationships to the
(x, y, z) axes:

y0 ¼ α21xþ α22yþ α23z

z0 ¼ α31xþ α32yþ α33z
(1:38)

The three equations can be written as a single matrix equation

x0
y0
z0

2
4

3
5 ¼

α11 α12 α13
α21 α22 α23
α31 α32 α33

2
4

3
5 x

y
z

2
4
3
5 ¼ M

x
y
z

2
4
3
5 (1:39)

The coefficients αnm (n = 1, 2, 3; m = 1, 2, 3) are the cosines of the interaxial
angles. By definition, α12 = α21, α23 = α32, and α31 = α13, so the square matrixM
is symmetric. It transforms the components of the vector in the (x, y, z)
coordinate system to corresponding values in the (x0, y0, z0) coordinate system.
It is thus equivalent to a rotation of the reference axes.
Because of the orthogonality of the reference axes, useful relationships exist

between the direction cosines, as shown in Box 1.2. For example,

α11ð Þ2 þ α12ð Þ2 þ α13ð Þ2 ¼ cos2�1 þ cos2χ1 þ cos2θ1¼ 1

r2
x2 þ y2 þ z2
� �¼1

(1:40)

and

α11α21 þ α12α22 þ α13α23 ¼ cos�1 cos�2 þ cos χ1 cos χ2 þ cos θ1 cos θ2 ¼ 0

(1:41)

The last summation is zero because it is the cosine of the right angle between the
x0-axis and the y0-axis.
These two results can be summarized as

X3
k¼1

αmkαnk ¼ 1; m ¼ n
0; m 6¼ n

�
(1:42)

1.4.2 Eigenvalues and eigenvectors

The transpose of a matrix X with elements αnm is a matrix with elements αmn
(i.e., the elements in the rows are interchanged with corresponding elements in

1.4 Matrices and tensors 9



Box 1.2. Direction cosines

The vector r is inclined at angles α, β, and γ, respectively, to orthogonal
reference axes (x, y, z) with corresponding unit vectors (ex, ey, ez), as in Fig.
B1.2. The vector r can be written

r ¼ xex þ yey þ zez (1)

where (x, y, z) are the components of r with respect to these axes. The scalar
products of r with ex, ey, and ez are

z

x

α
β

γ
r

y
ex

ey

ez

Fig. B1.2. Angles α, β, and γ define the tilt of a vector r relative to orthogonal
reference axes (x, y, z), respectively. The unit vectors (ex, ey, ez) define the
coordinate system.

r · ex ¼ x ¼ r cos α

r · ey ¼ y ¼ r cos β

r · ez ¼ z ¼ r cos γ

(2)

Therefore, the vector r in (1) is equivalent to

r ¼ r cos αð Þex þ r cos βð Þey þ r cos γð Þez (3)

The unit vector u in the direction of r has the same direction as r but its
magnitude is unity:

u ¼ r

r
¼ cos αð Þex þ cos βð Þey þ cos γð Þez ¼ lex þmey þ nez (4)

where (l, m, n) are the cosines of the angles that the vector r makes with
the reference axes, and are called the direction cosines of r. They are
useful for describing the orientations of lines and vectors.
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the columns). The transpose of a (3 × 1) column matrix is a (1 × 3) row matrix.
For example, if X is a column matrix given by

X ¼
x
y
z

2
4
3
5 (1:43)

then its transpose is the row matrix XT, where

XT ¼ x y z½ � (1:44)

The matrix equation XTMX = K, where K is a constant, defines a quadric
surface:

XTMX ¼ x y z½ �
α11 α12 α13
α21 α22 α23
α31 α32 α33

2
4

3
5 x

y
z

2
4
3
5 ¼ K (1:45)

The symmetry of the matrix leads to the equation of this surface:

The scalar product of two unit vectors is the cosine of the angle they form.
Let u1 and u2 be unit vectors representing straight lines with direction
cosines (l1, m1, n1) and (l2, m2, n2), respectively, and let θ be the angle
between the vectors. The scalar product of the vectors is

u1 · u2 ¼ cos θ ¼ l1ex þm1ey þ n1ez
� �

· l2ex þm2ey þ n2ez
� �

(5)

Therefore,

cos θ ¼ l1l2 þm1m2 þ n1n2 (6)

The square of a unit vector is the scalar product of the vector with itself and is
equal to 1:

u · u ¼ r · r
r2

¼ 1 (7)

On writing the unit vector u as in (4), and applying the orthogonality
conditions from (2), we find that the sum of the squares of the direction
cosines of a line is unity:

lex þmey þ nez
� �

· lex þmey þ nez
� � ¼ l2 þm2 þ n2 ¼ 1 (8)
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fðx; y; zÞ ¼ α11x
2 þ α22y

2 þ α33z
2 þ 2α12xyþ 2α23yzþ 2α31zx ¼ K (1:46)

When the coefficients αnm are all positive real numbers, the geometric expres-
sion of the quadratic equation is an ellipsoid. The normal direction n to the
surface of the ellipsoid at the point P(x, y, z) is the gradient of the surface. Using
the relationships between (x, y, z) and (x0, y0, z0) in (1.39) and the symmetry of
the rotation matrix, αnm = αmn for n ≠ m, the normal direction has components

∂f
∂x

¼ 2 α11xþ α12yþ α13zð Þ ¼ 2x0

∂f
∂y

¼ 2 α21xþ α22yþ α23zð Þ ¼ 2y0

∂f
∂z

¼ 2 α31xþ α32yþ α33zð Þ ¼ 2z0 (1:47)

and we write

nðx; y; zÞ ¼ rf ¼ ex
∂f
∂x

þ ey
∂f
∂x

þ ez
∂f
∂x

(1:48)

nðx; y; zÞ ¼ 2ðx0ex þ y0ey þ z0ezÞ ¼ 2rðx0; y0; z0Þ (1:49)

The normal n to the surface at P(x, y, z) in the original coordinates is parallel to
the vector r at the point (x0, y0, z0) in the rotated coordinates (Fig. 1.4).
The transformationmatrixM has the effect of rotating the reference axes from

one orientation to another. A particular matrix exists that will cause the direc-
tions of the (x0, y0, z0) axes to coincide with the (x, y, z) axes. In this case the
normal to the surface of the ellipsoid is one of the three principal axes of the

x y

z P

tangent
plane

(x0,y0,z0)

(x,y,z)r

n

er

Fig. 1.4. Location of a point (x, y, z) on an ellipsoid, where the normal n to the
surface is parallel to the radius vector at the point (x0, y0, z0).
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ellipsoid. The component x0 is then proportional to x, y0 is proportional to y, and
z0 is proportional to z. Let the proportionality constant be β. Then x0 = βx,
y0 = βy, and z0 = βz, and we get the set of simultaneous equations

α11 � βð Þxþ α12yþ α13z ¼ 0

α21xþ α22 � βð Þyþ α23z ¼ 0

α31xþ α32yþ α33 � βð Þz ¼ 0

(1:50)

which, in matrix form, is

α11 � β α12 α13
α21 α22 � β α23
α31 α32 α33 � β

2
4

3
5 x

y
z

2
4
3
5 ¼ 0 (1:51)

The simultaneous equations have a non-trivial solution only if the determinant
of coefficients is zero, i.e.,

α11 � β α12 α13
α21 α22 � β α23
α31 α32 α33 � β

������
������ ¼ 0 (1:52)

This equation is a third-order polynomial in β. Its three roots (β1, β2, β3) are
known as the eigenvalues of the matrixM. When each eigenvalue βn is inserted
in turn into (1.50) it defines the components of a corresponding vector vn, which
is called an eigenvector of M.
Note that (1.51) is equivalent to the matrix equation

α11 α12 α13
α21 α22 α23
α31 α32 α33

2
4

3
5 x

y
z

2
4
3
5� β

1 0 0
0 1 0
0 0 1

2
4

3
5 x

y
z

2
4
3
5 ¼ 0 (1:53)

which we can write in symbolic form

M� βIð ÞX ¼ 0 (1:54)

The matrix I, with diagonal elements equal to 1 and off-diagonal elements 0, is
called a unit matrix:

I ¼
1 0 0
0 1 0
0 0 1

2
4

3
5 (1:55)
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1.4.3 Tensor notation

Equations describing vector relationships can become cumbersome when writ-
ten in full or symbolic form. Tensor notation provides a succinct alternative way
of writing the equations. Instead of the alphabetic indices used in the previous
section, tensor notation uses numerical indices that allow summations to be
expressed in a compact form.
Let the Cartesian coordinates (x, y, z) be replaced by coordinates (x1, x2, x3)

and let the corresponding unit vectors be (e1, e2, e3). The vector a in (1.14)
becomes

a ¼ a1e1 þ a2e2 þ a3e3 ¼
X

i¼1;2;3

aiei (1:56)

A convention introduced by Einstein drops the summation sign and tacitly
assumes that repetition of an index implies summation over all values of the
index, in this case from 1 to 3. The vector a is then written explicitly

a ¼ aiei (1:57)

Alternatively, the unit vectors can be implied and the expression ai is under-
stood to represent the vector a. Using the summation convention, (1.15) for the
scalar product of two vectors a and b is

a · b ¼ a1b1 þ a2b2 þ a3b3 ¼ aibi (1:58)

Suppose that two vectors a and b are related, so that each component of a is a
linear combination of the components of b. The relationship can be expressed in
tensor notation as

ai ¼ Tijbj (1:59)

The indices i and j identify components of the vectors a and b; each index takes
each of the values 1, 2, and 3 in turn. The quantity Tij is a second-order (or
second-rank) tensor, representing the array of nine coefficients (i.e., 32). A
vector has three components (i.e., 31) and is a first-order tensor; a scalar property
has a single (i.e., 30) value, its magnitude, and is a zeroth-order tensor.

To write the cross product of two vectors we need to define a new quantity,
the Levi-Civita permutation tensor εijk. It has the value +1 when a permutation
of the indices is even (i.e., ε123 = ε231 = ε312 = 1) and the value –1 when a
permutation of the indices is odd (i.e., ε132 = ε213 = ε321 = –1). If any pair of
indices is equal, εijk = 0. This enables us to write the cross product of two vectors
in tensor notation. Let u be the cross product of vectors a and b:

u ¼ a� b ¼ a2b3 � a3b2ð Þe1 þ a3b1 � a1b3ð Þe2 þ a1b2 � a2b1ð Þe3 (1:60)
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In tensor notation this is written

ui ¼ εijkajbk (1:61)

This can be verified readily for each component of u. For example,

u1 ¼ ε123a2b3 þ ε132a3b2 ¼ a2b3 � a3b2 (1:62)

The tensor equivalent to the unit matrix defined in (1.55) is known as
Kronecker’s symbol, δij, or alternatively the Kronecker delta. It has the values

δij ¼ 1; if i ¼ j
0; if i 6¼ j

�
(1:63)

Kronecker’s symbol is convenient for selecting a particular component of a
tensor equation. For example, (1.54) can be written in tensor form using the
Kronecker symbol:

αij � βδij
� �

xj ¼ 0 (1:64)

This represents the set of simultaneous equations in (1.50). Likewise, the
relationship between direction cosines in (1.42) simplifies to

αmkαnk ¼ δmn (1:65)

in which a summation over the repeated index is implied.

1.4.4 Rotation of coordinate axes

Let vk be a vector related to the coordinates xl by the tensor Tkl

vk ¼ Tklxl (1:66)

A second set of coordinates x′n is rotated relative to the axes xl so that the
direction cosines of the angles between corresponding axes are the elements of
the tensor αnl:

x0n ¼ αnlxl (1:67)

Let the same vector be related to the rotated coordinate axes x′n by the tensor
T ′kn:

v0k ¼ T 0
knx

0
n (1:68)

vk and v′k are the same vector, expressed relative to different sets of axes.
Therefore,

v0k ¼ αknvn ¼ αknTnlxl (1:69)
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Equating the expressions in (1.68) and (1.69) for v′k gives

T 0
knx

0
n ¼ αknTnlxl (1:70)

Using the relationships between the axes in (1.67),

T 0
knx

0
n ¼ T 0

knαnlxl (1:71)

Therefore,

T 0
knαnl ¼ αknTnl (1:72)

On multiplying by αml and summing,

αmlαnlT
0
kn ¼ αmlαknTnl (1:73)

Note that in expanded form the products of direction cosines on the left are
equal to

αmlαnl ¼ αm1αn1 þ αm2αn2 þ αm3αn3 ¼ δmn (1:74)

as a result of (1.42). Therefore the transformation matrix in the rotated coor-
dinate system is related to the original matrix by the direction cosines between
the two sets of axes:

T 0
km ¼ αmlαknTnl (1:75)

The indices m and k can be interchanged without affecting the result. The
sequence of terms in the summation changes, but its sum does not. Therefore,

T 0
km ¼ αklαmnTnl (1:76)

This relationship allows us to compute the elements of a matrix in a new
coordinate system that is rotated relative to the original reference axes by angles
that have the set of direction cosines αnl.

1.4.5 Vector differential operations in tensor notation

In tensor notation the vector differential operator ∇ in Cartesian coordinates
becomes

r ¼ ei
∂
∂xi

(1:77)

The gradient of a scalar function φwith respect to Cartesian unit vectors (e1, e2, e3)
is therefore
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rφ ¼ e1
∂φ
∂x1

þ e2
∂φ
∂x2

þ e3
∂φ
∂x3

¼ ei
∂φ
∂xi

(1:78)

Several shorthand forms of this equation are in common use; for example,

∂φ
∂xi

¼ rφð Þi ¼ φ;i ¼ ∂iφ (1:79)

The divergence of the vector a is written in tensor notation as

r · a ¼ ∂a1
∂x1

þ ∂a2
∂x2

þ ∂a3
∂x3

¼ ∂ai
∂xi

¼ ∂iai (1:80)

The curl (or rotation) of the vector a becomes

r� a ¼ e1
∂a3
∂x2

� ∂a2
∂x3

� �
þ e2

∂a1
∂x3

� ∂a3
∂x1

� �
þ e3

∂a2
∂x1

� ∂a1
∂x2

� �
(1:81)

r� að Þi ¼ εijk
∂ak
∂xj

¼ εijk∂jak (1:82)

1.5 Conservative force, field, and potential

If the work done in moving an object from one point to another against a force is
independent of the path between the points, the force is said to be conservative.
No work is done if the end-point of the motion is the same as the starting point;
this condition is called the closed-path test of whether a force is conservative. In
a real situation, energy may be lost, for example to heat or friction, but in an
ideal case the total energyE is constant. The work dW done against the force F is
converted into a gain dEP in the potential energy of the displaced object. The
change in the total energy dE is zero:

dE ¼ dEP þ dW ¼ 0 (1:83)

The change in potential energy when a force with components (Fx, Fy, Fz)
parallel to the respective Cartesian coordinate axes (x, y, z) experiences elemen-
tary displacements (dx, dy, dz) is

dEP ¼ �dW ¼ � Fx dxþ Fy dyþ Fz dz
� �

(1:84)

The value of a physical force may vary in the space around its source. For
example, gravitational and electrical forces decrease with distance from a
source mass or electrical charge, respectively. The region in which a physical
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quantity exerts a force is called its field. Its geometry is defined by lines
tangential to the force at any point in the region. The term field is also used to
express the value of the force exerted on a unit of the quantity. For example, the
electric field of a charge is the force experienced by a unit charge at a given
point; the gravitational field of a mass is the force acting on a unit of mass; it is
therefore equivalent to the acceleration.
In a gravitational field the force F is proportional to the acceleration a. The

Cartesian components of F are therefore (max, may, maz). The gravitational
potential U is defined as the potential energy of a unit mass in the gravitational
field, thus dEP =mdU. After substituting these expressions into (1.84) we get

dU ¼ � ax dxþ ay dyþ az dz
� �

(1:85)

The total differential dU can be written in terms of partial differentials as

dU ¼ ∂U
∂x

dxþ ∂U
∂y

dyþ ∂U
∂z

dz (1:86)

On equating coefficients of dx, dy, and dz in these equations:

ax ¼ � ∂U
∂x

; ay ¼ � ∂U
∂y

; az ¼ � ∂U
∂z

(1:87)

These relationships show that the acceleration a is the negative gradient of a
scalar potential U:

a ¼ �rU (1:88)

Similarly, other conservative fields (e.g., electric, magnetostatic) can be derived
as the gradient of the corresponding scalar potential. According to the vector
identity (1.32) the curl of a gradient is always zero; it follows from (1.88) that a
conservative force-field F satisfies the condition

r� F ¼ 0 (1:89)

1.6 The divergence theorem (Gauss’s theorem)

Let n be the unit vector normal to a surface element of area dS. The flux dΦ of a
vectorF across the surface element dS (Fig. 1.5) is defined to be the scalar product

dΦ ¼ F · n dS (1:90)

If the angle between F and n is θ, the flux across dS is

dΦ ¼ F dS cos θ (1:91)

18 Mathematical background



where F is the magnitude of F. Thus the flux of F across the oblique surface dS is
equivalent to that across the projection dSn (=dS cos θ) of dS normal to F.
Consider the net flux of the vector F through a rectangular box with edges dx,

dy, and dz parallel to the x-, y-, and z-axes, respectively (Fig. 1.6). The area dSx
of a side normal to the x-axis equals dy dz. The x-component of the vector at x,
where it enters the box, is Fx, and at x + dx, where it leaves the box, it is Fx + dFx.
The net flux in the x-direction is

dΦx ¼ Fx þ dFxð Þ � Fxð ÞdSx ¼ dFx dy dz (1:92)

If the distance dx is very small, the change in Fx may be written to first order as

dFx ¼ ∂Fx

∂x
dx (1:93)

n
F

dS

θ

dSn

Fig. 1.5. The flux of a vector F across a small surface dS, whose normal n is
inclined to the vector, is equal to the flux across a surface dSn normal to the vector.

x

y

z

x + dx

dy

dz
Fx

Fx + dFx

x

Fig. 1.6. Figure for computing the change in the flux of a vector in the x-direction
for a small box with edges (dx, dy, dz).
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The net flux in the x-direction is therefore

dΦx ¼ ∂Fx

∂x
dx dy dz ¼ ∂Fx

∂x
dV (1:94)

where dV is the volume of the small element. Similar results are obtained for the
net flux in each of the y- and z-directions. The total flux of F through the
rectangular box is the sum of these flows:

dΦ ¼ dΦx þ dΦy þ dΦz (1:95)

dΦ ¼ ∂Fx

∂x
þ ∂Fy

∂y
þ ∂Fz

∂z

� �
dV ¼ r ·Fð ÞdV (1:96)

We can equate this expression with the flux defined in (1.90). The flux through a
finite volume V with a bounding surface of area S and outward normal unit
vector n is ZZZ

V

r ·Fð ÞdV ¼
ZZ

S

F · n dS (1:97)

This is known as the divergence theorem, or Gauss’s theorem, after the German
mathematician Carl Friedrich Gauss (1777–1855). Note that the surface S in
Gauss’s theorem is a closed surface, i.e., it encloses the volume V. If the flux of F
entering the bounding surface is the same as the flux leaving it, the total flux is
zero, and so

r ·F ¼ 0 (1:98)

This is sometimes called the continuity condition because it implies that flux is
neither created nor destroyed (i.e., there are neither sources nor sinks of the
vector) within the volume. The vector is said to be solenoidal.

1.7 The curl theorem (Stokes’ theorem)

Stokes’ theorem relates the surface integral of the curl of a vector to the
circulation of the vector around a closed path bounding the surface. Let the
vector F pass through a surface S which is divided into a grid of small elements
(Fig. 1.7). The area of a typical surface element is dS and the unit vector n
normal to the element specifies its orientation.
First, we evaluate the work done by F around one of the small grid elements,

ABCD (Fig. 1.8). Along each segment of the path we need to consider only the
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vector component parallel to that segment. The value of F may vary with
position, so, for example, the x-component along AB may differ from the
x-component along CD. Provided that dx and dy are infinitesimally small, we
can use Taylor series approximations for the components of F (Section 1.10.2).
To first order we get

Fxð ÞCD ¼ Fxð ÞAB þ
∂Fx

∂y
dy

Fy

� �
BC

¼ Fy

� �
DA

þ ∂Fy

∂x
dx

(1:99)

The work done in a circuit around the small element ABCD is the sum of the
work done along each individual segment:

I
ABCD

F · d l ¼
Zxþdx

x

Fxð ÞAB dxþ
Zyþdy

y

Fy

� �
BC

dyþ
Zx

xþdx

Fxð ÞCD dxþ
Zy

yþdy

Fy

� �
DA

dy

(1:100)

A B

CD
dS

S

C

n

Fig. 1.7. Configuration for Stokes’ theorem: the surface S is divided into a grid of
elementary areas dS and is bounded by a closed circuit C.

(x, y)

x

y

(x + dx, y)

(x + dx, y + dy)(x, y + dy)

dx

dy

F

Fx

Fy A

C

B

D

Fig. 1.8. Geometry for calculation of the work done by a force F around a small
rectangular grid.
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I
ABCD

F · d l ¼
Zxþdx

x

Fxð ÞAB � Fxð ÞCD
� �

dxþ
Zyþdy

y

Fy

� �
BC

� Fy

� �
DA

	 

dy

(1:101)

Substituting from (1.99) gives

I
ABCD

F · d l ¼
Zxþdx

x

� ∂Fx

∂y
dy

� �
dxþ

Zyþdy

y

∂Fy

∂x
dx

� �
dy (1:102)

The mean-value theorem allows us to replace the integrands over the tiny
distances dx and dy by their values at some point in the range of integration:I

ABCD

F · d l ¼ ∂Fy

∂x
� ∂Fx

∂y

� �
dx dy (1:103)

The bracketed expression is the z-component of the curl of FI
ABCD

F · d l ¼ r� Fð Þz dx dy (1:104)

The normal direction n to the small area dS = dx dy is parallel to the z-axis (i.e.,
out of the plane of Fig. 1.8), and hence is in the direction of (∇ × F)z. Thus,I

ABCD

F · d l ¼ r� Fð Þ·n dS (1:105)

The circuit ABCD is one of many similar grid elements of the surface S. When
adjacent elements are compared, the line integrals along their common boun-
dary are equal and opposite. If the integration is carried out for the entire surface
S, the only surviving parts are the integrations along the bounding curve C
(Fig. 1.7). Thus ZZ

S

r� Fð Þ · n dS ¼
I
C

F · d l (1:106)

This equation is known as Stokes’ theorem, after the English mathematician
George Gabriel Stokes (1819–1903). It enables conversion of the surface integral
of a vector to a line integral. The integration on the left is made over the surface S
through which the vector F passes. The closed integration on the right is made
around the bounding curve C to the surface S; d l is an infinitesimal element of this
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boundary. The direction of dl around the curve is right-handed with respect to the
surface S, i.e., positivewhen the path is kept to the right of the surface, as in Fig. 1.7.

Note that the surface S in Stokes’ theorem is an open surface; it is like the
surface of a bowl with the bounding curve C as its rim. The integration of F
around the rim is called the circulation of F about the curve C. If the integral is
zero, there is no circulation and the vector F is said to be irrotational.
Comparison with the left-hand side shows that the condition for this is

r� F ¼ 0 (1:107)

As shown in Section 1.5, this is also the condition for F to be a conservative field.

1.8 Poisson’s equation

The derivations in this and the following sections are applicable to any field that
varies as the inverse square of distance from its source. Gravitational acceleration is
used as an example, but the electric field of a chargemay be treated in the sameway.
Let S be a surface enclosing an observer at P and a point mass m. Let dS be

a small element of the surface at distance r in the direction er from the mass
m, as in Fig. 1.9. The orientation of dS is specified by the direction n normal
to the surface element. With G representing the gravitational constant (see
Section 2.1), the gravitational acceleration aG at dS is given by

aG ¼ �G
m

r2
er (1:108)

Let θ be the angle between the radius and the direction n normal to the surface
element, and let the projection of dS normal to the radius be dSn. The solid angle
dΩ with apex at the mass is defined as the ratio of the normal surface element
dSn to the square of its distance r from the mass (Box 1.3):

S

m aG

dS

dΩ
θ

dSn

er

n
r

Fig. 1.9. Representation of the flux of the gravitational acceleration aG through a
closed surface S surrounding the source of the flux (the point mass m).
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Box 1.3. Definition of a solid angle

A small element of the surface of a sphere subtends a cone with apex at the
center of the sphere (Fig. B1.3(a)). The solid angle Ω is defined as the ratio of
the area A of the surface element to the square of the radius r of the sphere:

r

θ dφ

r sinθ

r dθ
r sinθ dφ

dθ

A

r

(a) (b)

dA
dA

Ω

Fig. B1.3. (a) Relationship of the solid angle Ω, the area A of an element
subtended on the surface of a sphere, and the radius r of the sphere. (b) The
surface of a sphere divided into rings, and each ring into small surface elements
with sides r dθ and r sin θ d�.

Ω ¼ A

r2
(1)

This definition can be used for an arbitrarily shaped surface. If the surface
is inclined to the radial direction it must be projected onto a surface normal
to the radius, as in Fig. 1.5. For example, if the normal to the surface A
makes an angle αwith the direction from the apex of the subtended cone, the
projected area is A cos α and the solid angle Ω subtended by the area is

Ω ¼ A cos α
r2

(2)

As an example, let the area on the surface of a sphere be enclosed by a small
circle (Fig. B1.3(b)). Symmetry requires spherical polar coordinates to
describe the area within the circle. Let the circle be divided into concentric
rings, and let the half-angle subtended by a ring at the center of the sphere be θ.
The radius of the ring is r sin θ and its width is r dθ. Let the angular position
of a small surface element of the ring be �; the length of a side of the element
is then r sinθ d�. The area dA of a surface area element is equal to r2 sinθ
dθ d�. The solid angle subtended at the center of the sphere by the element
of area dA is

dΩ ¼ r2 sin θ dθ d�
r2

¼ sin θ dθ d� (3)
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dΩ ¼ dSn

r2
¼ dS cos θ

r2
¼ er · nð ÞdS

r2
(1:109)

The flux dN of the gravitational acceleration aG through the area element is

dN ¼ aG · n dS ¼ �G
m

r2
er · nð ÞdS (1:110)

dN ¼ �Gm
cos θ dS

r2
¼ �GmdΩ (1:111)

If we integrate this expression over the entire surface S we get the total gravita-
tional flux N,

N ¼
ZZ

S

aG · n dS ¼ �
Z
Ω

GmdΩ ¼�4πGm (1:112)

Now we replace this surface integral by a volume integration, using the diver-
gence theorem (Section 1.6)ZZZ

V

r · aGð ÞdV ¼
ZZ

S

aG · n dS ¼ �4πGm (1:113)

This is valid for any point mass m inside the surface S. If the surface encloses
many point masses we may replace m with the sum of the point masses. If mass

This expression is also equivalent to the element of area on the surface of
a unit sphere (one with unit radius). Integrating in the ranges 0 ≤ � ≤ 2π and
0 ≤ θ ≤ θ0, we get the solid angle Ω0 subtended by a circular region of
the surface of a sphere defined by a half-apex angle θ0:

Ω0 ¼
Zθ0

θ¼0

Z2π
�¼0

sin θ dθ d�¼ 2π 1� cos θ0ð Þ (4)

The unit of measurement of solid angle is the steradian, which is analogous
to the radian in plane geometry. The maximum value of a solid angle is
when the surface area is that of the complete sphere, namely 4πr2. The
solid angle at its center then has the maximum possible value of 4π. This
result is also obtained by letting the half-apex angle θ0 in (4) increase to its
maximum value π.
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is distributed in the volume with mean density ρ, a volume integral can replace
the enclosed mass: ZZZ

V

r · aGð ÞdV ¼ �4πG
ZZZ
V

ρ dV (1:114)

ZZZ
V

r · aG þ 4πGρð ÞdV ¼ 0 (1:115)

For this to be generally true the integrand must be zero. Consequently,

r · aG ¼ �4πGρ (1:116)

The gravitational acceleration is the gradient of the gravitational potentialUG as
in (1.88):

r · �rUGð Þ ¼ �4πGρ (1:117)

r2UG ¼ 4πGρ (1:118)

Equation (1.118) is known as Poisson’s equation, after Siméon-Denis Poisson
(1781–1840), a French mathematician and physicist. It describes the gravita-
tional potential of a mass distribution at a point that is within the mass distri-
bution. For example, it may be used to compute the gravitational potential at a
point inside the Earth.

1.9 Laplace’s equation

Another interesting case is the potential at a point outside the mass distribution.
Let S be a closed surface outside the point mass m. The radius vector r from the
point massm now intersects the surface S at two points A and B, where it forms
angles θ1 and θ2 with the respective unit vectors n1 and n2 normal to the surface
(Fig. 1.10). Let er be a unit vector in the radial direction. Note that the outward
normal n1 forms an obtuse angle with the radius vector at A. The gravitational
acceleration at A is a1 and its flux through the surface area dS1 is

dN1 ¼ a1 · n1 dS1 ¼ �Gm

r21

� �
r · n1ð ÞdS1 (1:119)

dN1 ¼ �Gm

r21

� �
cos π � θ1ð ÞdS1 ¼ Gm

cos θ1 dS1

r21
(1:120)
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dN1 ¼ GmdΩ (1:121)

The gravitational acceleration at B is a2 and its flux through the surface area dS2 is

dN2 ¼ a2 · n2 dS2 ¼ �Gm
cos θ2 dS2

r22
(1:122)

dN2 ¼ �GmdΩ (1:123)

The total contribution of both surfaces to the gravitational flux is

dN ¼ dN1 þ dN2 ¼ 0 (1:124)

Thus, the total flux of the gravitational acceleration aG through a surface S that
does not include the point mass m is zero. By invoking the divergence theorem
we have for this situationZ

V

r · aGð ÞdV ¼
Z
S

aG · n dS ¼ 0 (1:125)

For this result to be valid for any volume, the integrand must be zero:

r · aG ¼ r · �rUGð Þ ¼ 0 (1:126)

r2UG¼ 0 (1:127)

Equation (1.127) is Laplace’s equation, named after Pierre Simon, Marquis de
Laplace (1749–1827), a French mathematician and physicist. It describes the
gravitational potential at a point outside a mass distribution. For example, it is
applicable to the computation of the gravitational potential of the Earth at an
external point or on its surface.
In Cartesian coordinates, which are rectilinear, Laplace’s equation has the

simple form

S

m a1

n2

dΩ
θ

dS1

1

2

dS2
n1

a2
A

B

θ

er

Fig. 1.10. Representation of the gravitational flux through a closed surface S that
does not enclose the source of the flux (the point mass m).
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∂2UG

∂x2
þ ∂2UG

∂y2
þ ∂2UG

∂z2
¼ 0 (1:128)

Spherical polar coordinates are curvilinear and the curvature of the angular
coordinates results in a more complicated form:

1

r2
∂
∂r

r2
∂UG

∂r

� �
þ 1

r2 sin θ
∂
∂θ

sin θ
∂UG

∂θ

� �
þ 1

r2 sin2θ

∂2UG

∂�2
¼ 0 (1:129)

1.10 Power series

A function ƒ(x) that is continuous and has continuous derivatives may be
approximated by the sum of an infinite series of powers of x. Many mathemat-
ical functions – e.g., sin x, cos x, exp(x), ln(1 + x) – fulfill these conditions of
continuity and can be expressed as power series. This often facilitates the
calculation of a value of the function. Three types of power series will be
considered here: the MacLaurin, Taylor, and binomial series.

1.10.1 MacLaurin series

Let the function ƒ(x) be written as an infinite sum of powers of x:

fðxÞ ¼ a0 þ a1xþ a2x
2 þ a3x

3 þ a4x
4 þ � � � þ anx

n þ � � � (1:130)

The coefficients an in this sum are constants. Differentiating (1.130) repeatedly
with respect to x gives

df

dx
¼ a1 þ 2a2xþ 3a3x

2 þ 4a4x
3 þ � � � þ nanx

n�1 þ � � �
d 2f

dx2
¼ 2a2þ 3 � 2ð Þa3xþ 4 � 3ð Þa4x2 þ � � � þ nðn� 1Þanxn�2 þ � � �

d 3f

dx3
¼ 3 � 2ð Þa3þ 4 � 3 � 2ð Þa4xþ � � � þ nðn� 1Þðn� 2Þanxn�3þ � � �

(1:131)

After n differentiations, the expression becomes

dnf

dxn
¼ nðn� 1Þðn� 2Þ . . . 3 � 2 � 1ð Þ an þ terms containing powers of x

(1:132)

Now we evaluate each of the differentiations at x = 0. Terms containing powers
of x are zero and
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fð0Þ ¼ a0;
df

dx

� �
x¼0

¼ a1

d 2f

dx2

� �
x¼0

¼ 2a2;
d 3f

dx3

� �
x¼0

¼ 3 � 2ð Þa3
d nf

dxn

� �
x¼0

¼ nðn� 1Þðn� 2Þ . . . 3 � 2 � 1ð Þan ¼ n!an

(1:133)

On inserting these values for the coefficients into (1.130) we get the power
series for ƒ(x):

fðxÞ ¼ fð0Þ þ x
df

dx

� �
x¼0

þ x2

2!

d 2f

dx2

� �
x¼0

þx3

3!

d 3f

dx3

� �
x¼0

þ � � �

þ xn

n!

d nf

dxn

� �
x¼0

þ � � �
(1:134)

This is the MacLaurin series for ƒ(x) about the origin, x= 0. It was derived in the
eighteenth century by the Scottish mathematician Colin MacLaurin (1698–
1746) as a special case of a Taylor series.
The MacLaurin series is a convenient way to derive series expressions for

several important functions. In particular,

sin x ¼ x� x3

3!
þ x5

5!
� x7

7!
þ � � � �1ð Þn�1 x2n�1

2n� 1ð Þ! � � �

cos x ¼ 1� x2

2!
þ x4

4!
� x6

6!
þ � � � �1ð Þn�1 x2n�2

2n� 2ð Þ! � � �

expðxÞ ¼ ex ¼ 1þ xþ x2

2!
þ x3

3!
þ � � � þ xn�1

n� 1ð Þ!þ � � �

ln 1þ xð Þ ¼ loge 1þ xð Þ ¼ x� x2

2
þ x3

3
� x4

4
þ � � � �1ð Þn�1 xn

n
� � �

(1:135)

1.10.2 Taylor series

We can write the power series in (1.134) for ƒ(x) centered on any new origin, for
example x = x0. To do this we substitute (x – x0) for x in the above derivation.
The power series becomes

fðxÞ ¼fðx0Þ þ x� x0ð Þ df

dx

� �
x¼x0

þ x� x0ð Þ2
2!

d 2f

dx2

� �
x¼x0

þ x� x0ð Þ3
3!

d 3f

dx3

� �
x¼x0

þ � � � þ x� x0ð Þn
n!

d nf

dxn

� �
x¼x0

þ � � �

(1:136)
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This is called a Taylor series, after an English mathematician, Brooks Taylor
(1685–1731), who described its properties in 1712.
The MacLaurin and Taylor series are both approximations to the function

ƒ(x). The remainder between the true function and its power series is a measure
of how well the function is expressed by the series.

1.10.3 Binomial series

Finite series
An important series is the expansion of the function ƒ(x) = (a + x)n. If n is a
positive integer, the expansion of ƒ(x) is a finite series, terminating after (n+ 1)
terms. Evaluating the series for some low values of n gives the following:

n ¼ 0 : aþ xð Þ0 ¼ 1

n ¼ 1 : aþ xð Þ1 ¼ aþ x

n ¼ 2 : aþ xð Þ2 ¼ a2 þ 2axþ x2

n ¼ 3 : aþ xð Þ3 ¼ a3 þ 3a2xþ 3ax2 þ x3

n ¼ 4 : aþ xð Þ4 ¼ a4 þ 4a3xþ 6a2x2 þ 4ax3 þ x4

(1:137)

The general expansion of ƒ(x) is therefore

aþ xð Þn¼ an þ nan�1xþ n n� 1ð Þ
1 � 2 an�2x2 þ � � �

þ n n� 1ð Þ . . . n� kþ 1ð Þ
k!

an�kxk � � � þ xn
(1:138)

The coefficient of the general kth term is equivalent to

n n� 1ð Þ . . . n� kþ 1ð Þ
k!

¼ n!

k! n� kð Þ! (1:139)

This is called the binomial coefficient.
When the constant a is equal to 1 and n is a positive integer, we have the

useful series expansion

1þ xð Þn¼
Xn
k¼0

n!

k! n� kð Þ!x
k (1:140)

Infinite series
If the exponent in (1.140) is not a positive integer, the series does not terminate,
but is an infinite series. The series for ƒ(x) = (1 + x)p, in which the exponent p is
not a positive integer, may be derived as a MacLaurin series:
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df

dx

� �
x¼0

¼ p 1þ xð Þp�1
	 


x¼0
¼ p

d 2f

dx2

� �
x¼0

¼ p p� 1ð Þ 1þ xð Þp�2
	 


x¼0
¼ p p� 1ð Þ

dnf

dxn

� �
x¼0

¼ p p�1ð Þ . . . p�nþ1ð Þ 1þxð Þp�nð Þx¼0¼ p p� 1ð Þ . . . p� nþ 1ð Þ

(1:141)

On inserting these terms into (1.134), and noting that ƒ(0) = 1, we get for the
binomial series

1þ xð Þp ¼ 1þ pxþ p p� 1ð Þ
1 � 2 x2 þ p p� 1ð Þ p� 2ð Þ

1 � 2 � 3 x3 þ � � �

þ p p� 1ð Þ . . . p� nþ 1ð Þ
n!

xn þ � � �
(1:142)

If the exponent p is not an integer, or p is negative, the series is convergent in the
range –1 < x < 1.

1.10.4 Linear approximations

The variations in some physical properties over the surface of the Earth are small
in relation to the main property. For example, the difference between the polar
radius c and the equatorial radius a expressed as a fraction of the equatorial radius
defines the flattening ƒ, which is equal to 1/298. This results from deformation of
the Earth by the centrifugal force of its own rotation, which, expressed as a
fractionm of the gravitational force, is equal to 1/289. Both ƒ and m are less than
three thousandths of the main property, so ƒ2, m2, and the product fm are of the
order of nine parts in a million and, along with higher-order combinations, are
negligible. Curtailing the expansion of small quantities at first order helps keep
equations manageable without significant loss of geophysical information.

In the following chapters much use will be made of such linear approxima-
tion. It simplifies the form of mathematical functions and the usable part of the
series described above. For example, for small values of x or (x – x0), the
following first-order approximations may be used:

sin x � x; cos x � 1

expðxÞ � 1þ x; ln 1þ xð Þ � x

1þ xð Þp � 1þ px

fðxÞ � fðx0Þ þ x� x0ð Þ df

dx

� �
x¼x0

(1:143)
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1.11 Leibniz’s rule

Assume that u(x) and v(x) are differentiable functions of x. The derivative of
their product is

d

dx
u xð Þv xð Þð Þ ¼ u xð Þ dv xð Þ

dx
þ v xð Þ du xð Þ

dx
(1:144)

If we define the operator D = d/dx, we obtain a shorthand form of this equation:

D uvð Þ ¼ uDvþ vDu (1:145)

We can differentiate the product (uv) a second time by parts,

D2 uvð Þ ¼ D D uvð Þð Þ ¼ uD2vþ Duð Þ Dvð Þ þ Dvð Þ Duð Þ þ vD2u

¼ uD2vþ 2 Duð Þ Dvð Þ þ vD2u (1:146)

and, continuing in this way,

D3 uvð Þ ¼ uD3vþ 3 Duð Þ D2v
� �þ 3 D2u

� �
Dvð Þ þ vD3u

D4 uvð Þ ¼ uD4vþ 4 Duð Þ D3v
� �þ 6 D2u

� �
D2v
� �þ 4 D2u

� �
Dvð Þ þ vD4u

(1:147)

The coefficients in these equations are the binomial coefficients, as defined in
(1.139). Thus after n differentiations we have

Dn uvð Þ ¼
Xn
k¼0

n!

k! n� kð Þ! Dku
� �

Dn�kv
� �

(1:148)

This relationship is known as Leibniz’s rule, after Gottfried Wilhelm Leibniz
(1646–1716), who invented infinitesimal calculus contemporaneously with
Isaac Newton (1642–1727); each evidently did so independently of the other.

1.12 Legendre polynomials

Let r and R be the sides of a triangle that enclose an angle θ and let u be the side
opposite this angle (Fig. 1.11). The angle and sides are related by the cosine rule

u2 ¼ r2 þ R2 � 2rR cos θ (1:149)

Inverting this expression and taking the square root gives

1

u
¼ 1

R

"
1� 2

 
r

R

!
cos θ þ

 
r

R

!2#�1=2

(1:150)
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Now let h ¼ r=R and x = cos θ, giving

1

u
¼ 1

R
1� 2xhþ h2
� ��1=2 ¼ 1

R
1� tð Þ�1=2 (1:151)

where t = 2xh – h2. The equation can be expanded as a binomial series

1�tð Þ�1=2 ¼ 1þ � 1

2

� �
�tð Þ þ � 1

2

� � � 3
2

� �
1 � 2 �tð Þ2þ � 1

2

� � � 3
2

� � � 5
2

� �
1 � 2 � 3 �tð Þ3 þ � � �

¼ 1þ t

2
þ 1 � 3
1 � 2

 
t

2

!2

þ 1 � 3 � 5
1 � 2 � 3

 
t

2

!3

þ � � �

þ 1 � 3 � 5 . . . 2n� 1ð Þ
1 � 2 � 3 . . . n

 
t

2

!n

þ � � � (1:152)

The infinite series of terms on the right-hand side of the equation can be written

1� tð Þ�1=2¼
X1
n¼0

ant
n (1:153)

The coefficient an is given by

an ¼ 1 � 3 � 5 � . . . � 2n� 1ð Þ
2nn!

(1:154)

Now, substitute the original expression for t,

1� 2xhþ h2
� ��1=2 ¼

X1
n¼0

an 2xh� h2
� �n ¼X1

n¼0

anh
n 2x� hð Þn (1:155)

This equation is an infinite series in powers of h. The coefficient of each term in
the power series is a polynomial in x. Let the coefficient of hn be Pn(x). The
equation becomes

Ψ x; hð Þ ¼ 1� 2xhþ h2
� ��1=2¼

X1
n¼0

hnPn xð Þ (1:156)

r
θ

R u

Fig. 1.11. Relationship of the sides r and R, which enclose an angle θ, and the side
u opposite the angle, as used in the definition of Legendre polynomials.

1.12 Legendre polynomials 33



Equation (1.156) is known as the generating function for the polynomials Pn(x).
Using this result, and substituting h = r/R and x = cos θ, we find that (1.151)
becomes

1

u
¼ 1

R

X1
n¼0

 
r

R

!n

Pn cos θð Þ (1:157)

The polynomials Pn(x) or Pn(cos θ) are called Legendre polynomials, after the
French mathematician Adrien-Marie Legendre (1752–1833). The defining
equation (1.157) is called the reciprocal-distance formula. An alternative for-
mulation is given in Box 1.4.

1.13 The Legendre differential equation

The Legendre polynomials satisfy an important second-order partial differential
equation, which is called the Legendre differential equation. To derive this
equation we will carry out a sequence of differentiations, starting with the
generating function in the form

Ψ ¼ 1� 2xhþ h2
� ��1=2

(1:158)

Differentiating this function once with respect to h gives

∂Ψ
∂h

¼ x� hð Þ 1� 2xhþ h2
� ��3=2 ¼ x� hð ÞΨ3 (1:159)

Differentiating Ψ twice with respect to x gives

∂Ψ
∂x

¼ h 1� 2xhþ h2
� ��3=2 ¼ hΨ3

Ψ3 ¼ 1

h

∂Ψ
∂x

(1:160)

∂2Ψ
∂x2

¼ 3hΨ2 ∂Ψ
∂x

¼ 3h2Ψ5

Ψ5 ¼ 1

3h2
∂2Ψ
∂x2

(1:161)

Next we perform successive differentiations of the product (hΨ) with respect to
h. The first gives

∂
∂h

hΨð Þ ¼ Ψþ h
∂Ψ
∂h

¼ Ψþ h x� hð ÞΨ3 (1:162)
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On repeating the differentiation, and taking (1.159) into account, we get

∂2

∂h2
hΨð Þ ¼ ∂Ψ

∂h
þ h x� hð Þ3Ψ2 ∂Ψ

∂h
þ x� 2hð ÞΨ3

¼ x� hð ÞΨ3 þ 3h x� hð Þ2Ψ5 þ x� 2hð ÞΨ3

¼ 2x� 3hð ÞΨ3 þ 3h x� hð Þ2Ψ5 (1:163)

Now substitute for Ψ3, from (1.160), and Ψ5, from (1.161), giving

Box 1.4. Alternative form of the reciprocal-distance formula

The sides and enclosed angle of the triangle in Fig. 1.11 are related by the
cosine rule

u2 ¼ r2 þ R2 � 2rR cos θ (1)

Instead of taking R outside the brackets as in (1.150), we can move r outside
and write the expression for u as

1

u
¼ 1

r
1� 2

R

r

� �
cos θ þ R

r

� �2
" #�1=2

(2)

Following the same treatment as in Section 1.12, but now with h ¼ R=r and
x= cos θ, we get

1

u
¼ 1

r
1� 2xhþ h2
� ��1=2 ¼ 1

r
1� tð Þ�1=2 (3)

where t = 2xh – h2. The function (1 – t)−1/2 is expanded as a binomial series,
which again gives an infinite series in h, in which the coefficient of hn is
Pn(x). The defining equation is as before:

Ψ x; hð Þ ¼ 1� 2xhþ h2
� ��1=2¼

X1
n¼0

hnPn xð Þ (4)

On substituting h ¼ R=r and x = cos θ, we find an alternative form for the
generating equation for the Legendre polynomials:

1

u
¼ 1

r

X1
n¼0

R

r

� �n

Pn cos θð Þ (5)
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∂2

∂h2
hΨð Þ ¼ 2x� 3hð Þ 1

h

∂Ψ
∂x

� �
þ 3h x� hð Þ2 1

3h2
∂2Ψ
∂x2

� �
(1:164)

Multiply throughout by h:

h
∂2

∂h2
hΨð Þ ¼ 2x� 3hð Þ ∂Ψ

∂x

� �
þ x� hð Þ2 ∂2Ψ

∂x2

� �

¼ 2x
∂Ψ
∂x

� �
� 3h

∂Ψ
∂x

� �
þ x� hð Þ2 ∂2Ψ

∂x2

� �
(1:165)

The second term on the right can be replaced as follows, again using (1.160) and
(1.161):

3h
∂Ψ
∂x

¼ 3h2Ψ3 ¼ 1

Ψ2

∂2Ψ
∂x2

¼ 1� 2xhþ h2
� � ∂2Ψ

∂x2
(1:166)

On substituting into (1.165) and gathering terms, we get

h
∂2

∂h2
hΨð Þ ¼ x� hð Þ2 � 1� 2xhþ h2

� �h i ∂2Ψ
∂x2

� �
þ 2x

∂Ψ
∂x

� �
(1:167)

h
∂2

∂h2
hΨð Þ ¼ x2 � 1

� � ∂2Ψ
∂x2

� �
þ 2x

∂Ψ
∂x

� �
(1:168)

The Legendre polynomials Pn(x) are defined in (1.156) as the coefficients of hn

in the expansion ofΨ as a power series. On multiplying both sides of (1.156) by
h, we get

hΨ ¼
X1
n¼0

hnþ1PnðxÞ (1:169)

We differentiate this expression twice and multiply by h to get a result that can
be inserted on the left-hand side of (1.168):

∂
∂h

hΨð Þ ¼
X1
n¼0

nþ 1ð ÞhnPnðxÞ (1:170)

h
∂2

∂h2
hΨð Þ ¼

X1
n¼0

n nþ 1ð ÞhnPnðxÞ (1:171)

Using (1.156), we can now eliminateΨ and convert (1.168) into a second-order
differential equation involving the Legendre polynomials Pn(x),
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X1
n¼0

hn x2 � 1
� � d 2PnðxÞ

dx2
þ 2x

dPnðxÞ
dx

� �
¼
X1
n¼0

n nþ 1ð ÞhnPnðxÞ (1:172)

X1
n¼0

hn x2 � 1
� � d 2PnðxÞ

dx2
þ 2x

dPnðxÞ
dx

� n nþ 1ð ÞPnðxÞ
� �

¼ 0 (1:173)

If this expression is true for every non-zero value of h, the quantity in curly
brackets must be zero, thus

1� x2
� � d 2PnðxÞ

dx2
� 2x

dPnðxÞ
dx

þ n nþ 1ð ÞPnðxÞ ¼ 0 (1:174)

An alternative, simpler form for this equation is obtained by combining the first
two terms:

d

dx
1� x2
� � dPnðxÞ

dx

� 
þ n nþ 1ð ÞPnðxÞ ¼ 0 (1:175)

This is the Legendre differential equation. It has a family of solutions, each of
which is a polynomial corresponding to a particular value of n. The Legendre
polynomials provide solutions in potential analyses with spherical symmetry,
and have an important role in geophysical theory. Some Legendre polynomials
of low degree are listed in Table 1.1.

1.13.1 Orthogonality of the Legendre polynomials

Two vectors a and b are orthogonal if their scalar product is zero:

a · b ¼ axbx þ ayby þ azbz ¼
X3
i¼1

aibi ¼ 0 (1:176)

Table 1.1. Some ordinary Legendre polynomials of low degree

n Pn(x) Pn(cos θ)

0 1 1
1 x cos θ

2
1

2
3x2 � 1
� � 1

2
3 cos2θ � 1
� �

3
1

2
5x3 � 3x
� � 1

2
5 cos3θ � 3 cos θ
� �

4
1

8
35x4 � 30x2 þ 3
� � 1

8
35 cos4θ � 30 cos2 θ þ 3
� �
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By analogy, two functions of the same variable are said to be orthogonal if their
product, integrated over a particular range, is zero. For example, the trigono-
metric functions sin θ and cos θ are orthogonal for the range 0 ≤ θ ≤ 2π, because

Z2π
θ¼0

sin θ cos θ dθ ¼
Z2π
θ¼0

1

2
sinð2θÞdθ ¼ � 1

4
cosð2θÞ

����
2π

θ¼0

¼ 0 (1:177)

The Legendre polynomialsPn(x) and Pl(x) are orthogonal over the range –1 ≤ x ≤1.
This can be established as follows. First, we write the Legendre equation in short
form, dropping the variable x for both Pn and Pl, and, for brevity, writing

d

dx
PnðxÞ ¼ P0

n and
d 2

dx2
PnðxÞ ¼ P00

n (1:178)

Thus

1� x2
� �

P00
n � 2xP0

n þ n nþ 1ð ÞPn ¼ 0 (1:179)

1� x2
� �

P00
l � 2xP0

l þ l lþ 1ð ÞPl ¼ 0 (1:180)

Multiplying (1.179) by Pl and (1.180) by Pn gives

1� x2
� �

PlP
00
n � 2xPlP

0
n þ n nþ 1ð ÞPlPn ¼ 0 (1:181)

1� x2
� �

PnP
00
l � 2xP0

lPn þ l lþ 1ð ÞPlPn ¼ 0 (1:182)

Subtracting (1.182) from (1.181) gives

1� x2
� �

PlP
00
n � PnP

00
l

� �� 2x PlP
0
n � P0

lPn

� �þ n nþ 1ð Þ � l lþ 1ð Þ½ �PlPn

¼ 0

(1:183)

Note that

d

dx
PlP

0
n � P0

lPn

� � ¼ PlP
00
n þ P0

lP
0
n � P0

lP
0
n � P00

l Pn ¼ PlP
00
n � P00

l Pn

(1:184)

and

1� x2
� � d

dx
PlP

0
n � P0

lPn

� �� 2x PlP
0
n � P0

lPn

� �
¼ d

dx
1� x2
� �

PlP
0
n � P0

lPn

� �� �
(1:185)
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Thus

d

dx
1� x2
� �

PlP
0
n � P0

lPn

� �� �þ n nþ 1ð Þ � l lþ 1ð Þ½ �PlPn ¼ 0 (1:186)

Now integrate each term in this equation with respect to x over the range
–1 ≤ x ≤ 1. We get

1� x2
� �

PlP
0
n � P0

lPn

� �� ���þ1

x¼�1
þ n nþ 1ð Þ � l lþ 1ð Þ½ �

Zþ1

x¼�1

PlPn dx ¼ 0

(1:187)

The first term is zero on evaluation of (1 – x2) at x= ±1; thus the second term
must also be zero. For n ≠ l the condition for orthogonality of the Legendre
polynomials is Z þ1

x¼�1

PnðxÞPlðxÞdx ¼ 0 (1:188)

1.13.2 Normalization of the Legendre polynomials

A function is said to be normalized if the integral of the square of the function over

its range is equal to 1. Thus we must evaluate the integral
Rþ1

x¼�1 Pn xð Þ½ �2 dx. We

begin by recalling the generating function for the Legendre polynomials given in
(1.156), which we rewrite for Pn(x) and Pl(x) individually:X1

n¼0

hnPn xð Þ ¼ 1� 2xhþ h2
� ��1=2

(1:189)

X1
l¼0

hlPl xð Þ ¼ 1� 2xhþ h2
� ��1=2

(1:190)

Multiplying these equations together gives

X1
l¼0

X1
n¼0

hnþlPn xð ÞPl xð Þ ¼ 1� 2xhþ h2
� ��1

(1:191)

Now let l = n and integrate both sides with respect to x, taking into account
(1.188):

X1
n¼0

h2n
Zþ1

x¼�1

Pn xð Þ½ �2 dx¼
Zþ1

x¼�1

dx

1þ h2 � 2xh
(1:192)

1.13 The Legendre differential equation 39



The right-hand side of this equation is a standard integration that results in a
natural logarithm: Z

dx

aþ bx
¼ 1

b
ln aþ bxð Þ (1:193)

The right-hand side of (1.192) therefore leads to

Zþ1

x¼�1

dx

1þ h2 � 2xh
¼ 1

�2hð Þ ln 1þ h2 � 2xh
� �����

þ1

x¼�1

¼ �1

2h
ln 1þ h2 � 2h
� �� ln 1þ h2 þ 2h

� �� �
(1:194)

and

Zþ1

x¼�1

dx

1þ h2 � 2xh
¼ 1

h
� 1

2
ln 1� hð Þ2þ 1

2
ln 1þ hð Þ2

� 

¼ 1

h
ln 1þ hð Þ � ln 1� hð Þ½ � (1:195)

Using the MacLaurin series for the natural logarithms as in (1.135), we get

ln 1þ hð Þ ¼ h� h2

2
þ h3

3
� h4

4
þ � � � �1ð Þn�1h

n

n
þ � � � (1:196)

ln 1� hð Þ ¼ �h� h2

2
� h3

3
� h4

4
� � � � �1ð Þn�1 �hð Þn

n
þ � � � (1:197)

Subtracting the second equation from the first gives

Zþ1

x¼�1

dx

1þ h2 � 2xh
¼ 2

h
hþ h3

3
þ h5

5
þ � � �

� 
¼ 2

h

X1
n¼0

h2nþ1

2nþ 1
(1:198)

Inserting this result into (1.192) gives

X1
n¼0

h2n
Zþ1

x¼�1

Pn xð Þ½ �2 dx¼ 2

h

X1
n¼0

h2nþ1

2nþ 1
(1:199)

X1
n¼0

h2n
Zþ1

x¼�1

Pn xð Þ½ �2 dx� 2

2nþ 1

0
@

1
A ¼ 0 (1:200)
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This is true for every value of h in the summation, so we obtain the normalizing
condition for the Legendre polynomials:

Zþ1

x¼�1

Pn xð Þ½ �2 dx ¼ 2

2nþ 1
(1:201)

It follows that nþ 1
2

� �1=2
Pn xð Þ is a normalized Legendre polynomial.

1.14 Rodrigues’ formula

The Legendre polynomials can be easily computed with the aid of a formula
derived by a French mathematician, Olinde Rodrigues (1795–1851). First, we
define the function

fðxÞ ¼ x2 � 1
� �n

(1:202)

Differentiating ƒ(x) once with respect to x gives

df

dx
¼ d

dx
x2 � 1
� �n ¼ 2nx x2 � 1

� �n�1
(1:203)

Multiplying the result by (x2− 1) gives

x2 � 1
� � d

dx
x2 � 1
� �n ¼ 2nx x2 � 1

� �n
(1:204)

x2 � 1
� � df

dx
¼ 2nxf (1:205)

Now we use Leibniz’s rule (1.144) to differentiate both sides of this equation
n + 1 times with respect to x. Writing D = d/dx as in Section 1.11,

Dnþ1 uvð Þ ¼
Xnþ1

k¼0

nþ 1ð Þ!
k! nþ 1� kð Þ! Dku

� �
Dnþ1�kv
� �

(1:206)

On the left-hand side of (1.205) let u(x) = (x2− 1) and v(x) = dƒ/dx = Dƒ.
Applying Leibniz’s rule, we note that after only three differentiations of (x2− 1)
the result is zero and the series is curtailed.
On the right-hand side let u(x) = 2nx and v(x) = ƒ. Note that in this case the

series is curtailed after two differentiations.
Thus, using Leibniz’s rule to differentiate each side of (1.205) n + 1 times,

we get
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x2 � 1
� �

Dnþ2fþ 2x nþ 1ð ÞDnþ1fþ 2
ðnþ 1Þn

1·2
Dnf ¼ 2nxDnþ1f

þ 2n nþ 1ð ÞDnf

(1:207)

On gathering terms and bringing all to the left-hand side, we have

x2 � 1
� �

Dnþ2fþ 2xDnþ1f� nðnþ 1ÞDnf ¼ 0 (1:208)

Now we define y(x) such that

y xð Þ ¼ Dnf ¼ d n

dxn
x2 � 1
� �n

(1:209)

and we have

x2 � 1
� � d 2y

dx2
þ 2x

dy

dx
� nðnþ 1Þy ¼ 0 (1:210)

On comparing with (1.174), we see that this is the Legendre equation. The
Legendre polynomials must therefore be proportional to y(x), so we can write

PnðxÞ ¼ cn
d n

dxn
x2 � 1
� �n

(1:211)

The quantity cn is a calibration constant. To determine cn we first write

d n

dxn
x2 � 1
� �n ¼ d n

dxn
x� 1ð Þn xþ 1ð Þn½ � (1:212)

then we apply Leibniz’s rule to the product on the right-hand side of the
equation:

d n

dxn
x2 � 1
� �n¼Xn

m¼0

n!

m! n�mð Þ!
d m

dxm
x� 1ð Þn d

n�m

dxn�m
xþ 1ð Þn (1:213)

The successive differentiations of (x – 1)n give

d

dx
x� 1ð Þn ¼ n x� 1ð Þn�1

d 2

dx2
x� 1ð Þn ¼ n n� 1ð Þ x� 1ð Þn�2

d n�1

dxn�1
x� 1ð Þn ¼ n n� 1ð Þ n� 2ð Þ . . . 3·2·1ð Þ x� 1ð Þ ¼ n! x� 1ð Þ

d n

dxn
x� 1ð Þn ¼ n!

(1:214)
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Each differentiation in (1.214) is zero at x = 1, except the last one. Thus each
term in the sum in (1.213) is also zero except for the last one, for which m = n.
Substituting x = 1 gives

d n

dxn
x2 � 1
� �n� 

x¼1

¼ xþ 1ð Þn d
n

dxn
x� 1ð Þn

� 
x¼1

¼ 2nn! (1:215)

Putting this result and the condition Pn(1) = 1 into (1.211) gives

Pnð1Þ ¼ cn
d n

dxn
x2 � 1
� �n� �

x¼1

¼ cn2
nn! ¼ 1 (1:216)

where

cn ¼ 1

2nn!
(1:217)

Rodrigues’ formula for the Legendre polynomials is therefore

PnðxÞ ¼ 1

2nn!

d n

dxn
x2 � 1
� �n

(1:218)

1.15 Associated Legendre polynomials

Many physical properties of the Earth, such as its magnetic field, are not
azimuthally symmetric about the rotation axis when examined in detail.
However, these properties can be described using mathematical functions that
are based upon the Legendre polynomials described in the preceding section. To
derive these functions, we start from the Legendre equation, (1.174), which can
be written in shorthand form as

1� x2
� �

P 00
n � 2xP0

n þ n nþ 1ð ÞPn ¼ 0 (1:219)

Now we differentiate this equation with respect to x:

1� x2
� � d

dx
P00
n � 2xP00

n � 2x
d

dx
P0
n � 2P0

n þ n nþ 1ð Þ d

dx
Pn ¼ 0 (1:220)

On noting that we can equally write P 00
n ¼ ðd=dxÞP0

n and P0
n ¼ ðd=dxÞPn, this

can be written alternatively as

1� x2
� � d

dx
P00
n � 4x

d

dx
P0
n þ n nþ 1ð Þ � 2½ � d

dx
Pn ¼ 0 (1:221)

which can be written, for later comparison,
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1� x2
� � d

dx
P00
n � 2ð2Þx d

dx
P0
n þ n nþ 1ð Þ � 1ð2Þ½ � d

dx
Pn ¼ 0 (1:222)

Next, we differentiate this expression again, observing the same rules and
gathering terms,

1�x2
� � d 2

dx2
P00
n�2x

d

dx
P00
n

� �
� 4

d

dx
P0
n þ 4x

d 2

dx2
P0
n

� �
þ n nþ 1ð Þ�2½ � d

2

dx2
Pn¼0

(1:223)

1� x2
� � d 2

dx2
P00
n � 2x

d 2

dx2
P0
n � 4x

d 2

dx2
P0
n þ n nþ 1ð Þ � 2� 4½ � d

2

dx2
Pn ¼ 0

(1:224)

1� x2
� � d 2

dx2
P00
n � 6x

d 2

dx2
P0
n þ n nþ 1ð Þ � 6½ � d

2

dx2
Pn ¼ 0 (1:225)

which, as we did with (1.222), we can write in the form

1� x2
� � d 2

dx2
P00
n � 2ð3Þx d 2

dx2
P0
n þ n nþ 1ð Þ � 2ð3Þ½ � d

2

dx2
Pn ¼ 0 (1:226)

On following step-by-step in the same manner, we get after the third
differentiation

1� x2
� � d 3

dx3
P00
n � 2 4ð Þx d 3

dx3
P0
n þ n nþ 1ð Þ � 3 4ð Þ½ � d

3

dx3
Pn ¼ 0 (1:227)

Equations (1.222), (1.226), and (1.227) all have the same form. The higher-
order differentiation is accompanied by systematically different constants. By
extension, differentiating (1.219) m times (where m ≤ n) yields the differential
equation

1� x2
� � d m

dxm
P00
n � 2 mþ 1ð Þx d m

dxm
P0
n þ n nþ 1ð Þ �m mþ 1ð Þ½ � d

m

dxm
Pn ¼ 0

(1:228)

Now let the mth-order differentiation of Pn be written as

d m

dxm
PnðxÞ ¼ QðxÞ

1� x2ð Þm=2
(1:229)

Substitution of this expression into (1.228) gives a new differential equation
involving Q(x). We need to determine both ðd m=dxmÞP0

n and ðd m=dxmÞP00
n , so

first we differentiate (1.229) with respect to x:
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d m

dxm
P0
n ¼

Q0

1� x2ð Þm=2
�
 
m

2

!
�2xð Þ Q

1� x2ð Þm=2þ1
(1:230)

d m

dxm
P0
n ¼ 1� x2

� ��ðmþ2Þ=2
1� x2
� �

Q0 þmxQ
� �

(1:231)

A further differentiation of (1.231) by parts gives

d m

dxm
P00
n ¼

d

dx
1� x2
� ��ðmþ2Þ=2

� �
1� x2
� �

Q0 þmxQ
� �

þ 1� x2
� ��ðmþ2Þ=2 d

dx
1� x2
� �

Q0 þmxQ
� �

¼ mþ 2ð Þx 1� x2
� ��ðmþ2Þ=2�1

1� x2
� �

Q0 þmxQ
� �

þ 1� x2
� ��ðmþ2Þ=2

1� x2
� �

Q00 þmxQ0 � 2xQ0 þmQ
� �

(1:232)

d m

dxm
P00
n ¼ 1� x2

� ��ðmþ2Þ=2
1� x2
� �

Q00 þ m� 2ð ÞxQ0 þmQþ mþ 2ð ÞxQ0
n
þ m mþ 2ð Þx2Q

1� x2

�
(1:233)

d m

dxm
P00
n ¼ 1� x2

� ��ðmþ2Þ=2
1� x2
� �

Q00 þ 2mxQ0 þmQþm mþ 2ð Þx2Q
1� x2

� �
(1:234)

Now we substitute (1.231) and (1.234) into (1.228). Unless the multiplier
(1 – x2)− (m + 2)/2 is always zero, Q must satisfy the following equation:

1� x2
� �2

Q00 þ 2mx 1� x2
� �

Q0 þm 1� x2
� �

Qþm mþ 2ð Þx2Q
� 2 mþ 1ð Þx 1� x2

� �
Q0 � 2m mþ 1ð Þx2Q

þ n nþ 1ð Þ �m mþ 1ð Þ½ � 1� x2
� �

Q ¼ 0 (1:235)

The remainder of the evaluation consists of gathering and reducing terms; we
finally get

1� x2
� �

Q00 � 2xQ0 þ n nþ 1ð Þ � m2

1� x2

� 
Q ¼ 0 (1:236)
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The functions Q(x) involve two parameters, the degree n and order m, and are
written Pn,m(x). Thus

1� x2
� � d 2

dx2
Pn;m xð Þ � 2x

d

dx
Pn;m xð Þ þ n nþ 1ð Þ � m2

1� x2

� 
Pn;m xð Þ ¼ 0

(1:237)

This is the associated Legendre equation. The solutions Pn,m(x) or Pn,m(cos θ),
where x = cos θ, are called associated Legendre polynomials, and are obtained
from the ordinary Legendre polynomials using the definition of Q in (1.229):

Pn;mðxÞ ¼ 1� x2
� �m=2 d m

dxm
PnðxÞ (1:238)

Substituting Rodrigues’ formula (1.218) for Pn(x) into this equation gives

Pn;mðxÞ ¼
1� x2
� �m=2

2nn!

d nþm

dxnþm
x2 � 1
� �n

(1:239)

The highest power of x in the function (x2− 1)n is x2n. After 2n differentiations
the result will be a constant, and a further differentiation will give zero.
Therefore n +m ≤ 2n, and possible values ofm are limited to the range 0 ≤m ≤ n.

1.15.1 Orthogonality of associated Legendre polynomials

For succinctness we again write Pn,m(x) as simply Pn,m. The defining equations
for the associated Legendre polynomials Pn,m and Pl,m are

1� x2
� �

Pn;m

� �00 � 2x Pn;m

� �0 þ n nþ 1ð Þ � m2

1� x2

� 
Pn;m ¼ 0 (1:240)

1� x2
� �

Pl;m

� �00 � 2x Pl;m

� �0 þ l lþ 1ð Þ � m2

1� x2

� 
Pl;m ¼ 0 (1:241)

As for the ordinary Legendre polynomials, we multiply (1.240) by Pl,m and
(1.241) by Pn,m:

1� x2
� �

Pn;m

� �00
Pl;m � 2x Pn;m

� �0
Pl;m þ n nþ 1ð Þ � m2

1� x2

� 
Pn;mPl;m ¼ 0

(1:242)
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1� x2
� �

Pl;m

� �00
Pn;m � 2x Pl;m

� �0
Pn;m þ l lþ 1ð Þ � m2

1� x2

� 
Pn;mPl;m ¼ 0

(1:243)

On subtracting (1.243) from (1.242) we have

1� x2
� �

Pn;m

� �00
Pl;m � Pl;m

� �00
Pn;m

h i
� 2x Pn;m

� �0
Pl;m � Pl;m

� �0
Pn;m

h i
þ n nþ 1ð Þ � l lþ 1ð Þ½ �Pn;mPl;m ¼ 0 (1:244)

Following the method used to establish the orthogonality of the ordinary
Legendre polynomials (Section 1.13.1), we can write this equation as

d

dx
1� x2
� �

Pn;m

� �0
Pl;m � Pl;m

� �0
Pn;m

	 
n o
þ n nþ 1ð Þ � l lþ 1ð Þ½ �Pn;mPl;m

¼ 0 (1:245)

On integrating each term with respect to x over the range –1 ≤ x ≤ 1, we get

1� x2
� �

Pn;m

� �0
Pl;m � Pl;m

� �0
Pn;m

	 
n o���þ1

x¼�1

þ n nþ 1ð Þ � l lþ 1ð Þ½ �
Zþ1

x¼�1

Pn;mPl;m dx ¼ 0 (1:246)

The first term is zero on evaluation of (1 – x2) at x = ±1; thus the second term
must also be zero. Provided that n ≠ l, the condition of orthogonality of the
associated Legendre polynomials is

Zx¼þ1

x¼�1

Pn;mðxÞPl;mðxÞdx ¼ 0 (1:247)

1.15.2 Normalization of associated Legendre polynomials

Squaring the associated Legendre polynomials and integrating over –1 ≤ x ≤ 1
gives

Zx¼þ1

x¼�1

Pn;mðxÞ
� �2

dx ¼ 2

2nþ 1

ðnþmÞ!
n�mð Þ! (1:248)
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The squared functions do not integrate to 1, so they are not normalized. If each
polynomial is multiplied by a normalizing function, the integrated squared
polynomial can be made to equal a chosen value. Different conditions for this
apply in geodesy and geomagnetism.
The Legendre polynomials used in geodesy are fully normalized. They are

defined as follows:

Pm
n ðxÞ ¼

2nþ 1

2

� �
n�mð Þ!
nþmð Þ!

� �1=2

Pn;mðxÞ (1:249)

The Legendre polynomials used in geomagnetism are partially normalized (or
quasi-normalized). Schmidt in 1889 defined this method of normalization so that

Pm
n ðxÞ ¼ 2

n�mð Þ!
nþmð Þ!

� �1=2

Pn;mðxÞ; m 6¼ 0 (1:250)

P0
nðxÞ ¼ Pn;0ðxÞ; m ¼ 0 (1:251)

Integration of the squared Schmidt polynomials over the full range –1 ≤ x ≤ 1
gives the value 1 for m = 0 and 1/(2n+ 1) for m > 0.

Some fully normalized Legendre polynomials and partially normalized
Schmidt polynomials are listed in Table 1.2.

Table 1.2. Some fully normalized associated Legendre polynomials and
partially normalized Schmidt polynomials of low degree and order

n m
Pm
n cos θð Þ; Legendre,
fully normalized

Pm
n cos θð Þ; Schmidt,
partially normalized

1 0 cos θ cos θ
1 1 sin θ sin θ

2 0
1

2
ð3 cos2θ � 1Þ 1

2
ð3 cos2θ � 1Þ

2 1 3 sin θ cos θ
ffiffiffi
3

p
sin θ cos θ

2 2 3 sin2θ

ffiffiffi
3

p

2
sin2θ

3 0
1

2
cos θð5 cos2θ � 3Þ 1

2
cos θð5 cos2θ � 3Þ

3 1
3

2
sin θð5 cos2θ � 1Þ

ffiffiffi
6

p

4
sin θð5 cos2θ � 1Þ

3 2 15 sin2θ cos θ

ffiffiffiffiffi
15

p

2
15 sin2θ cos θ

3 3 15 sin3θ

ffiffiffiffiffi
10

p

4
sin3θ
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1.16 Spherical harmonic functions

Several geophysical potential fields – for example, gravitation and geomagnet-
ism – satisfy the Laplace equation. Spherical polar coordinates are best suited
for describing a global geophysical potential. The potential can vary with
distance r from the Earth’s center and with polar angular distance θ and
azimuth � (equivalent to co-latitude and longitude in geographic terms)
on any concentric spherical surface. The solution of Laplace’s equation in
spherical polar coordinates for a potential U may be written (see Section
2.4.5, (2.104))

U ¼
X1
n¼0

Xn
m¼0

Anr
n þ Bn

rnþ1

� �
amn cosðm�Þ þ bmn sinðm�Þ� �

Pm
n cos θð Þ (1:252)

Here An, Bn, amn , and b
m
n are constants that apply to a particular situation. On the

surface of the Earth, or an arbitrary sphere, the radial part of the potential of a
point source at the center of the sphere has a constant value and the variation
over the surface of the sphere is described by the functions in θ and �. We are
primarily interested in solutions outside the Earth, for which An is zero. Also we
can set the constant Bn equal to Rn+1, where R is the Earth’s mean radius. The
potential is then given by

U ¼
X1
n¼0

Xn
m¼0

R

r

� �nþ1

amn cosðm�Þ þ bmn sinðm�Þ� �
Pm
n cos θð Þ (1:253)

Let the spherical harmonic functions Cm
n θ; �ð Þ and Sm

n θ; �ð Þ be defined as

Cm
n θ; �ð Þ ¼ cosðm�Þ � Pm

n cos θð Þ
Sm
n θ; �ð Þ ¼ sinðm�Þ � Pm

n cos θð Þ (1:254)

The variation of the potential over the surface of a sphere may be described by
these functions, or a more general spherical harmonic function Ym

n θ; �ð Þ that
combines the sine and cosine variations:

Ym
n θ; �ð Þ ¼ Pm

n cos θð Þ cosðm�Þ
sinðm�Þ

� �
(1:255)

Like their constituent parts – the sine, cosine, and associated Legendre
functions – spherical harmonic functions are orthogonal and can be
normalized.

1.16 Spherical harmonic functions 49



1.16.1 Normalization of spherical harmonic functions

Normalization of the functions Cm
n θ; �ð Þ and Sm

n θ; �ð Þ requires integrating the
squared value of each function over the surface of a unit sphere. The element of
surface area on a unit sphere is dΩ = sin θ dθ d� (Box 1.3) and the limits of
integration are 0 ≤ θ ≤ π and 0 ≤ � ≤ 2π. The integral is

ZZ
S

Cm
n θ; �ð Þ� �2

dΩ ¼
Zπ
θ¼0

Z2π
�¼0

Cm
n θ; �ð Þ� �2

sin θ dθ d�

¼
Zπ
θ¼0

Z2π
�¼0

cosðm�ÞPm
n cos θð Þ� �2

sin θ dθ d� (1:256)

Let x = cos θ in the associated Legendre polynomial, so that dx = –sin θ dθ and
the limits of integration are –1 ≤ x ≤ 1. The integration becomes

Z1
x¼�1

Z2π
�¼0

cos2ðm�Þd�

8><
>:

9>=
>; Pm

n xð Þ� �2
dx ¼ π

Zþ1

x¼�1

Pm
n xð Þ� �2

dx (1:257)

Normalization of the associated Legendre polynomials gives the result in
(1.248), thus

ZZ
S

Cm
n θ; �ð Þ� �2

dΩ ¼ 2π
2nþ 1

� � ðnþmÞ!
n�mð Þ! (1:258)

The normalization of the function Sm
n θ; �ð Þ by this method delivers the same

result.
Spherical harmonic functions make it possible to express the variation of a

physical property (e.g., gravity anomalies, g(θ, �)) on the surface of the Earth as
an infinite series, such as

g θ; �ð Þ ¼
X1
n¼0

Xn
m¼0

amn C
m
n θ; �ð Þ þ bmn S

m
n θ; �ð Þ� �

(1:259)

The coefficients amn and bmn may be obtained by multiplying the function g θ; �ð Þ
by Cm

n θ; �ð Þ or Sm
n θ; �ð Þ, respectively, and integrating the product over the

surface of the unit sphere. The normalization properties give
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amn ¼ 2nþ 1

2π

� �
n�mð Þ!
nþmð Þ!

ZZ
S

g θ; �ð Þ � Cm
n θ; �ð ÞdΩ

bmn ¼ 2nþ 1

2π

� �
n�mð Þ!
nþmð Þ!

ZZ
S

g θ; �ð Þ � Sm
n θ; �ð ÞdΩ

(1:260)

1.16.2 Zonal, sectorial, and tesseral spherical harmonics

The spherical harmonic functions Ym
n θ; �ð Þ have geometries that allow graphic

representation of a potential on the surface of a sphere. Deviations of the potential
from a constant value form alternating regions in which the potential is larger or
smaller than a uniform value. Where the potential surface intersects the spherical
surface a nodal line is formed. The appearance of any Ym

n θ; �ð Þ is determined by
the distribution of its nodal lines. These occur whereYm

n θ; �ð Þ = 0. To simplify the
discussion we will associate a constant value of the polar angle θ with a circle of
latitude, and a constant value of the azimuthal angle � with a circle of longitude.
The definition of the associated Legendre polynomials in (1.239) shows that

the equation Pm
n ðxÞ = 0 has n – m roots, apart from the trivial solution x = ±1.

The variation of the spherical harmonic Ym
n θ; �ð Þ with latitude θ thus has n – m

nodal lines, each a circle of latitude, between the two poles. If additionally m =
0, the potential on the sphere varies only with latitude and there are n nodal lines
separating zones in which the potential is greater or less than the uniform value.

An example of a zonal spherical harmonic is Y0
2 θ; �ð Þ, shown in Fig. 1.12(a).

The solution of Laplace’s equation (1.253) shows that the variation in
potential around any circle of latitude is described by the function

Φ �ð Þ ¼ amn cosðm�Þ þ bmn sinðm�Þ (1:261)

There are 2m nodal lines where Φ(�) = 0, corresponding to 2m meridians of
longitude, or m great circles. In the special case in which n = m, there are no

(c) tesseral, Y5
4(b) sectorial, Y

5
5(a) zonal, Y2

0

Fig. 1.12. Appearance of (a) zonal, (b) sectorial, and (c) tesseral spherical
harmonics, projected on a meridian plane of the reference sphere.
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nodal lines of latitude and the longitudinal lines separate sectors in which the
potential is greater or less than the uniform value. An example of a sectorial

spherical harmonic is Y5
5 θ; �ð Þ, shown in Fig. 1.12(b).

In the general case (m ≠ 0, n ≠ m) the potential varies with both latitude and
longitude. There are n – m nodal lines of latitude and m nodal great circles (2m
meridians) of longitude. The appearance of the spherical harmonic resembles a
patchwork of alternating regions in which the potential is greater or less than the

uniform value. An example of a tesseral spherical harmonic is Y4
5 θ; �ð Þ, which

is shown in Fig. 1.12(c).

1.17 Fourier series, Fourier integrals, and
Fourier transforms

1.17.1 Fourier series

Analogously to the representation of a continuous function by a power series
(Section 1.10), it is possible to represent a periodic function by an infinite sum
of terms consisting of the sines and cosines of harmonics of a fundamental
frequency. Consider a periodic function ƒ(t) with period τ that is defined in the
interval 0 ≤ t ≤ τ, so that (a) ƒ(t) is finite within the interval; (b) ƒ(t) is periodic
outside the interval, i.e., ƒ(t + τ) = ƒ(t); and (c) ƒ(t) is single-valued in the
interval except at a finite number of points, and is continuous between these
points. Conditions (a)–(c) are known as the Dirichlet conditions. If they are
satisfied, ƒ(t) can be represented as

fðtÞ ¼ a0
2
þ
X1
n¼1

an cos nωtð Þ þ bn sin nωtð Þð Þ (1:262)

where ω = 2π/τ and the factor 1
2
in the first term is included for reasons of

symmetry. This representation of ƒ(t) is known as a Fourier series. The
orthogonal properties of sine and cosine functions allow us to find the coef-
ficients an and bn of the nth term in the series by multiplying (1.262) by sin(nωt)
or cos(nωt) and integrating over a full period:

an ¼ 2

τ

Zτ=2
t¼�τ=2

fðtÞcos nωtð Þdt

bn ¼ 2

τ

Zτ=2
t¼�τ=2

fðtÞsin nωtð Þdt

(1:263)
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Instead of using trigonometric functions, we can replace the sine and
cosine terms with complex exponentials using the definitions in (1.7), i.e., we
write

cos nωtð Þ ¼ exp inωtð Þ þ exp �inωtð Þ
2

sin nωtð Þ ¼ exp inωtð Þ � exp �inωtð Þ
2i

(1:264)

Using these relationships in (1.262) yields

fðtÞ ¼
X1
n¼0

an
2

exp inωtð Þ þ exp �inωtð Þ½ � þ bn
2i

exp inωtð Þ � exp �inωtð Þ½ �
� �

¼
X1
n¼0

an � ibn
2

exp inωtð Þ
� �

þ
X1
n¼0

an þ ibn
2

exp �inωtð Þ
� �

(1:265)

The summation indices are dummy variables, so in the second sum we can
replace n by –n, and extend the limits of the sum to n = –∞; thus

fðtÞ ¼
X1
n¼0

an � ibn
2

exp inωtð Þ
� �

þ
X0
n¼�1

a�n þ ib�n

2
exp inωtð Þ

� �

¼
X1
n¼�1

an þ a�nð Þ � i bn � b�nð Þ
2

exp inωtð Þ (1:266)

If we define cn as the complex number

cn ¼ an þ a�nð Þ � i bn � b�nð Þ
2

(1:267)

the Fourier series (1.262) can be written in complex exponential form as

fðtÞ ¼
X1
n¼�1

cn exp inωtð Þ (1:268)

In this case the harmonic coefficients cn are given by

cn ¼ 1

τ

Zτ=2
t¼�τ=2

fðtÞexp �inωtð Þdt (1:269)
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1.17.2 Fourier integrals and Fourier transforms

A Fourier series represents the periodic behavior of a physical property as an
infinite set of discrete frequencies. The theory can be extended to represent a
function ƒ(t) that is not periodic and is made up of a continuous spectrum of
frequencies, provided that the function satisfies the Dirichlet conditions speci-
fied above and that it has a finite energy:

Z1
t¼�1

f tð Þj j2 dt51 (1:270)

The infinite sum in (1.268) is replaced by a Fourier integral and the complex
coefficients cn are replaced by an amplitude function g(ω):

fðtÞ ¼
Z1

ω¼�1
g ωð Þexp iωtð Þdω (1:271)

where g(ω) is a continuous function, obtained from the equation

g ωð Þ ¼ 1

2π

Z1
t¼�1

fðtÞexp �iωtð Þdt (1:272)

The transition from Fourier series to Fourier integral is explained in Box 1.5.
The function g(ω) is called the forward Fourier transform of ƒ(t), and ƒ(t) is
called the inverse Fourier transform of g(ω). Fourier transforms constitute a
powerful mathematical tool for transforming a function ƒ(t) that is known in the
time domain into a new function g(ω) in the frequency domain.

1.17.3 Fourier sine and cosine transforms

A simple but important characteristic of a function is whether it is even or odd.
An even function has the same value for both positive and negative values of its
argument, i.e., ƒ(–t) = ƒ(t). The cosine of an angle is an example of an even
function. The integral of an even function over a symmetric interval about the
origin is equal to twice the integral of the function over the positive argument.
The sign of an odd function changes with that of the argument, i.e., ƒ(–t) = –ƒ(t).
For example, the sine of an angle is an odd function. The integral of an odd
function over a symmetric interval about the origin is zero. The product of two
odd functions or two even functions is an even function; the product of an odd
function and an even function is an odd function.
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Box 1.5. Transition from Fourier series to Fourier integral

The complex exponential Fourier series for a function ƒ(t) is

fðtÞ ¼
X1
n¼�1

cn exp inωtð Þ (1)

where the complex coefficients cn are given by

cn ¼ 1

τ

Zτ=2
t¼�τ=2

fðtÞexp �inωtð Þdt (2)

In these expressions ω = 2π/τ is the fundamental frequency and τ is the
fundamental period. From one value of n to the next, the harmonic frequency
changes by δω = 2π/τ, so the factor preceding the second equation can be
replaced by 1/τ = δω/(2π). To avoid confusion when we insert (2) into (1), we
change the dummy variable of the integration to u, giving

cn ¼ δω
2π

Zτ=2
u¼�τ=2

fðuÞexp �inωuð Þdu (3)

After insertion, (1) becomes

fðtÞ ¼
X1
n¼�1

δω
2π

Zτ=2
u¼�τ=2

fðuÞexp �inωuð Þdu

0
B@

1
CA exp inωtð Þ

¼
X1
n¼�1

δω
2π

Zτ=2
u¼�τ=2

fðuÞexp inω t� uð Þð Þdu

0
B@

1
CA (4)

We now define the function within the integral as

F ωð Þ ¼
Zτ=2

u¼�τ=2

fðuÞexp inω t� uð Þð Þdu (5)

The initial Fourier series becomes

1.17 Fourier series, integrals, and transforms 55



f tð Þ ¼ 1

2π

X1
ω¼�1

F ωð Þδω (6)

We now let the incremental frequency δω become very small, tending in the
limit to zero; this is equivalent to letting the period τ become infinite. The
index n is dropped because ω is now a continuous variable; the discrete sum
becomes an integral and the function f(t) is

f tð Þ ¼ 1

2π

Z1
ω¼�1

F ωð Þdω (7)

while the function F(ω) from (5) becomes

F ωð Þ ¼
Z1

u¼�1
fðuÞexp iω t� uð Þð Þdu (8)

On inserting F(ω) into (7) we get

f tð Þ ¼ 1

2π

Z1
ω¼�1

Z1
u¼�1

fðuÞexp iω t� uð Þð Þdu
2
4

3
5dω

¼ 1

2π

Z1
ω¼�1

Z1
u¼�1

fðuÞexp �iωuð Þdu
2
4

3
5 exp iωtð Þdω (9)

The quantity in square brackets, on changing the variable from u back to t, is

g ωð Þ ¼ 1

2π

Z1
t¼�1

fðtÞexp �iωtð Þdt (10)

and the original expression can now be written

f tð Þ ¼
Z1

ω¼�1
g ωð Þexp iωtð Þdω (11)

The equivalence of these two equations is known as the Fourier integral
theorem.
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Fourier series that represent odd or even functions consist of sums of sines or
cosines, respectively. In the same way, there are sine and cosine Fourier integrals
that represent odd and even functions, respectively. Suppose that the function ƒ(t)
is even, and let us replace the complex exponential in (1.272) using (1.5):

g ωð Þ ¼ 1

2π

Z1
t¼�1

fðtÞ cos ωtð Þ � i sin ωtð Þ½ �dt (1:273)

The sine function is odd, so, if ƒ(t) is even, the product ƒ(t)sin(ωt) is odd, and the
integral of the second term is zero. The product ƒ(t)cos(ωt) is even, and we can
convert the limits of integration to the positive interval:

g ωð Þ ¼ 1

2π

Z1
t¼�1

fðtÞcos ωtð Þdt

¼ 1

π

Z1
t¼0

fðtÞcos ωtð Þdt (1:274)

Thus, if ƒ(t) is even, then g(ω) is also even. Similarly, one finds that, if ƒ(t) is
odd, g(ω) is also odd.
Now we expand the exponential in (1.271) and apply the same conditions of

evenness and oddness to the products:

fðtÞ ¼
Z1

ω¼�1
g ωð Þ cos ωtð Þ þ i sin ωtð Þð Þdω

¼ 2

Z1
ω¼0

g ωð Þcos ωtð Þdω (1:275)

If we were to substitute (1.275) back into (1.274), the integration would be
preceded by a constant 2/π, the product of the two constants in these equations.
Equations (1.275) and (1.274) form a Fourier-transform pair, and it does not
matter how the factor 2/π is divided between them. We will associate it here
entirely with the second equation, so that we have the pair of equations

fðtÞ ¼
Z1

ω¼0

g ωð Þcos ωtð Þdω

g ωð Þ ¼ 2

π

Z1
t¼0

fðtÞcos ωtð Þdt
(1:276)
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The even functions ƒ(t) and g(ω) are Fourier cosine transforms of each other.
A similar treatment for a function ƒ(t) that is odd leads to a similar pair of

equations in which the Fourier transform g(ω) is also odd and

fðtÞ ¼
Z1

ω¼0

g ωð Þsin ωtð Þdω

g ωð Þ ¼ 2

π

Z1
t¼0

fðtÞsin ωtð Þdt
(1:277)

The odd functions ƒ(t) and g(ω) are Fourier sine transforms of each other.
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2

Gravitation

2.1 Gravitational acceleration and potential

The Universal Law of Gravitation deduced by Isaac Newton in 1687 describes
the force of gravitational attraction between two point masses m and M sepa-
rated by a distance r. Let a spherical coordinate system (r, θ, �) be centered on
the point mass M. The force of attraction F exerted on the point mass m acts
radially inwards towards M, and can be written

F ¼ �G
mM

r2
er (2:1)

In this expression,G is the gravitational constant (6.674 21 × 10−11 m3 kg−1 s−2),
er is the unit radial vector in the direction of increasing r, and the negative sign
indicates that the force acts inwardly, towards the attracting mass. The gravita-
tional acceleration aG at distance r is the force on a unit mass at that point:

aG ¼ �G
M

r2
er (2:2)

The acceleration aG may also be written as the negative gradient of a gravita-
tional potential UG

aG ¼ �rUG (2:3)

The gravitational acceleration for a point mass is radial, thus the potential
gradient is given by

� ∂UG

∂r
¼ �G

M

r2
(2:4)

UG ¼ �G
M

r
(2:5)
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In Newton’s time the gravitational constant could not be verified in a laboratory
experiment. The attraction between heavy masses of suitable dimensions is weak
and the effects of friction and air resistance relatively large, so the first successful
measurement of the gravitational constant by Lord Cavendish was not made until
more than a century later, in 1798. However, Newton was able to confirm the
validity of the inverse-square law of gravitation in 1687 by using existing
astronomic observations of the motions of the planets in the solar system.
These had been summarized in three important laws by Johannes Kepler in
1609 and 1619. The small sizes of the planets and the Sun, compared with the
immense distances between them, enabled Newton to consider these as point
masses and this allowed him to verify the inverse-square law of gravitation.

2.2 Kepler’s laws of planetary motion

Johannes Kepler (1571–1630), a German mathematician and scientist, formu-
lated his laws on the basis of detailed observations of planetary positions by
Tycho Brahe (1546–1601), a Danish astronomer. The observations were made
in the late sixteenth century, without the aid of a telescope. Kepler found that the
observations were consistent with the following three laws ( Fig. 2.1).

1. The orbit of each planet is an ellipse with the Sun at one focus.
2. The radius from the Sun to a planet sweeps over equal areas in equal intervals

of time.

S

Q

Q*

p

a

b

θ
r P(r,θ)

P*

aphelion perihelion

Fig. 2.1. Illustration of Kepler’s laws of planetary motion. The orbit of each planet
is an ellipse with the Sun at its focus (S); a, b, and p are the semi-major axis, semi-
minor axis, and semi-latus rectum, respectively. The area swept by the radius to a
planet in a given time is constant (i.e., area SPQ equals area SP*Q*); the square of
the period is proportional to the cube of the semi-major axis. After Lowrie ( 2007).
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3. The square of the period is proportional to the cube of the semi-major axis of
the orbit.

The fundamental assumption is that the planets move under the influence of a
central, i.e., radially directed force. For a planet of massm at distance r from the
Sun the force F can be written

F ¼ m
d2r

dt2
¼ fðrÞer (2:6)

The angular momentum h of the planet about the Sun is

h ¼ r�m
dr

dt
(2:7)

Differentiating with respect to time, the rate of change of angular momentum is

dh

dt
¼ m

d

dt
r� dr

dt

� �
¼ m

dr

dt
� dr

dt

� �
þm r� d 2r

dt2

� �
(2:8)

The first term on the right-hand side is zero, because the vector product of a
vector with itself (or with a vector parallel to itself) is zero. Thus

dh

dt
¼ r�m

d 2r

dt2
(2:9)

On substituting from ( 2.6) and applying the same condition, we have

dh

dt
¼ r� fðrÞer ¼ fðrÞ r� erð Þ ¼ 0 (2:10)

This equation means that h is a constant vector; the angular momentum of the
system is conserved. On taking the scalar product of h and r, we obtain

r · h ¼ r · r�m
dr

dt

� �
(2:11)

Rotating the sequence of the vectors in the triple product gives

r · h ¼ m
dr

dt
· r� rð Þ ¼ 0 (2:12)

This result establishes that the vector r describing the position of a planet is
always perpendicular to its constant angular momentum vector h and therefore
defines a plane. Every planetary orbit is therefore a plane that passes through the
Sun. The orbit of the Earth defines the ecliptic plane.
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2.2.1 Kepler’s Second Law

Let the position of a planet in its orbit be described by polar coordinates (r, θ)
with respect to the Sun. The coordinates are defined so that the angle θ is zero at
the closest approach of the planet to the Sun (perihelion). The angular momen-
tum at an arbitrary point of the orbit has magnitude

h ¼ mr2
dθ
dt

(2:13)

In a short interval of time Δt the radius vector from the Sun to the planet
moves through a small angle Δθ and defines a small triangle. The area ΔA of
the triangle is

DA ¼ 1

2
r2 Dθ (2:14)

The rate of change of the area swept over by the radius vector is

dA

dt
¼ lim

Dt!0

DA
Dt

� �
¼ lim

Dt!0

1

2
r2
Dθ
Dt

� �
(2:15)

dA

dt
¼ 1

2
r2
dθ
dt

(2:16)

On inserting from ( 2.13) we get

dA

dt
¼ h

2m
(2:17)

Thus the area swept over by the radius vector in a given time is constant. This is
Kepler’s Second Law of planetary motion.

2.2.2 Kepler’s First Law

If just the gravitational attraction of the Sun acts on the planet (i.e., we ignore the
interactions between the planets), the total energy E of the planet is constant.
The total energy E is composed of the planet’s orbital kinetic energy and its
potential energy in the Sun’s gravitational field:

1

2
m

dr

dt

� �2

þ 1

2
mr2

dθ
dt

� �2

�Gm
S

r
¼ E (2:18)

The first term here is the planet’s linear (radial) kinetic energy, the second term
is its rotational kinetic energy (with mr2 being the planet’s moment of inertia
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about the Sun), and the third term is the gravitational potential energy. On
writing

dr

dt
¼ dr

dθ
dθ
dt

(2:19)

and rearranging terms we get

dr

dθ

� �2
dθ
dt

� �2

þ r2
dθ
dt

� �2

� 2G
S

r
¼ 2

E

m
(2:20)

Now, to simplify later steps, we make a change of variables, writing

u ¼ 1

r
(2:21)

Then

dr

dθ
¼ d

dθ
1

u

� �
¼ � 1

u2
du

dθ

� �
¼ �r2

du

dθ

� �
(2:22)

Substituting from ( 2.22) into ( 2.20) gives

r2
dθ
dt

� �2
du

dθ

� �2

þ r2
dθ
dt

� �2

� 2G
S

r
¼ 2

E

m
(2:23)

With the result of ( 2.13) we have

r2
dθ
dt

¼ h

m

r
dθ
dt

� �
¼ 1

r

h

m

� �
¼ u

h

m

� � (2:24)

On replacing these expressions, ( 2.23) becomes

h

m

� �2 du

dθ

� �2

þ u2
h

m

� �2

� 2uGS ¼ 2
E

m
(2:25)

du

dθ

� �2

þ u2 � 2uGS
m2

h2
¼ 2

Em

h2
(2:26)

The rest of the evaluation is straightforward, if painstaking. First we add a
constant to each side,

du

dθ

� �2

þ u2 � 2uGS
m2

h2
þ GS

m2

h2

� �2

¼ 2
Em

h2
þ GS

m2

h2

� �2

(2:27)
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du

dθ

� �2

þ u� GS
m2

h2

� �2

¼ 2
Em

h2
þ GS

m2

h2

� �2

(2:28)

Next, we move the second term to the right-hand side of the equation, giving

du

dθ

� �2

¼ 2
Em

h2
þ GS

m2

h2

� �2

� u� GS
m2

h2

� �2

(2:29)

du

dθ

� �2

¼ GS
m2

h2

� �2

1þ 2Eh2

G2S2m3

� �
� u� GS

m2

h2

� �2

(2:30)

Now, we define some combinations of these terms, as follows:

u0 ¼ GS
m2

h2
(2:31)

e2 ¼ 1þ 2Eh2

G2S2m3
(2:32)

Using these defined terms, ( 2.30) simplifies to a more manageable form:

du

dθ

� �2

¼ u20e
2 � u� u0ð Þ2 (2:33)

du

dθ
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20e

2 � u� u0ð Þ2
q

(2:34)

The solution of this equation, which can be tested by substitution, is

u ¼ u0 1þ e cos θð Þ (2:35)

The angle θ is defined to be zero at perihelion. The negative square root in ( 2.34)
is chosen because, as θ increases, r increases and u must decrease. Let

p ¼ 1

u0
¼ h2

GSm2
(2:36)

r ¼ p

1þ e cos θ
(2:37)

This is the polar equation of an ellipse referred to its focus, and is the proof of
Kepler’s First Law of planetary motion. The quantity e is the eccentricity of the
ellipse, while p is the semi-latus rectum of the ellipse, which is half the length of
a chord passing through the focus and parallel to the minor axis ( Fig. 2.1).
These equations show that three types of trajectory around the Sun are

possible, depending on the value of the total energy E in ( 2.18). If the kinetic
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energy is greater than the potential energy, the value of E in ( 2.32) is positive,
and e is greater than 1; the path of the object is a hyperbola. If the kinetic energy
and potential energy are equal, the total energy is zero and e is exactly 1; the path
is a parabola. In each of these two cases the object can escape to infinity, and the
paths are called escape trajectories. If the kinetic energy is less than the potential
energy, the total energy E is negative and the eccentricity is less than 1. In this
case (corresponding to a planet or asteroid) the object follows an elliptical orbit
around the Sun.

2.2.3 Kepler’s Third Law

It is convenient to describe the elliptical orbit in Cartesian coordinates (x, y),
centered on the mid-point of the ellipse, instead of on the Sun. Define the x-axis
parallel to the semi-major axis a of the ellipse and the y-axis parallel to the semi-
minor axis b. The equation of the ellipse in Fig. 2.1 is

x2

a2
þ y2

b2
¼ 1 (2:38)

The semi-minor axis is related to the semi-major axis by the eccentricity e, so
that

b2 ¼ a2 1� e2
� �

(2:39)

The distance of the focus of the ellipse from its center is by definition ae. The
length p of the semi-latus rectum is the value of y for a chord through the focus.
On setting y = p and x = ae in ( 2.38), we obtain

p2

b2
¼ 1� aeð Þ2

a2
¼ 1� e2 (2:40)

p2 ¼ a2 1� e2
� �2

(2:41)

Now consider the application of Kepler’s Second Law to an entire circuit of the
elliptical orbit. The area of the ellipse is πab, and the period of the orbit is T, so

dA

dt
¼ πab

T
(2:42)

Using (2.17),

h

m
¼ 2πab

T
(2:43)
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From ( 2.36) and ( 2.43) we get the value of the semi-latus rectum,

p ¼ 1

GS

h

m

� �2

¼ 1

GS

2πab
T

� �2

(2:44)

Substituting from ( 2.41) gives

a 1� e2
� � ¼ 4π2a2b2

GST 2
¼ 4π2a4

GST2
1� e2
� �

(2:45)

After simplifying, we finally get

T 2

a3
¼ 4π2

GS
(2:46)

The quantities on the right-hand side are constant, so the square of the period is
proportional to the cube of the semi-major axis, which is Kepler’s Third Law.

2.3 Gravitational acceleration and the potential
of a solid sphere

The gravitational potential and acceleration outside and inside a solid sphere
may be calculated from the Poisson and Laplace equations, respectively.

2.3.1 Outside a solid sphere, using Laplace’s equation

Outside a solid sphere the gravitational potentialUG satisfies Laplace’s equation
( Section 1.9). If the density is uniform, the potential does not vary with the
polar angle θ or azimuth �. Under these conditions, Laplace’s equation in
spherical polar coordinates ( 2.67) reduces to

∂
∂r

r2
∂UG

∂r

� �
¼ 0 (2:47)

This implies that the bracketed quantity that we are differentiating must be a
constant, C,

r2
∂UG

∂r
¼ C (2:48)

∂UG

∂r
¼ C

r2
(2:49)

The gravitational acceleration outside the sphere is therefore
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aG r4Rð Þ ¼ � ∂UG

∂r
¼ � C

r2

� �
er (2:50)

At its surface the gravitational acceleration has the value

aG Rð Þ ¼ � ∂UG

∂r
¼ � C

R2

� �
er (2:51)

The boundary condition at the surface of the sphere is that the accelerations
determined outside and inside the sphere must be equal there. We use this to
derive the value of the constant C. On comparing ( 2.51) and ( 2.60) we have

C ¼ GM (2:52)

On inserting for C in ( 2.50), the gravitational acceleration outside the sphere is

aG r4Rð Þ ¼ �G
M

r2
er (2:53)

The gravitational potential outside the solid sphere is obtained by integrating (
2.53) with respect to the radius. This gives

UGðr4RÞ ¼ �G
M

r
(2:54)

2.3.2 Inside a solid sphere, using Poisson’s equation

Inside a solid sphere with radius R and uniform density ρ the gravitational
potential UG satisfies Poisson’s equation ( Section 1.8). Symmetry again
requires the use of spherical polar coordinates, and, because the density is
uniform, there is no variation of potential with the polar angle θ or azimuth �.
Poisson’s equation in spherical polar coordinates reduces to

1

r2
∂
∂r

r2
∂UG

∂r
¼ 4πGρ (2:55)

On multiplying by r2 and integrating with respect to r, we get

∂
∂r

r2
∂UG

∂r
¼ 4πGρr2 (2:56)

r2
∂UG

∂r
¼ 4

3
πGρr3 þ C1 (2:57)

This equation has to be valid at the center of the sphere where r = 0, so the
constant C1 = 0 and
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∂UG

∂r
¼ 4

3
πGρr (2:58)

aG r5Rð Þ ¼ � ∂UG

∂r
¼ � 4

3
πGρr

� �
er (2:59)

This shows that the gravitational acceleration inside a homogeneous solid
sphere is proportional to the distance from its center. At the surface of the
sphere, r = R, and the gravitational acceleration is

aG Rð Þ ¼ � 4

3
πGρR

� �
er ¼ �GM

R2
er (2:60)

where the mass M of the sphere is

M ¼ 4

3
πR3ρ (2:61)

To obtain the potential inside the solid sphere, we must integrate ( 2.58). This
gives

UG ¼ 2

3
πGρr2 þ C2 (2:62)

The constant of integration C2 is obtained by noting that the potential must be
continuous at the surface of the sphere. Otherwise a discontinuity would exist
and the potential gradient (and force) would be infinite. Equating ( 2.54) and (
2.62) at r = R gives

2

3
πGρR2 þ C2 ¼ �GM

R
¼ � 4

3
πGρR2 (2:63)

C2 ¼ �2πGρR2 (2:64)

The gravitational potential inside the uniform solid sphere is therefore given by

UG ¼ 2

3
πGρr2 � 2πGρR2 (2:65)

UG ¼ 2

3
πGρ r2 � 3R2

� �
(2:66)

A schematic graph of the variation of the gravitational potential inside and
outside a solid sphere is shown in Fig. 2.2.
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2.4 Laplace’s equation in spherical polar coordinates

In the above examples the sphere was assumed to have uniform density so that
only the radial term in Laplace’s equation had to be solved. This is also the case
when density varies only with radius. In the Earth, however, lateral variations of
the density distribution occur, and the gravitational potential UG is then a
solution of the full Laplace equation

1

r2
∂
∂r

r2
∂UG

∂r
þ 1

r2 sin θ
∂
∂θ

sin θ
∂UG

∂θ
þ 1

r2 sin2θ

∂2UG

∂�2
¼ 0 (2:67)

This equation is solved using the method of separation of variables. This is a
valuable mathematical technique, which allows the variables in a partial differ-
ential equation to be separated so that only terms in one variable are on one side
of the equation and terms in other variables are on the opposite side. A trial
solution for UG is

UG r; θ; �ð Þ ¼ < rð Þ � Θ θð Þ � Φ �ð Þ (2:68)

Here ℜ, Θ, and Φ are all functions of a single variable only, namely r, θ, and �,
respectively. Multiplying ( 2.67) by r2 and inserting ( 2.68) for UG gives

ΘΦ
∂
∂r

r2
∂<
∂r

þ <Φ
sin θ

∂
∂θ

sin θ
∂Θ
∂θ

þ <Θ
sin2θ

∂2Φ
∂�2

¼ 0 (2:69)
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Fig. 2.2. Variation with radial distance r of the gravitational potential inside and
outside a solid sphere of radius R. The potential of the surface of the sphere is
UG(R).
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On dividing throughout by ℜΘΦ we get

1

<
∂
∂r

r2
∂<
∂r

þ 1

Θ sin θ
∂
∂θ

sin θ
∂Θ
∂θ

þ 1

Φ sin2θ

∂2Φ
∂�2

¼ 0 (2:70)

Next we isolate the radial terms on the left-hand side of the equation, so that

1

<
∂
∂r

r2
∂<
∂r

¼ � 1

Θ sin θ
∂
∂θ

sin θ
∂Θ
∂θ

� 1

Φ sin2θ

∂2Φ
∂�2

(2:71)

The left-hand side of the equation is a function of r only, while the right-hand
side does not depend on r. Whatever the value of the left-hand side, the right-
hand side must always equal it. But r, θ, and � are independent variables, so the
identity can exist only if the opposite sides of the equation are equal to the same
constant. Let this constant be K. For the opposite sides of ( 2.71) we get

1

<
∂
∂r

r2
∂<
∂r

¼ K (2:72)

� 1

Θ sin θ
∂
∂θ

sin θ
∂Θ
∂θ

� 1

Φ sin2θ

∂2Φ
∂�2

¼ K (2:73)

If we multiply the last equation throughout by sin2θ, the variables can again be
separated:

sin θ
Θ

∂
∂θ

sin θ
∂Θ
∂θ

þ K sin2θ ¼ � 1

Φ
∂2Φ
∂�2

(2:74)

The variables on the opposite sides of ( 2.74) are independent, so each side must
be equal to the same constant, which we write temporarily as K2. Thus we can
replace equation ( 2.70) with three equations, consisting of ( 2.72) and the
following two:

sin θ
Θ

∂
∂θ

sin θ
∂Θ
∂θ

þ K sin2θ ¼ K2 (2:75)

� 1

Φ
∂2Φ
∂�2

¼ K2 (2:76)

2.4.1 Azimuthal (longitudinal) solution

The constant K2 may be chosen to suit the conditions governing the gravita-
tional potential. The function Φ(�) describes the variation of the potential with
azimuth (longitude, in geographic terms). If we measure azimuthal fluctuations
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of the potential around a circle of constant polar angle (geographic co-latitude),
the same potential must result after a full circuit. This requires that the solution
for Φ(�) be periodic, and that condition will be fulfilled if we let the constant
equal m2. For the right-hand side of ( 2.74) we get

� 1

Φ
∂2Φ
∂�2

¼ m2 (2:77)

∂2Φ
∂�2

þm2Φ ¼ 0 (2:78)

This is the equation of simple harmonic motion, which has periodic solutions of
the form

Φ �ð Þ ¼ am cosðm�Þ þ bm sinðm�Þ (2:79)

2.4.2 Polar (latitudinal) solution for rotational symmetry

We first consider solutions of Laplace’s equation that have rotational symmetry
about the reference axis, which in the Earth is its axis of rotation. Since there is
no azimuthal variation of the potential in this situation, we can set m = 0. The
variation of potential with angle θ is described by

sin θ
∂
∂θ

sin θ
∂Θ
∂θ

þ K sin2θ
� �

Θ ¼ 0 (2:80)

1

sin θ
∂
∂θ

sin θ
∂Θ
∂θ

þ KΘ ¼ 0 (2:81)

�1

sin θ
∂
∂θ

� �
sin2θ

�1

sin θ
∂Θ
∂θ

� �
þ KΘ ¼ 0 (2:82)

If we write x = cos θ, then

∂
∂x

¼ �1

sin θ
∂
∂θ

(2:83)

and (2.82) becomes

∂
∂x

1� x2
� � ∂Θ

∂x

� �
þ KΘ ¼ 0 (2:84)

Comparison with (1.175) shows that this is equivalent to the Legendre differ-
ential equation, with n(n+ 1) = K. If we make this choice of constant, we ensure
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that the Laplace equation will have periodic solutions in polar angle (co-latitude),
namely the Legendre polynomials. The equation is

∂
∂x

1� x2
� � ∂Pn xð Þ

∂x

� �
þ n nþ 1ð ÞPn xð Þ ¼ 0 (2:85)

and its solutions are

Θn ¼ Pn xð Þ ¼ Pn cos θð Þ (2:86)

2.4.3 Radial solution

With K = n(n + 1), the equation for the radial variation of the gravitational
potential becomes

1

<
∂
∂r

r2
∂<
∂r

¼ n nþ 1ð Þ (2:87)

There will be a radial solution for each value of n, so we write it ℜn, where

∂
∂r

r2
∂<n

∂r
� n nþ 1ð Þ<n ¼ 0 (2:88)

Let ℜn(r) be represented by the power series

<n rð Þ ¼
X1
p¼0

apr
p (2:89)

Differentiating with respect to r gives

∂<
∂r

¼
X1
p¼0

papr
p�1 (2:90)

Multiplying by r2 and differentiating the product

r2
∂<
∂r

¼
X1
p¼0

papr
pþ1 (2:91)

∂
∂r

r2
∂<
∂r

¼
X1
p¼0

p pþ 1ð Þaprp (2:92)

Inserting this result into ( 2.88) gives
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X1
p¼0

p pþ 1ð Þaprp � n nþ 1ð Þ
X1
p¼0

apr
p ¼ 0 (2:93)

X1
p¼0

apr
p p pþ 1ð Þ � n nþ 1ð Þ½ � ¼ 0 (2:94)

For this result to be true for any value of r, the expression in square brackets
must equal zero,

p pþ 1ð Þ � n nþ 1ð Þ ¼ 0 (2:95)

That is,

p2 þ p� n nþ 1ð Þ ¼ 0 (2:96)

Thus p can have the values p = n or p = –(n + 1) and the radial variation of the
potential is given by

<n rð Þ ¼ Anr
n þ Bn

rnþ1
(2:97)

where An and Bn are constants determined by the boundary conditions.

2.4.4 Solution of Laplace’s equation for rotational symmetry

Combining the radial and polar variations, the gravitational potential for a mass
distribution that has rotational symmetry about an axis is

UG ¼
X1
n¼0

Anr
n þ Bn

rnþ1

� �
Pn cos θð Þ (2:98)

2.4.5 General solution of Laplace’s equation

In the general case the potential may vary azimuthally about the reference axis.
The constant m is no longer zero and instead of ( 2.80) we have

sin θ
Θ

∂
∂θ

sin θ
∂Θ
∂θ

þ K sin2θ ¼ m2 (2:99)

sin θ
∂
∂θ

sin θ
∂Θ
∂θ

þ K sin2θ �m2
� �

Θ ¼ 0 (2:100)

As in the case with rotational symmetry, we substitute x = cos θ and obtain
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∂
∂x

1� x2
� � ∂Θ

∂x
þ K1 � m2

1� x2

� �
Θ ¼ 0 (2:101)

If we again write n(n+ 1) for the constant K,

1� x2
� � ∂2Θ

∂x2
� 2x

∂Θ
∂x

þ nðnþ 1Þ � m2

1� x2

� �
Θ ¼ 0 (2:102)

This equation is equivalent to the associated Legendre equation (1.237), and the
functions Θ are the associated Legendre polynomials:

Θ θð Þ ¼ Pm
n xð Þ ¼ Pm

n cos θð Þ (2:103)

The general solution of Laplace’s equation for the gravitational potential in
spherical polar coordinates is obtained by combining the results of ( 2.79), (
2.97), and ( 2.103):

UG ¼
X1
n¼0

Xn
m¼0

Anr
n þ Bn

rnþ1

� �
amn cosðm�Þ þ bmn sinðm�Þ� �

Pm
n cos θð Þ

(2:104)

2.5 MacCullagh’s formula for the gravitational potential

The yielding of the Earth to the deforming forces of its own rotation results in a
shape that is symmetric about the rotation axis and slightly flattened at the poles.
The figure is classified as an ellipsoid of revolution, and, since it deviates only
slightly from a sphere, it may be called a spheroid. The equation and geometric
properties of a spheroid are summarized in Box 2.1.
The flattening of the Earth is defined as the difference between the equatorial

radius and the polar radius, expressed as a fraction of the equatorial radius:

f ¼ a� c

a
(2:105)

The value of ƒ is known accurately from satellite geodesy ( Table 2.1) to be
ƒ = 1/298.252.
Let the Earth be represented by a spheroid with flattening ƒ, and let the origin

of a Cartesian coordinate system (x, y, z) be at the center of mass of the spheroid
( Fig. 2.3). UG is the gravitational potential at an external point P at distance r
from the center of the Earth. For a continuous distribution of mass in a body we
can employ integral calculus to calculate its mass, moments of inertia, or the
location of its center of mass. However, it is instructive to regard the Earth as a
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Box 2.1. The ellipsoid and spheroid

Let an ellipsoid with three unequal principal axes be referred to a set of
orthogonal Cartesian axes (x, y, z) such that the x-axis is oriented parallel to
the longest dimension of the ellipsoid and the z-axis parallel to its shortest
dimension ( Fig. B2.1(a)). The equation of the ellipsoid is

z

y
x

c

b

a

(a) c

b

a

(b)

z

yx

c

a c

(c)

y
x

a a

c

(d)

ϕ

Fig. B2.1. (a) General ellipsoid with three unequal principal axes, a > b > c; (b)
elliptical cross-section through the center of an ellipsoid; b is the radius of a
circular section, inclined to the short axis c at an angle φ; (c) prolate ellipsoid;
and (d) oblate ellipsoid.

x2

a2
þ y2

b2
þ z2

c2
¼ 1 (1)

where a, b, and c – the intercepts of the ellipsoid with the x, y, and z reference
axes, respectively – are the lengths of its principal axes. The volume of the
ellipsoid is

V ¼ 4

3
πabc (2)

Each cross-section through the center of a triaxial ellipsoid is an ellipse,
except for two, which are circular sections. Defining the axes such that a > b
> c, the radius of a circular section is equal to the intermediate axis b and it is
inclined to the short axis c at an angle φ ( Fig. B2.1(b)) given by
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collection of discrete point masses mi like the one at Q with Cartesian coor-
dinates (xi, yi, zi). This point mass is distant ri from the center and ui from the
observation point at P. The gravitational potential at P can be written (compare
with ( 2.54)) as the sum of contributions from all the point masses in the body:

UG ¼ �G
X
i

mi

ui
(2:106)

tan φ ¼ a

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � c2

a2 � b2

r
(3)

An ellipsoid of revolution is symmetric about one of its axes. If this is the
long x-axis, every axis in the y–z plane is of equal length c. An ellipsoid with
this elongated shape is said to be prolate ( Fig. B2.1(c)). If the ellipsoid of
revolution is symmetric about its short z-axis, every axis in the x–y plane is of
equal length a. An ellipsoid with this “flattened” shape is said to be oblate (
Fig. B2.1(d)). An ellipsoid of revolution has only one circular section, which
lies in the (equatorial) x–y plane of an oblate ellipsoid, or in the y–z plane of a
prolate ellipsoid.

The equation of an oblate ellipsoid of revolution is

x2 þ y2

a2
þ z2

c2
¼ 1 (4)

Its volume is

V ¼ 4

3
πa2c (5)

Every cross-section that includes the axis of rotational symmetry is an ellipse
with semi-major axis a and semi-minor axis c. These are related by the
ellipticity, f , defined as

f ¼ a� c

a
(6)

An oblate ellipsoid of revolution that is almost spherical in shape (i.e., the
axes a and c are almost equal) is called a spheroid. This is the closest
geometric approximation to the shape of the Earth; the ellipticity of a polar
section of the spheroid is called the flattening.
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Let the radius to the point mass at Q make an angle θi with the radius to the
external point P. The reciprocal distance formula (1.157) for the Legendre
polynomials can be applied to the sides of the triangle OPQ:

1

ui
¼ 1

r

X1
n¼0

�
ri
r

�n

Pn cos θið Þ (2:107)

Substituting this into ( 2.106) gives for the gravitational potential of the body

Table 2.1. Some useful geodetic parameters (source: Groten, 2004)

Parameter Symbol Units Value

Geocentric gravitational constant GE 1014 m3 s–2 3.986 004 418
Mass of Earth: GE/G E 1024 kg 5.973 7
Equatorial radius a km 6,378.136 7
Polar radius: a(1 – ƒ) c km 6,356.752
Radius of equivalent sphere: (a2c)1/3 R km 6,371.000 4
Flattening ƒ 10–3 3.352 865 9
Inverse flattening 1/ƒ 298.252 31
Dynamic form factor J2 10–3 1.082 635 9
Nominal mean angular velocity Ω 10–5 rad s–1 7.292 115
Mean equatorial gravity ge m s–2 9.780 327 8
Acceleration ratio: Ω2a3/(GE) m 10–3 3.461 391
Inverse acceleration ratio 1/m 288.901
Moment of inertia ratio for C C/(Ea2) 0.330 701
Moment of inertia ratio for B B/(Ea2) 0.329 622
Moment of inertia ratio for A A/(Ea2) 0.329 615
Dynamic ellipticity H 10–3 3.273 787 5
Inverse dynamic ellipticity 1/H 304.513

x

y

z

θi

(x,y,z)

(xi yi zi)

ri
mi

O

Pui

r

(λi i,

, ,

,νi )

Q

μ

Fig. 2.3. Configuration for calculation of the gravitational potential of an ellipsoid,
considered as a distribution of discrete point masses mi.
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UG ¼ �G
X
i

mi
1

r

X1
n¼0

�
ri
r

�n

Pn cos θið Þ (2:108)

Expanding the reciprocal distance formula gives an infinite sequence of terms.
The ratio of successive terms depends on ri/r, which is less than 1 outside the
body. Moreover, if the shape of the body does not deviate much from a sphere,
higher-order terms are not significant, so

UG � �G
1

r

X
i

mi � G
1

r2

X
i

miri cos θi � G
1

r3

X
i

mir
2
i P2 cos θið Þ

¼ U0 þU1 þU2
(2:109)

Each term after the first involves cos θi, which can be computed ( Box 1.2,
equation (6)) from the direction cosines (λ, μ, ν) of OP and the direction cosines
(λi, μi, νi) of OQ, the lines bounding the angle θi ( Fig. 2.4):

cos θi ¼ λλi þ μμi þ ννi (2:110)

The direction cosines of the two lines are as follows: for OP,

λ ¼ x

r
; μ ¼ y

r
; ν ¼ z

r
(2:111)

and for OQ,

λi ¼ xi
ri
; μi ¼

yi
ri
; νi ¼ zi

ri
(2:112)

Substituting into (2.110) gives

cos θi ¼ 1

rri
xxi þ yyi þ zzið Þ (2:113)

Now we take a closer look at the individual terms in ( 2.109) for the potential.
For the case n = 0, potential U0:

θi

(λi , ,

, ,

i νi )

(λ ν)

O

P

Q

μ

μ

Fig. 2.4. Angle θi bounded by straight lines OP, with direction cosines (λ, μ, ν), and
OQ, with direction cosines (λi, μi, νi).
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U0 ¼ �G
1

r

X
i

mi ¼ �GM

r
(2:114)

Comparison with ( 2.54) shows thatU0 is the potential of a sphere at an external
point P.
For the case n = 1, potential U1:

U1 ¼ �G
1

r2

X
i

miri cos θi (2:115)

From ( 2.113) we obtain

ri cos θi ¼ 1

r
xxi þ yyi þ zzið Þ (2:116)

On substituting into ( 2.115) and gathering terms, we have

U1 ¼ �G
1

r3
x
X
i

mixi þ y
X
i

miyi þ z
X
i

mizi

" #
(2:117)

The origin of the coordinate system is at the center of mass of the body. The
center of mass is defined as the point about which the sums of the moments of
the point masses that make up the body are zero:X

i

mixi ¼
X
i

miyi ¼
X
i

mizi ¼ 0 (2:118)

Each sum on the right-hand side of ( 2.117) is zero, and consequently

U1 ¼ 0 (2:119)

For the case n = 2, potential U2:

U2 ¼ �G
1

r3

X
i

mir
2
i P2 cos θið Þ (2:120)

On substituting for P2(cos θ) from Table 1.1, we obtain

U2 ¼ �G
1

2r3

X
i

mir
2
i 3 cos2θi � 1
� � ¼ �G

1

2r3

X
i

mir
2
i 2� 3 sin2θi
� �

(2:121)

U2 ¼ �G
1

2r3

X
i

2mir
2
i � 3

X
i

mir
2
i sin

2θi

" #
(2:122)

The principal moments of inertia A, B, and C of a body about the x-, y-, and
z-axes, respectively, are defined in Box 2.2:
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Box 2.2. Moments and products of inertia

The angular momentum h of a body rotating at angular velocity ω about an
axis is given by

h ¼ Iω (1)

The quantity I is the moment of inertia of the body. It is a measure of the
distribution of its mass about an axis of rotation. For a point mass m at
perpendicular distance r from an axis of rotation the moment of inertia is

I ¼ mr2 (2)

If an extended body is made up of discrete particles with mass mi at distance
ri from the rotation axis, the moment of inertia is the sum of all the
contributions from all these particles:

I ¼
X
i

mir
2
i (3)

Let the mass distribution of a body be described relative to three orthogonal
Cartesian coordinate axes. The moments of inertia A, B, and C about the
x-, y-, and z-axes, respectively, are

A ¼
X
i

mi y
2
i þ z2i

� �
B ¼

X
i

mi z
2
i þ x2i

� �
C ¼

X
i

mi x
2
i þ y2i

� � (4)

Another property that affects the rotational behavior of a body is its product
of inertia about the axis of rotation. The products of inertia H, J, and K of a
body relative to the x-, y-, and z- reference axes are defined as

H ¼
X
i

miyizi

J ¼
X
i

mizixi

K ¼
X
i

mixiyi

(5)

Suppose that in a homogeneous body the z–x plane is a plane of symmetry.
For every particle at (xi, yi) there is an equivalent particle at (xi, –yi) that
cancels out its contribution to the product of inertia K, which is therefore
zero. If each pair of reference axes defines a plane of symmetry – as in a
sphere, spheroid, or ellipsoid – then all the products of inertia are zero. Non-
zero products of inertia are expressions of the lack of symmetry of a
homogeneous body.
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A ¼
X
i

mi y
2
i þ z2i

� �
; B ¼

X
i

mi z
2
i þ x2i

� �
; C ¼

X
i

mi x
2
i þ y2i

� �
(2:123)

Adding these moments of inertia gives

Aþ Bþ C ¼ 2
X
i

mir
2
i (2:124)

Substituting into ( 2.122) gives

U2 ¼ �G
1

2r3
Aþ Bþ C� 3

X
i

mir
2
i sin

2θi

" #
(2:125)

Let the moment of inertia of the body about the line OP joining the center of the
ellipsoid and the point of observation be I ( Box 2.2). The distance of the point Q
from the line OP ( Fig. 2.3) is ri sin θi and the moment of inertia I is given by

I ¼
X
i

mir
2
i sin

2θi (2:126)

The second-order term in the potential becomes

U2 ¼ �G
1

2r3
Aþ Bþ C� 3Ið Þ (2:127)

Combining the expressions for U0 and U2, the gravitational potential of the
spheroid at P is

UG ¼ �G
M

r
� G

Aþ Bþ C� 3I

2r3
(2:128)

This is known as MacCullagh’s formula (and dates from 1855).

2.5.1 Gravitational potential of a spheroid

The shape of the Earth deviates only slightly from a sphere and is best repre-
sented as a spheroid that is symmetric about the rotation axis. For an ellipsoid
the moment of inertia I in MacCullagh’s formula can be expressed in terms
of the principal moments of inertia A, B, and C. The definition of I can be
expanded as

I ¼
X
i

mir
2
i sin

2θi ¼
X
i

mir
2
i �

X
i

mir
2
i cos

2θi (2:129)

Because the sum of the squares of direction cosines is 1, we can write
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X
i

mir
2
i ¼

X
i

mi x
2
i þ y2i þ z2i

� �
λ2 þ μ2 þ ν2
� �

(2:130)

Using the definitions of ri cos θi ( 2.116) and the direction cosines (λ, μ, ν) of
OP ( 2.111), X

i

mir
2
i cos

2θi ¼ 1

r2

X
i

mi xxi þ yyi þ zzið Þ2

¼
X
i

mi λxi þ μyi þ νzið Þ2 (2:131)

Expanding the squared expression and taking the direction cosines outside the
sums givesX

i

mir
2
i cos

2θi ¼ λ2
X
i

mix
2
i þ μ2

X
i

miy
2
i þ ν2

X
i

miz
2
i

þ 2λμ
X
i

mixiyi þ 2μν
X
i

miyizi þ 2νλ
X
i

mizixi

(2:132)

On combining ( 2.130) and ( 2.132), we have that the moment of inertia of the
ellipsoid about the line OP is

I ¼ λ2
X
i

mi y
2
i þ z2i

� �þ μ2
X
i

mi z
2
i þ x2i

� �þ ν2
X
i

mi x
2
i þ y2i

� �
� 2λμ

X
i

mixiyi � 2μν
X
i

miyizi � 2νλ
X
i

mizixi (2:133)

The first three sums on the right are recognizable as the definitions of the
principal moments of inertia A, B, and C, while the final three terms are
definitions of the products of inertia H, J, and K (see Box 2.2). Thus the
moment of inertia I about an axis with direction cosines (λ, μ, ν) is related to the
principal moments and products of inertia by

I ¼ Aλ2 þ Bμ2 þ Cν2 � 2Kλμ� 2Hμν� 2Jνλ (2:134)

In an ellipsoid the x–y, y–z, and z–x planes are planes of symmetry, so the
products of inertia are H = J = K = 0. The expression for I reduces in the case of
an ellipsoid to

I ¼ Aλ2 þ Bμ2 þ Cν2 (2:135)

Substituting this expression for I in MacCullagh’s formula gives

UG ¼ �G
M

r
� G

Aþ Bþ C� 3 Aλ2 þ Bμ2 þ Cν2
� �
2r3

 !
(2:136)
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The symmetry of the Earth about its rotation axis means that the moment of
inertia about any axis in the equatorial plane has the same value, i.e., A = B. For
the spheroidal Earth this results in

UG ¼ �G
M

r
� G

2Aþ C� 3A λ2 þ μ2
� �� 3Cν2

2r3

 !
(2:137)

Now we revert from the direction cosines of OP to the direction of the line in
terms of the angles θ and �, corresponding respectively to co-latitude and
longitude in geographic terms. These angles and the direction cosines are
related as in Fig. 2.5:

λ ¼ sin θ cos�

μ ¼ sin θ sin�

ν ¼ cos θ

(2:138)

Squaring and summing the direction cosines λ and μ gives

λ2 þ μ2 ¼ sin2θ cos2�þ sin2�
� � ¼ sin2θ

¼ 1� cos2θ
(2:139)

Replacing the direction cosines with the above expressions gives

UG ¼ �G
M

r
� G

2Aþ C� 3A 1� cos2θ
� �� 3C cos2θ

2r3

� �
(2:140)

UG ¼ �G
M

r
� G C� Að Þ 1� 3 cos2θ

2r3

� �
(2:141)

θ

φ

1

sinθ

λ = sinθ cosφ

 = sinθ sinφ

ν = cosθ

μ

Fig. 2.5. Relationship between the direction cosines of a line and the angles θ and�
that define its direction.
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UG ¼ �G
M

r
þ G

C� A

r3
P2 cos θð Þ (2:142)

This is the gravitational potential of an ellipsoid of revolution at an external point.

2.5.2 MacCullagh’s formula and the figure of the Earth

The Earth’s shape deviates only slightly from a sphere, and is close to that of an
oblate spheroid. MacCullagh’s formula is not an exact expression for the
gravitational potential of the Earth, because terms of higher order than U2

were omitted from ( 2.109). In order to express UG more exactly, we need to
use an infinite series of potentials:

UG ¼ U0 þU1 þU2 þU3 þ � � � ¼
X1
n¼0

Un (2:143)

Each term of order n is proportional to (1/r)n and decreases in relative impor-
tance with increasing distance r. An alternative form for the gravitational
potential UG of the Earth at an external point is to write it as an infinite series
of terms involving the Legendre polynomials and using Earth’s mass E and
equatorial radius a:

UG ¼ �G
E

r
1�

X1
n¼2

Jn

�
a

r

�n

Pn cos θð Þ
" #

(2:144)

The sum inside the square brackets modifies the potential U0 of a sphere to
reflect the real mass distribution in the Earth. The coefficients Jn describe the
relative importance of successive terms in the series. The sum begins at n = 2
because U1 = 0 when the coordinate system is centered at the Earth’s center of
mass, as in ( 2.119). Values for the coefficients Jn are obtained from satellite
geodesy. They are very small, of order 10−6, except for J2, which is about 1,000
times larger and has the value 1.082 × 10−3. J2 is called the dynamic form factor
of the Earth. The coefficient J3 has the value −2.54 × 10−6; it describes a slight
deviation from a spheroid, being more depressed at the south pole and elevated
at the north pole. This makes the Earth slightly pear-shaped. The coefficient J4 is
equal to −1.59 × 10−6 and is needed in order to obtain a more exact description
of the gravitational potential for a model Earth whose mass distribution is
symmetric about the equator.
Writing (2.144) to first order:

UG ¼ �G
E

r
1� J2

�
a

r

�2

P2 cos θð Þ
" #

(2:145)
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This has to be equivalent to MacCullagh’s formula for the spheroidal Earth. On
equating terms in ( 2.142) and ( 2.145), we get the result

G
E

r
J2

�
a

r

�2

P2 cos θð Þ ¼ G
C� A

r3
P2 cos θð Þ (2:146)

where

J2 ¼ C� A

Ea2
(2:147)

This result shows that the dynamic form factor J2 is dependent on the difference
between the principal moments of inertia, C and A. The polar flattening of
Earth’s figure results from the centrifugal acceleration of its rotation. The
redistribution of mass finds expression as a difference between the principal
moments of inertia. This difference, in turn, affects how the Earth reacts to
external gravitational torques, which cause the rotation axis to precess about the
pole to the ecliptic. The difference between C and A even affects the free
rotation of the Earth, creating a longer-period wobble that is superposed on
the daily rotation.
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3

Gravity

At any point on the Earth gravity acts in a direction normal to a surface on which
the potential of gravity is constant. This equipotential surface is the best-fitting
geometric figure to mean sea-level on the Earth. Its shape is that of a slightly
flattened spheroid, for which the radius at any point can be computed. The
potential of gravity on this spheroid – the geopotential – is computed by
combining the gravitational potential and the potential of the centrifugal accel-
eration due to Earth’s rotation. Gravity measurements are made with a high
degree of accuracy. In order to compute a theoretical value of gravity for
comparison at any latitude similar accuracy must be attained. Consequently,
each step in computing the formula for the reference gravity must be carried out
to second order in the flattening f and related parameters.

3.1 The ellipticity of the Earth’s figure

Every cross-section of Earth’s spheroidal shape that includes both poles is an
identical ellipse, with equatorial semi-major axis a and polar semi-minor axis c,
which are related (Box 2.1) by the flattening f through the equation c = a(1 – f ).
In Cartesian coordinates the equation of the ellipse is

x2

a2
þ z2

c2
¼ 1 (3:1)

A position on the reference spheroid is specified by the polar angle θ and radius r,
defined relative to the axis of rotational symmetry and center of the spheroid,
repectively (Fig. 3.1). Consider a polar cross-section that includes the x- and
z-axes, so that x = r sin θ and z = r cos θ. By substituting into (3.1) we get the
equation of the elliptical section in polar coordinates:

r2 sin2θ
a2

þ r2 cos2θ
c2

¼ 1 (3:2)
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r2

a2
sin2θ þ cos2θ

1� fð Þ2
 !

¼ 1 (3:3)

On rearranging slightly, this becomes

r2 ¼ a2 1� fð Þ2
cos2θ þ 1� fð Þ2 sin2θ

(3:4)

The denominator can be expanded, giving

cos2θ þ 1� fð Þ2 sin2θ ¼ 1� 2fþ f 2
� �

sin2θ þ cos2θ

¼ sin2θ þ cos2θ � 2f sin2θ þ f 2 sin2θ (3:5)

Noting that sin2θ + cos2θ = 1, we can rewrite this as

cos2θ þ 1� fð Þ2 sin2θ ¼ 1� 2f sin2θ þ f 2 sin2θ sin2θ þ cos2θ
� �

¼ 1� 2f sin2θ þ f 2 sin4θ þ f 2 sin2θ cos2θ

¼ 1� f sin2θ
� �2 þ f 2 sin2θ cos2θ

(3:6)

By substituting into (3.4) and taking the square root, we get an equation for the
radius:

r

a
¼ 1� f

1� f sin2θ
� �2 þ f 2 sin2θ cos2θ
� �1=2

¼ 1� f

1� f sin2 θ
1þ f 2 sin2θ cos2θ

1� f sin2θ
� �2

 !�1=2

(3:7)

c

r

a

R

x

z

θ

Fig. 3.1. Polar cross-section of a spheroid with principal axes a and c (c< a),
compared with a sphere (dashed) with radius R and the same volume as the spheroid.
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Applying the binomial theorem twice to the last line and expanding to order f 2

gives an equation for the surface of a spheroid

r

a
� 1� f

1� f sin2θ
1� 1

2
f 2 sin2θ cos2θ

� �
� 1� f

1� f sin2θ
(3:8)

The expansions for the gravitational potential and for gravity on the reference
ellipsoid require the ratio a/r. Upon inverting (3.8) with the aid of the binomial
expansion we get, to order f 2,

a

r
� 1� f sin2θ

1� f
1þ 1

2
f 2 sin2θ cos2θ

� �

� 1� f sin2θ
� �

1þ 1

2
f 2 sin2θ cos2θ

� �
1þ fþ f 2 þ � � �� �

� 1þ fþ f 2 � f sin2θ � f 2 sin2θ þ 1

2
f 2 sin2θ cos2θ (3:9)

a

r
� 1þ f cos2θ þ f 2 cos2θ þ 1

2
f 2 cos2θ � 1

2
f 2 cos4θ

� 1þ f 1þ 3

2
f

� �
cos2θ � 1

2
f 2 cos4θ (3:10)

For some purposes it suffices to know the equation of the ellipticity only to first
order in f. This is derived in Box 3.1.

3.2 The geopotential

The main component of gravity is the gravitational acceleration aG towards the
center of the Earth. This component varies with latitude because of the varying
radius of the spheroid. The deviation from a spherical shape results from the
deforming effect of Earth’s rotation, which produces a centrifugal acceleration
ac directed perpendicular to and away from the axis of rotation (Fig. 3.2). This
component is proportional to the distance from the rotation axis, so it also varies
with latitude.
Gravity is the vector combination of the centrifugal and gravitational com-

ponents, each of which is conservative and is the gradient of a scalar potential.
The potential of gravity Ug at a point on Earth’s surface, the geopotential, is the
sum of the gravitational potential UG and the centrifugal potential Uc at that
point,

Ug ¼ UG þUc (3:11)
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Box 3.1. First-order equation of a slightly flattened spheroid

The equation in polar coordinates of an ellipse with semi-major axis a and
ellipticity f is, from (3.8),

r

a
¼ 1� f

1� f sin2θ
(1)

This equation can be expanded using the binomial theorem:

r

a
¼ 1� fð Þ 1� f sin2 θ

� ��1 � 1� fð Þ 1þ f sin2θ þ � � �� �
(2)

Because f is equal to 1/298.252 (Table 2.1), the quantity f 2 is of the order of
10−5 and is for many purposes negligibly small. The binomial expansion
may be curtailed to first order in f, giving

r

a
¼ 1� fþ f sin2θ ¼ 1� f 1� sin2θ

� �
(3)

r

a
� 1� f cos2θ (4)

It is often convenient to express the elliptical polar section in terms of the
Legendre polynomial P2(cos θ). Rearranging the equation for P2(cos θ) from
Table 1.1 gives

cos2θ ¼ 1

3
1þ 2P2 cos θð Þð Þ (5)

By substituting into (4) above, we get

r

a
� 1� f

3
� 2

3
fP2 cos θð Þ (6)

Upon invoking the binomial expansion and ignoring terms of second order
and higher in f, this reduces to

r

a
� 1� f

3

� �
1� 2

3
fP2 cos θð Þ

� �
(7)

Let R be the radius of a sphere with the same volume as the spheroid
(Fig. 3.1). Then, omitting the factor 4π/3 common to each volume, we have

R3 ¼ a2c ¼ a3 1� fð Þ (8)
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3.2.1 Gravitational potential

To compute gravity on the reference spheroid it is necessary to determine the
geopotential to second order in the small quantities that define it. Each of the
quantities f, m, and J2 is around 10−3 in size (Table 2.1), so their squares and
products are around 10−6. The gravitational potential (2.144) must be deter-
mined with the same definition, which means that it is inadequate to use only the
terms up to J2. If we assume that the mass distribution of the Earth is symmetric
about the equator, the term J3 can be omitted, but we need to include the term J4
for an accurate description of the gravitational potential. Up to the term J4 this
becomes

Taking the cube root and using the binomial expansion to first order gives

R ¼ a 1� fð Þ1=3 � a 1� f

3

� �
(9)

Thus the equation for the radius of an elliptical polar section of the Earth in
terms of the Legendre polynomial P2(cos θ), the flattening f, and the mean
radius R of an equivalent sphere is

r ¼ R 1� 2

3
fP2 cos θð Þ

� �
(10)

This is a useful first-order approximation to the shape of the Earth.

ω

x

rθ

ac

Fig. 3.2. Centrifugal acceleration ac at co-latitude θ, directed perpendicular to and
away from the axis of rotation.
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UG ¼ �GE

a

��
a

r

�
� J2

�
a

r

�3

P2 cos θð Þ � J4

�
a

r

�5

P4 cos θð Þ
	

(3:12)

3.2.2 Centrifugal potential

The centrifugal acceleration is the gradient of the centrifugal potential Uc,

ac ¼ �rUc (3:13)

Let x be the perpendicular distance from the rotation axis to a point on the
surface at latitude θ and let ω be the angular rate of rotation of the Earth
(Fig. 3.2). The centrifugal acceleration is equal to ω2x, so, for a constant rate
of rotation, Uc varies only with x. Therefore

ω2x ¼ � ∂Uc

∂x
(3:14)

Integrating both sides with respect to x gives

Uc ¼ � 1

2
ω2x2 þU0 (3:15)

The potential is zero at the axis of rotation, where x = 0, and the constant of
integration Uc = 0. The equation for the centrifugal potential in terms of the
polar angle θ is

Uc ¼ � 1

2
ω2x2 ¼ � 1

2
ω2r2 sin2θ (3:16)

3.3 The equipotential surface of gravity

In order to compute gravity accurately on the reference ellipsoid it is necessary
to develop the geopotential to second order in the small quantities f, m, and J2,
so we must use also the gravitational potential coefficient J4 whose magnitude is
around 10−6. The geopotential consists of the sum of the gravitational and
centrifugal potentials:

Ug ¼ �GE

a

�
a

r

�
� J2

�
a

r

�3

P2 cos θð Þ � J4

�
a

r

�5

P4 cos θð Þ
" #

� 1

2
ω2a2

�
r

a

�2

sin2θ (3:17)

Taking the centrifugal term inside the bracketed expression gives
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Ug ¼�GE

a
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r
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�J2
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a

r

�3

P2 cos θð Þ�J4
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a

r

�5

P4 cos θð Þþ1

2

ω2a3

GE
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r

a

�2

sin2θ

" #

(3:18)

The geopotential involves the ratios a/r, (a/r)3, and (a/r)5, which we develop
using (3.10). Note that the term in (a/r)3 is multiplied by J2 so it must be
evaluated only to first order in f; the coefficient J4 is itself of order 10

−6, so the
ratio (a/r)5 on the equipotential surface of gravity may be set equal to 1. Then�

a

r

�3

� 1þ 3 f 1þ 3

2
f

� �
cos2θ � 1

2
f 2 cos4θ

� �
� 1þ 3f cos2θ (3:19)

For succinctness, let the last term inside the brackets in (3.18) be called Ψ. The
ratio r/a is obtained from (3.8), thus

Ψ ¼ 1

2

ω2a3

GE

� ��
r

a

�2

sin2θ

¼ 1

2

ω2a3 1� fð Þ
GE

� �
1� fð Þsin2θ
1� f sin2θ
� �2

(3:20)

Ψ ¼ 1

2
m

1� fð Þsin2θ

1� f sin2θ
� �2 (3:21)

Here m is the centrifugal acceleration ratio defined in Box 3.2, equation (3),

m ¼ ω2a3 1� fð Þ
GE

(3:22)

The denominator in (3.21) can be expanded using the binomial theorem; we
need do so only to first order because of the factorm, which is similar in size to f.
The centrifugal term Ψ becomes

Ψ � 1

2
m 1� fð Þ 1þ 2f sin2θ

� �
sin2θ (3:23)

Multiplying, and retaining only the terms of first order in f, gives

Ψ ¼ 1

2
m sin2θ 1� fþ 2f sin2θ

� �
(3:24)

In the equation for the geopotential, the centrifugal term must be combined with
a term in J2P2(cos θ), which has the form cos2θ, and a term in J4P4(cos θ), which
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contains terms in both cos2θ and cos4θ (see Table 1.2). It is advantageous to
convert (3.24) to the same format:

Ψ ¼ 1

2
m 1� cos2θ
� �

1� fþ 2f 1� cos2θ
� �� �

¼ 1

2
m 1þ f� 2f cos2θ � cos2θ � f cos2θ þ 2f cos4θ
� �

(3:25)

Ψ ¼ 1

2
m 1þ f� 1þ 3fð Þcos2θ þ 2f cos4θ
� �

(3:26)

Now we can return to (3.18). By writing the full expressions for P2(cos θ) and
P4(cos θ) from Table 1.1, and the ratios a/r from (3.10) and (a/r)3 from (3.19),

Box 3.2. The acceleration ratio, m

The magnitudes of the gravitational and centrifugal components of gravity
can be directly compared at the equator where the vectors are directly
opposed to each other. The parameter m is defined as the ratio of the
centrifugal acceleration at the equator to the gravitational acceleration at the
equator:

m ¼ ω2a

GE=a2
¼ ω2a3

GE
(1)

The value of m defined in this way is 3.461 391 × 10−3 = 1/288.901.
An alternative, commonly used definition ofm is the ratio of the equatorial

centrifugal acceleration to the gravitational acceleration on a sphere with the
same volume as the spheroid. The volume of a spheroid with equatorial
radius a and polar radius c is (4π/3)a2c. The flattening f relates a and c so
that c = a(1 – f ). Let the radius of a sphere with the same volume be R;
its volume is (4π/3)R3. On comparing the volumes and dropping the
common numerical factor, we have

R3 ¼ a2c ¼ a3 1� fð Þ (2)

The alternative definition of the acceleration ratio m is then

m ¼ ω2R3

GE
¼ ω2a3 1� fð Þ

GE
(3)

In this case the value of m is 3.449 786 × 10−3 = 1/289.873.
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and using (3.26) for the centrifugal term, we get the geopotential as a function of
cos2θ and cos4θ:

Ug ¼ �GE

a

1þ f 1þ 3
2
f

� Þcos2θ � 1
2
f 2 cos4θ

� J2 �1þ 3 1� fð Þcos2θ þ 9f cos4θ
� �

=2

� J4 3� 30 cos2θ þ 35 cos4θ
� �

=8

þ 1
2m 1þ f� 1þ 3fð Þcos2θ þ 2f cos4θ
� �

2
6664

3
7775 (3:27)

After gathering terms to get the coefficients that multiply cos2θ and cos4θ, we
get the final expression for the geopotential:

Ug ¼ �GE

a

1þ fþ 1
2
mþ 1

2
J2 � 3

8
J4

þ fþ 3
2
f 2 � 1

2
m� 3

2
fm� 3

2
1� fð ÞJ2 þ 15

4
J4

� �
cos2θ

� 1
2
f 2 �mfþ 9

2
fJ2 þ 35

8
J4

� �
cos4θ

2
64

3
75
(3:28)

3.3.1 Relationship of J2, J4, f, and m

By definition, the geopotential must be constant on the equipotential surface.
However, the potential in (3.28) can vary with polar angle through the terms in
cos2θ and cos4θ. This apparent contradiction implies that the coefficients of
these terms must be zero, i.e.,

f� 1

2
mþ 3

2
f 2 � 3

2
fm� 3

2
1� fð ÞJ2 þ 15

4
J4 ¼ 0 (3:29)

1

2
f 2 �mfþ 9

2
fJ2 þ 35

8
J4 ¼ 0 (3:30)

Since J4 is much smaller than J2, we can neglect it initially and write (3.29) to
first order:

f� 1

2
m� 3

2
J2 ¼ 0 (3:31)

J2 ¼ 1

3
2f�mð Þ (3:32)

This value for J2 is now inserted into (3.30) to obtain a second-order equation
for J4:
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J4 ¼ 8

35
� 1

2
f 2 þmf� 9

2
f

2

3
f� 1

3
m

� �� �

¼ 4

7
fm� 4

5
f 2 (3:33)

By inserting this expression back into (3.29) we eliminate J4 and get an equation
for J2:

1� fð ÞJ2 ¼ 2

3
f� 1

3
mþ f 2 � fmþ 5

2

4

7
fm� 4

5
f 2

� �
(3:34)

1� fð ÞJ2 ¼ 2

3
f� 1

3
m� f 2 þ 3

7
fm (3:35)

Applying the binomial theorem to first order in f gives

J2 ¼ 2

3
f� 1

3
m� f 2 þ 3

7
fm

� �
1þ fþ � � �ð Þ (3:36)

After multiplying and tidying up the terms, we get a second-order equation
for J2:

J2 ¼ 1

3
2f�m� f 2 þ 2

7
fm

� �
(3:37)

3.3.2 Inferred increase of density with depth in the Earth

In Section 2.5.2 the dynamic form factor J2 is expressed in terms of the principal
moments of inertia. We can replace the equatorial radius a by the mean radius R,
so that to first order

J2 ¼ C� A

Ea2
� C� A

ER2
(3:38)

By combining this result with (3.32) we obtain a relationship among the differ-
ence in the principal moments of inertia, the flattening responsible for the
difference, and the centrifugal acceleration that causes the deformation:

C� A

ER2
¼ 1

3
2f�mð Þ (3:39)

Equation (3.39) allows us to make an inference about the distribution of mass
inside the Earth. The Sun andMoon exert torques on the spheroidal shape of the
Earth that cause the rotation axis to precess about the pole to the ecliptic plane,
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which is manifest in the precession of the equinoxes (see Section 5.3). The rate
of precession is determined by the dynamic ellipticity H, defined as

H ¼ C� Aþ Bð Þ=2
C

� C� A

C
(3:40)

The value of H is known quite accurately from astronomic observations. H is a
very small quantity of the same order as f andm (Table 2.1). Rewriting (3.39) gives

C� A

C

� �
C

ER2
¼ 1

3
2f�mð Þ (3:41)

C

ER2
¼ 1

3

2f�m

H

� �
� 1

3
(3:42)

C � 1

3
ER2 (3:43)

Figure 3.3 shows the moments of inertia of some standard objects about an axis
of symmetry. With increasing distribution of the mass of the object closer to its
center, the factor preceding the product MR2 decreases from 1 for an open-
ended hollow cylinder to 0.67 for a hollow spherical shell and 0.4 for a
homogeneous solid sphere. The numerical factor is 0.33 for the Earth, indicat-
ing that the density of the Earth is not uniform but increases towards its center,
i.e., the density of the Earth increases with depth.

3.4 Gravity on the reference spheroid

The reference figure for standard calculations of gravity at a particular latitude is
the spheroid, or ellipsoid, of revolution. The acceleration due to gravity on the
reference spheroid has both a radial component gr and a polar component gθ,

Hollow cylinder Hollow sphere Solid sphere

C = MR2 C = 2
3 MR2 C = 2

5 MR2

Fig. 3.3. Moments of inertia of a hollow cylinder, hollow sphere, and uniform solid
sphere about an axis of symmetry.
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g ¼ grer þ gθeθ (3:44)

The polar component gθ is much smaller than the radial component gr, but it has
important effects. It deflects the vertical from the radial direction at every point
on the Earth, except at the poles and on the equator. This deflection results in a
difference between geocentric and geographic latitude; the maximum difference
is less than 0.2°, but this has a large effect onmeasurements of gravity. The polar
component cannot be neglected, since this would be akin to assuming that
gravity acts in a radial direction at all points. To determine the theoretical
gravity on the reference spheroid we must combine expressions for the radial
and polar components:

g ¼ grð Þ2 þ gθð Þ2
� �1=2

� gr 1þ 1

2

gθ
gr

� �2
 !

(3:45)

As we will see, the polar component gθ is of order f, so its effect on gravity is
proportional to f 2. To determine the variation of gravity on the reference
ellipsoid we will have to evaluate the radial component to second order as
well. This makes it necessary to express the shape of the spheroid and the
geopotential to second order in the small quantities f, m, and J2. We must also
use an expression for the gravitational potential up to the coefficient J4, which is
about the same size as the squares and products of these parameters.

3.4.1 Polar component of gravity

The polar component of gravity on the reference ellipsoid is the gradient of the
geopotential in the direction of increasing polar angle θ,

gθ¼� 1

r

∂
∂θ

�GE

a

�
a

r

�
�J2

�
a

r

�3

P2 cos θð Þ�J4

�
a

r

�5

P4 cos θð Þ
" #

� 1

2
ω2r2 sin2 θ

( )

(3:46)

The first term is independent of θ and drops out of the differentiation. We can
take the centrifugal term inside the square brackets and use the definition of the
centrifugal ratio m as in (3.22):

gθ ¼� GE

a2
J2

�
a

r

�4 ∂
∂θ

P2 cos θð Þ þ J4

�
a

r

�6 ∂
∂θ

P4 cos θð Þ
"

� 1

2

m

1� f

� ��
r

a

�
∂
∂θ

sin2θ

	
(3:47)
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The Legendre polynomials P2(cos θ) and P4(cos θ) are listed in Table 1.1.
Differentiating them with respect to θ gives

∂
∂θ

P2 cos θð Þ ¼ ∂
∂θ

3 cos2θ � 1

2

� �
¼ �3 cos θ sin θ (3:48)

∂
∂θ

P4 cos θð Þ ¼ ∂
∂θ

35 cos4θ � 30 cos2θ þ 3

8

� �

¼ � 5

2
cos θ sin θ 7 cos2θ � 3

� �
(3:49)

On substituting these into (3.47) and simplifying, we obtain

gθ ¼ GE

a2
sin θ cos θ 3J2

�
a

r

�4

þ 5

2
J4

�
a

r

�6

7 cos2θ � 3
� �þ m

1� f

�
r

a

�" #

(3:50)

As explained above, we need to evaluate gθ only to first order in f, so terms with
J4 and the products fJ2 and fmmay be neglected. The ratios (a/r)4, (a/r)6, and r/a
may be set effectively equal to 1. We define

g0 ¼ GE

a2
(3:51)

The polar component of gravity on the reference ellipsoid is therefore given to
first order by

gθ � g0 3J2 þmð Þsin θ cos θ (3:52)

Now we recall the relationship among J2, f, and m established in (3.32) and
substitute for J2, which gives the first-order expression

gθ � g0 f sin 2θð Þ (3:53)

Note that gθ is positive for θ ≤ 90° and negative for 90° ≤ θ ≤ 180°, i.e., in each
hemisphere gθ acts in the direction from the pole to the equator.

3.4.2 Radial component of gravity

The radial component of gravity on the reference ellipsoid is obtained from the
gradient of the geopotential with respect to the radius r:

gr ¼� ∂
∂r

�GE

a


 �
a

r

��
� J2

�
a

r

�3

P2ðcos θÞ � J4

�
a

r

�5

P4ðcos θÞ

þ 1

2

ω2a3

GE

� ��
r

a

�2

sin2θ

#)
(3:54)
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gr ¼ �GE
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� 3J2
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(3:55)

To simplify this cumbersome evaluation somewhat, we examine the four terms
inside the square brackets individually. We write g0 as in (3.51):

gr ¼ �g0 T1 þ T2 þ T3 þ T4½ � (3:56)

For term T1, using the ratio a/r defined in (3.10), and neglecting terms of higher
order than f 2, the first term in square brackets is�

a

r

�2

¼ 1þ 2f 1þ 3

2
f

� �
cos2θ � 1

2
f cos4θ

� �

þ f 2 cos4θ 1þ 3

2
f

� �
� 1

2
f cos2θ

� �2

(3:57)

Thus

T1 � 1þ 2fþ 3f 2
� �

cos2θ (3:58)

For term T2, the term in (a/r)4 is multiplied by J2, so we need only expand it to
order f : �

a

r

�4

� 1þ 4 f 1þ 3

2
f

� �
cos2θ � 1

2
f cos4θ

� �
(3:59)

�
a

r

�4

� 1þ 4f cos2θ (3:60)

Using the expansion of the Legendre polynomial P2(cos θ) given in Table 1.1,

T2 ¼ �3J2 1þ 4f cos2θ
� �

P2 cos θð Þ ¼ � 3

2
J2 1þ 4f cos2θ
� �

3 cos2θ � 1
� �

(3:61)

T2 � 3

2
J2 � 3

3

2
� 2f

� �
J2 cos

2θ � 18fJ2 cos
4θ (3:62)

For term T3, the term in (a/r)6 is multiplied by J4, which is of order 10−6, so
we can neglect products of J4 with f. Effectively we can set (a/r)6 equal to 1.
Using the expansion of P4(cos θ),

T3 � �5J4P4 cos θð Þ � � 5

8
J4 3� 30 cos2θ þ 35 cos4θ
� �

(3:63)
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For term T4, the ratio r/a is given by (3.8), and to second order this term is

T4 � � m

1� f

� �
sin2θ

1� f

1� f sin2θ
� �m sin2θ 1þ f sin2θ

� �
(3:64)

On converting the sines to cosines for compatibility with the other terms we obtain

T4 � �m 1þ fð Þ þm 1þ 2fð Þcos2θ �mf cos4θ (3:65)

Now we can insert these four terms into (3.56):

gr ¼ �g0

1þ f 2þ 3fð Þcos2θ
þ 3

2
J2 � 3 3

2
� 2f

� ÞJ2 cos2θ � 18fJ2 cos
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8
J4 3� 30 cos2θ þ 35 cos4θ
� �

�m 1þ fð Þ þm 1þ 2fð Þcos2θ �mf cos4θ

2
66664

3
77775 (3:66)

After gathering terms to form coefficients of cos2θ and cos4θ, we have

gr ¼ �g0

1þ 3
2
J2 � 15

8
J4 �m 1þ fð Þ

þ f 2þ 3fð Þ � 3 3
2
� 2f
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J2 þ 75
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cos4θ

2
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3
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(3:67)

J2 and J4 can be replaced by expressions in f and m, as in (3.37) and (3.33),
respectively. After expanding and grouping the terms, the radial gravity com-
ponent becomes

gr ¼ �g0

1þ f� 3
2
mþ f 2 � 27

14
fm

þ 5
2
m� f� 13

2
f 2 þ 72

7
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� �
cos2θ

� 15
2
fm� 11

2
f 2

� �
cos4θ

2
64

3
75 (3:68)

3.4.3 Variation of reference gravity with geocentric latitude

Instead of using the polar angle θ to describe position on the reference ellipsoid,
it is customary to use the latitude. The geocentric latitude λc is the complement
of θ, so cos θ = sin λc, cos

2θ = sin2λc, and

cos4θ ¼ sin4λc ¼ sin2λc 1� cos2λc
� � ¼ sin2λc � 1

4
sin2 2λcð Þ (3:69)

On substituting this change, the radial component of gravity on the spheroid as a
function of geocentric latitude is

100 Gravity



gr ¼ �g0

1þ f� 3
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2
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3
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Note that the polar component gθ (see (3.53)) referred to geocentric latitude is
unaltered:

gθ � g0 f sin 2θð Þ ¼ g0 f sin 2λcð Þ (3:71)

Gravity on the reference figure of the Earth acts normal to the ellipsoidal
equipotential surface. It is computed by combining the radial and polar compo-
nents as in (3.45):

g ¼ gr 1þ 1

2

gθ

gr

� �2
 !

¼ gr 1þ 1

2
f 2 sin2 2λcð Þ 1þ f� 3

2
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� ��2
 !

(3:72)

g � gr 1 þ 1

2
f 2 sin2 2λcð Þ

� �
(3:73)

Thus the polar component affects only the sin2(2λc) term in (3.70), and gravity
on the reference ellipsoid is given by

g ¼ �g0

1þ f� 3
2
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Let the value of gravity at the equator, where sin λc = sin(2λc) = 0, be

ge ¼ �g0 1þ f� 3

2
mþ f 2 � 27

14
fm

� �
(3:75)

Taking this out of the bracketed expression and using the binomial expansion to
first order in f gives

g � ge 1þA sin2λc þ 1

8
f 15m�7fð Þsin2 2λcð Þ
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1� f� 3

2
mþ f 2 � 27

14
fm
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(3:76)

where, for succinctness, A ¼ 5
2m� f� f 2 þ 39

14 fm. The coefficient of sin2(2λc)

is already of second order, so, when we multiply the terms, only the coefficient
A of sin2λc is affected. It expands to
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The final expression for the variation of gravity with geocentric latitude is

g ¼ ge 1þ 5

2
m� fþ 15

4
m2 � 17

14
fm

� �
sin2λc þ 1

8
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(3:78)

3.4.4 Clairaut’s formula

The value of gravity at the poles, gp, is found by setting λc = π/2 = 90°. To first
order

gp ¼ ge 1þ 5

2
m� f

� �
 �
(3:79)

Rearranging this equation gives

gp � ge
ge

¼ 5

2
m� f (3:80)

This is the Clairaut formula for the difference between the gravity at the pole
and that at the equator, attributed to a French mathematician and astronomer,
Alexis Claude de Clairaut (1713–1765).

3.5 Geocentric and geographic latitude

The latitude in the above formulae is the geocentric latitude λc defined by the
radius from the Earth’s center to the point on the ellipsoid. However, the latitude
in common use is the geographic (or geodetic) latitude λ defined by the vertical
direction, which is normal to the surface of the reference ellipsoid and does not
pass through the Earth’s center (Fig. 3.4). There is a simple relationship between
the geocentric and geographic latitudes.
Let P be a point on the ellipsoid with geocentric latitude λc and geographic

latitude λ (Fig. 3.5(a)). The angle between the radial and vertical directions at
P is λ – λc. The horizontal direction PH and the direction PN normal to the radius
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at P form the same angle. Consider a small increase dθ in the polar angle for the
point P. The radius to the surface increases by a small amount dr, and there is an
angular displacement r dθ perpendicular to the radius. These increments dis-
place the intersection of the radius with the surface along the ellipsoid. The three
displacements form a small triangle PNH (Fig. 3.5(b)), whose sides PN and PH
contain the angle (λ – λc). In the triangle PNH

tan λ� λcð Þ ¼ dr

r dθ
(3:81)

λλc
θ

ac

gaG

Fig. 3.4. Comparison of geocentric latitude λc, defined by the radius of the
ellipsoidal Earth, and geographic (or geodetic) latitude λ, defined by the normal
direction to the surface of the ellipsoid. After Lowrie (2007).

λλc
θ

λ −  λc

horizontal

vertical

(a)

P

N
H

dr

r dθ

θ dθ

r

P

N

H

(b) λ − λc

Fig. 3.5. (a) The difference (λ – λc) between geographic latitude λ and geocentric
latitude λc is the same as the angle between the horizontal and a plane perpendicular
to the radius. (b) Details of the construction of a small triangle whose sides PN and
PH contain the angle (λ – λc).
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On differentiating the equation of the ellipsoid (3.8) we have to first order in f

1

r

dr

dθ
¼ a

r

d

dθ
1� f

1� f sin2θ

¼ a

r

f 2 sin θ cos θð Þ
1� f sin2θ
� �2

� f sin 2θð Þ

(3:82)

Because θ is the complement of λc, we can replace sin(2θ) by sin(2λc) and obtain
the result

tan λ� λcð Þ ¼ f sin 2λcð Þ (3:83)

The difference δλ = λ – λc is very small, because the tangent of the angle is less
than f,

δλ ¼ λ� λc � tan�1 fð Þ � 0:19� (3:84)

The small difference allows us to replace the tangent in (3.83) with the angle (in
radians), so that

λ ¼ λc þ f sin 2λcð Þ (3:85)

δλ ¼ λ� λc ¼ f sin 2λcð Þ (3:86)

3.5.1 Normal gravity on the reference ellipsoid

Measurements of gravity must be corrected for various factors, such as the
latitude of the measurement site, its altitude with respect to the reference
ellipsoid, and the surrounding topography. The corrected value must then be
compared with the theoretical value for the geographic latitude of the observa-
tion. The gravity formula in (3.78) gives the variation of gravity with geocentric
latitude. This must now be converted to a form that depends on geographic
latitude, which requires finding expressions for sin2λc and sin

2(2λc) in terms of λ.
The gravity formula in (3.78) can be written

gn ¼ geð1þ b1 sin
2λc þ b2 sin

2 2λcÞð Þ (3:87)

On comparing (3.87) with (3.78), we note that the constant b1 contains terms of
both first and second order in f and m, whereas b2 is entirely of second order.
This allows us to simplify the conversions.
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From (3.86) we have λc = λ – δλ and, because δλ is a very small angle, we can
make the approximations sin(δλ) ≈ δλ and cos(δλ) ≈ 1. The expressions for sin λc
and cos λc reduce to

sin λc ¼ sin λ� δλð Þ ¼ sin λ cos δλð Þ � cos λ sin δλð Þ � sin λ� δλ cos λ

(3:88)

cos λc ¼ cos λ� δλð Þ ¼ cos λ cos δλð Þ þ sin λ sin δλð Þ � cos λþ δλ sin λ

(3:89)

The gravity formula contains the term sin2λc, which we can now write as

sin2λc � sin2λ� 2δλ sin λ cos λ � sin2λ� δλ sin 2λð Þ (3:90)

Next, we combine (3.88) and (3.89) to get an expression for sin2(2λc), which is,
to first order in δλ,

sinð2λcÞ ¼ 2 sin λ� δλ cos λð Þ cos λþ δλ sin λð Þ
¼ 2 sin λ cos λ� 2 δλ cos2λ� sin2λ

� �� 2 δλð Þ2 sin λ cos λ
� sin 2λð Þ � 2 δλ cos 2λð Þ

(3:91)

Squaring, and again neglecting the term in (δλ)2, gives

sin2 2λcð Þ � sin2 2λð Þ � 4 δλ sin 2λð Þcos 2λð Þ � sin2 2λð Þ � 2δλ sin 4λð Þ
(3:92)

In the gravity formula (3.87) this term is multiplied by the constant b2, which is
of second order in f and m. Thus, neglecting the small product b2 δλ,

b2 sin
2 2λcð Þ � b2 sin

2 2λð Þ � 2b2 δλ sin 4λð Þ � b2 sin
2 2λð Þ (3:93)

Equation (3.91) allows us to rewrite δλ in (3.86),

δλ ¼ f sin 2λcð Þ ¼ f sin 2λð Þ � f δλð Þcos 2λð Þ � f sin 2λð Þ (3:94)

Upon inserting this into (3.90) we get

sin2λc � sin2λ� f sin2 2λð Þ (3:95)

Substituting (3.93) and (3.95) into (3.87) gives the gravity formula for geo-
graphic latitude λ:

gn ¼ geð1þ b1 sin2λ� f sin2 2λð Þ� �þ b2 sin
2 2λð ÞÞ (3:96)

gn ¼ geð1þ b1 sin
2λþ b2 � fb1ð Þsin2 2λð ÞÞ (3:97)
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The coefficient of sin2λ is the same as that of sin2λc in the gravity formula (3.87)
for geocentric latitude, but the coefficient of sin2(2λ) is modified to

b2 � f b1 ¼ 1

8
f 15m� 7fð Þ � f

5

2
m� fþ 15

4
m2 � 17

14
fm

� �

¼ 1

8
f f� 5mð Þ

(3:98)

On replacing b1 and b2 by the corresponding expressions in (3.78), we get the
normal gravity formula

gn ¼ ge 1þ β1 sin
2λþ β2 sin

2 2λð Þ� �
(3:99)

in which gn is the normal gravity at geographic latitude λ on the International
Reference Ellipsoid, ge is its value at the equator, and β1 and β2 are small
constants, given by

β1 ¼
5

2
m� fþ 15

4
m2 � 17

14
fm

β2 ¼
1

8
f 2 � 5fm
� � (3:100)

From (3.51) and (3.75) the value of gravity on the equator is given by

ge ¼ �GE

a2
1þ f� 3

2
mþ f 2 � 27

14
fm

� �

3.6 The geoid

The real surface of the Earth is irregular and cannot be described by a simple
geometric form. It is replaced by a smooth equipotential surface of gravity,
chosen so that it agrees with mean sea-level far from land. This surface is called
the geoid. The distribution of density in the Earth’s crust is complex, with local
mass anomalies that influence the geoid and cause it to undulate about a mean
shape. The mathematical reference figure for the Earth is a spheroid that has the
same volume and the same potential as the geoid.
A local excess of mass deflects the direction of a plumb-line towards it and at

the same time increases the local value of gravity. In order to maintain a constant
potential, the equipotential surface must bulge upwards over the excess mass.
The shape of the bulge is determined by the condition that the equipotential
must lie normal to the direction of gravity and hence to the plumb-line. The
mass excess elevates the geoid above the spheroid (Fig. 3.6); conversely, a mass
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deficit depresses the geoid below the spheroid. The undulations of the geoid
with respect to the spheroid correlate with the gravity anomalies caused by the
inhomogeneity of density. The height of the geoid relative to the spheroid may
be calculated from an analysis of these gravity anomalies.

3.6.1 The potential of a geoid undulation

Let E be a point on the reference ellipsoid (idealized gravity equipotential) over
an anomalous mass. The effect of this mass is to raise the geoid (true gravity
equipotential) so that the point G corresponding to E is at a height h above the
ellipsoid (Fig. 3.6). The work done against gravity g changes the potential. If the
displacement h is small, the additional potential W due to the excess mass is
simply W = gh. Thus the height of the geoid above the spheroid is

h ¼ W

g
(3:101)

Gravity observations are first corrected for local topography and transient tidal
effects. The corrected value is then reduced to the reference surface by com-
pensating for the altitude of the measurement station. A gravity anomaly is
computed by subtracting the theoretical gravity for the latitude of the measure-
ment station. However, altitudes are specified relative to mean sea-level, so the
altitude adjustment reduces the gravity value to the geoid rather than the
ellipsoid. The gravity anomaly after corrections and reduction is specified at
the point G on the geoid, but the reference value is computed for the point E on
the ellipsoid (Fig. 3.6). The height difference corresponds to the geoid undu-
lation, which must be taken into account in an accurate gravity survey.
The gravity anomaly Δg at the point G arises from two superposed effects.

The main effect is the gravitational attraction of the additional mass. This causes

local
gravity

mass
excess

ellipsoid

geoid

h

G

E

Fig. 3.6. Elevation of the geoid above the reference ellipsoid due to an excess of
mass below the ellipsoid, and related local deflections of the direction of gravity.
After Lowrie (2007).
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a vertical gravity anomaly Δg1 that can be calculated to first order by assuming
the vertical and radial directions to be the same and differentiating the potential
W with respect to r,

Dg1 ¼ � ∂W
∂r

(3:102)

The second contribution Δg2 to the gravity anomaly is the effect of the distance
h between the geoid and spheroid. This can be computed in an analogous way to
the gravity free-air correction:

Dg2 ¼ h
∂g
∂r

(3:103)

∂g
∂r

¼ ∂
∂r

�GE

r2

� �
¼ �2

g

r
(3:104)

On combining the two contributions, we get for the gravity anomaly of the
anomalous mass

Dg ¼ Dg1 þ Dg2 ¼ � ∂W
∂r

þ 2
W

r

� �
(3:105)

The geoid undulations h are much smaller than the Earth’s radius R, so it is
unimportant if this expression is evaluated on the spherical Earth rather than on
the actual spheroid. We can conveniently use the surface of the sphere r = R, in
which case

Dg ¼ � 1

r2
∂
∂r

r2W
� �� �

r¼R

(3:106)

3.6.2 Stokes’ formula for the height of the geoid

Suppose the height of the geoid is to be determined at a point P from gravity
anomalies on the Earth’s surface r = R. Let the spherical coordinates be defined
relative to a radial axis through the point P. For a point Q where gravity was
measured, θ is the polar angle relative to P and � is the azimuth of Q on a circle
around P. The gravity anomalies on the spherical surface can then be expressed
as a sum of spherical harmonic functions, Ym

n θ; �ð Þ (see Section 1.16):

Dg θ; �ð Þ ¼
X1
n¼0

Xn
m¼0

gmn Y
m
n θ; �ð Þ (3:107)
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Also, the potential W of the excess mass must be a solution of Laplace’s
equation, so we can write

W ¼
X1
n¼0

Xn
m¼0

Bm
n Y

m
n θ; �ð Þ
rnþ1

(3:108)

Multiplying by r2 gives

r2W ¼
X1
n¼0

Xn
m¼0

Bm
n Y

m
n θ; �ð Þ
rn�1

(3:109)

Differentiating with respect to r gives

� ∂
∂r

r2W
� � ¼X1

n¼0

Xn
m¼0

n� 1ð ÞB
m
n Y

m
n θ; �ð Þ
rn

(3:110)

Upon inserting this expression into (3.106) and evaluating on the surface r = R,
we have

Dg θ; �ð Þ ¼
X1
n¼0

Xn
m¼0

n� 1ð ÞB
m
n Y

m
n θ; �ð Þ

Rnþ2
(3:111)

Note that there is no term for n = 1 in this sum; also, the term for n = 0 is a
constant, which may be considered part of the overall potential, but is not of
interest for the anomalies. Thus the summation begins at n = 2. On comparing
the coefficients of Ym

n θ; �ð Þ in (3.107) and (3.111), we have

Dgmn ¼ n� 1ð Þ Bm
n

Rnþ2
(3:112)

Bm
n ¼ Rnþ2

n� 1
gmn (3:113)

This expression can now be substituted into (3.108) for the potential,

W ¼ R
X1
n¼2

Xn
m¼0

1

n� 1

R

r

� �nþ1

Dgmn Ym
n θ; �ð Þ (3:114)

Computation of the height of the geoid is simplified by introducing a zonal
approximation. The distribution of gravity anomalies Ym

n θ; �ð Þ is replaced by
zonal harmonics, which are essentially the zeroth-order Legendre polynomials
Pn(cos θ). Effectively, the gravity anomalies at co-latitude θ are summed over
longitude �. Compared with (3.107), we make the replacement
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D�gn Pn cos θð Þ ¼
Xn
m¼0

gmn Y
m
n θ; �ð Þ (3:115)

As a result the gravity anomalies on the surface of the sphere are now repre-
sented by

Dg θ; �ð Þ ¼
X1
n¼2

D�gn Pn cos θð Þ (3:116)

In order to make use of the orthogonal properties of the Legendre polynomials
(see Section 1.15), we multiply both sides by Pn(cos θ) and integrate over the
surface of the unit sphere. The element of surface area on the unit sphere (radius
r = 1) is dΩ = sin θ dθ d� (Box 1.3) and the limits of integration are 0 ≤ θ ≤ π and
0 ≤ � ≤ 2π. The integral is

ZZ
S

Dg θ; �ð ÞPn cos θð ÞdΩ ¼
X1
n¼2

D�gn

Z2π
�¼0

Zπ
θ¼0

Pn cos θð Þ½ �2 sin θ dθ d�

(3:117)

Let cos θ = x, then –sin θ dθ = dx, and, on integrating with respect to �, we have

ZZ
S

Dg θ; �ð ÞPn cos θð ÞdΩ ¼ 2π
X1
n¼2

D�gn

Z1
x¼�1

Pn xð Þ½ �2 dx¼ 4π
D�gn

2nþ 1

(3:118)

The last step uses the normalization of the Legendre polynomials (Section 1.13.2).
We can now obtain D�gn from (3.118) and insert it into (3.114) to find the

potentialWof the geoid elevation. Using (3.101), we get the height of the geoid
undulation:

h ¼ R

4πg

X1
n¼2

ZZ
S

2nþ 1

n� 1

R

r

� �nþ1

Pn cos θð ÞDg θ; �ð ÞdΩ (3:119)

The summation under the integration reduces to a function of the angle θ only,
which we designate F(θ). With this function the height of the geoid is

h ¼ R

4πg

ZZ
S

F θð ÞDg θ; �ð ÞdS (3:120)

This is known as Stokes’ formula for the height of the geoid.
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3.6.3 Evaluation of the function F(θ)

The function F(θ) in Stokes’ formula for the height of the geoid is the value,
on the surface of the Earth, of the function F(r,θ) in the integrand of (3.119),
given by

F r; θð Þ ¼
X1
n¼2

2nþ 1

n� 1

R

r

� �nþ1

Pn cos θð Þ (3:121)

In order to simplify this expression we use the reciprocal-distance definition of
the Legendre polynomials, in the alternative form developed in Box 1.4:

1

u
¼ 1

r

X1
n¼0

R

r

� �n

Pn cos θð Þ ¼ 1

r
þ R cos θ

r2
þ
X1
n¼2

Rn

rnþ1
Pn cos θð Þ (3:122)

After altering the sequence, this allows us to write

X1
n¼2

Rn

rnþ1
Pn cos θð Þ ¼ 1

u
� 1

r
� R cos θ

r2
(3:123)

Expanding the sum in (3.121) gives

F r; θð Þ ¼ 2
X1
n¼2

R

r

� �nþ1

Pn cos θð Þ þ 3
X1
n¼2

1

n� 1

R

r

� �nþ1

Pn cos θð Þ (3:124)

The first term on the right is simply 2R times the left-hand side of (3.123).
To evaluate the second term on the right we note that

1

r2

Z1
r

dr

rn
¼ 1

n� 1

1

rnþ1

� �
(3:125)

This relationship can be used to change the second expression on the right of
(3.124) to

3
X1
n¼2

1

n� 1

R

r

� �nþ1

Pn cos θð Þ ¼ 3

r2

Z1
r

X1
n¼2

Rnþ1

rn
Pn cos θð Þdr

¼ 3R

r2

Z1
r

r
X1
n¼2

Rn

rnþ1
Pn cos θð Þdr

Now we can substitute from (3.123):
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3
X1
n¼2

1

n� 1

R

r

� �nþ1

Pn cos θð Þ ¼ 3R

r2

Z1
r

r

u
� 1� R cos θ

r

� �
dr

¼ 3R

r2

Z1
r

r dr

u
� rþ R cos θ log r½ �1r

8<
:

9=
;

(3:126)

The integration on the right must be done in several steps because the denom-
inator u is a function of r. We must first rewrite the equation in a more tractable
form:

Z1
r

r dr

u
¼
Z1
r

r drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2rR cos θ þ R2

p ¼
Z1
r

r� R cos θð Þ þ R cos θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� R cos θð Þ2 þR2 sin2θ

q dr

(3:127)

Z1
r

r dr

u
¼
Z1
r

r� R cos θð Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� R cos θð Þ2 þR2 sin2θ

q þ
Z1
r

R cos θ drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� R cos θð Þ2 þR2 sin2θ

q
(3:128)

Next, we carry out each of these integrations separately: the first part is simply

Z
r� R cos θð Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r� R cos θð Þ2þR2 sin2θ
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� R cos θð Þ2þR2 sin2θ

q
¼ u (3:129)

For the second part we make use of the following standard integration:Z
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ b2
p dy ¼ a log yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ b2

p� �
(3:130)

Letting y = r – R cos θ, a = R cos θ, and b = R sin θ in this equation, the second
integration becomesZ

R cos θ drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� R cos θð Þ2 þR2 sin2θ

q ¼ R cos θ � log
�
r� R cos θ:

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2rR cos θ þ R2

p �
¼ R cos θ � log r� R cos θ þ uð Þ (3:131)

Combining (3.128), (3.129), and (3.131) gives
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Z1
r

r dr

u
¼ uþ R cos θ � log r� R cos θ þ uð Þ½ �1r (3:132)

Upon inserting this result into (3.126) we get

3
X1
n¼2

1

n� 1

R

r

� �nþ1

Pn cos θð Þ ¼ 3R

r2
uþ R cos θ � log r� R cos θ þ uð Þ½

� r� R cos θ � log r�1r (3:133)

At the limits of the integration we cannot insert r =∞ directly. However, for very
large r,

u ¼ r 1� 2R cos θ
r

þ R2

r2

� �1=2

� r 1� 1

2

2R cos θ
r

� �� �
� r� R cos θ

(3:134)

Now we substitute this result into (3.133) to get the upper limit of the bracketed
expression:

uþ R cos θ � log r� R cos θ þ uð Þ � r� R cos θ � log r½ �1
� �R cos θ þ R cos θ � log 2 r� R cos θð Þð Þ � R cos θ � log r

� R cos θ � log 2
r� R cos θ

r

� �
� 1

� �
� R cos θ � log 2� 1ð Þ (3:135)

Evaluating both limits in (3.133) gives

3
X1
n¼2

1

n� 1

R

r

� �nþ1

Pn cos θð Þ

¼ 3R

r2
R cos θ � log 2� 1ð Þ � uþ r� R cos θ � log r� R cos θ þ u

r

� �� �
(3:136)

Now we add this result to 2R times (3.123) to get the solution of (3.124):

F r; θð Þ ¼ 2R
1

u
� 1

r
� R cos θ

r2

� �

þ 3R

r2
�R cos θ � uþ r� R cos θ � log r� R cos θ þ u

2r

� �� �
(3:137)
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The point P at which the geoid height is to be calculated and the point G at
which a gravity measurement is known lie on the surface of the Earth, where r =
R, as in Fig. 3.7. These points form an isosceles triangle with the center of the
Earth at O, so that u ¼ 2R sin(θ/2) and

r� R cos θ þ u

2r
¼ 1

2
1� cos θ þ 2 sin

θ

2

� �� �
¼ sin

θ

2

� �
þ sin2

θ

2

� �
(3:138)

On substituting into (3.137), and noting that on the surface of the sphere F(r,θ)
becomes F(θ), we have

F θð Þ ¼ 2
1

2 sin θ=2ð Þ � 1� cos θ

� �

þ 3 � cos θ � 2 sin
θ
2

� �
þ 1� cos θ � log sin

θ
2

� �
þ sin2

θ
2

� �� �� �
(3:139)

F θð Þ ¼ 1

sin θ=2ð Þ þ 1� 6 sin
θ
2

� �
� 5 cos θ

� 3 cos θ � log sin
θ
2

� �
þ sin2

θ
2

� �� �
(3:140)

The function F(θ) is plotted in Fig. 3.8. It has a singularity at θ = 0, which must
be excluded from the computation. F(θ) decreases rapidly with increasing angle
θ for θ < 30° but still has an appreciable value at large angles, which means that
distant gravity measurements can have an influence on the calculated geoid
height.

θ /2 R

r  = R
u /2

u /2

θ

P

G

O

Fig. 3.7. Geometry for calculation of the geoid height at a point P from gravity
measurements. G is a point on the surface of the Earth at which gravity was
measured.
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Fig. 3.8. Variation with angular distance θ of the function F(θ) in Stokes’ formula
for the height of the geoid.
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4

The tides

The gravitational attractions of the Moon and Sun deform the Earth, giving rise
to the periodic fluctuations of the oceanic surface known as the marine tides.
The same forces also give rise to bodily tides in the solid Earth. The Moon’s
mass is much smaller than that of the Sun, but the lunar tidal effect is greater
than the Sun’s, because the Moon is much closer to the Earth. We first analyze
the lunar tides, then take account of the solar tidal effects.

4.1 Origin of the lunar tide-raising forces

The lunar tidal forces arise from two sources: the gravitational attraction of the
Moon on the Earth, and the joint rotation of the Earth and Moon about their
common center of mass, which is called the barycenter. The barycenter moves
around the Sun along Earth’s orbit.

To find the location of the barycenter of the Earth–Moon system, let the
distance between Earth andMoon be rL, the mass of the Earth E, and the mass of
the Moon M. If the barycenter B is at distance d from the center of the Earth,
then, taking moments about B,

Ed ¼ M rL � dð Þ (4:1)

and hence

d ¼ M

EþM
rL (4:2)

The mass-ratio of Moon and Earth M/E is equal to 0.0123, and the distance
between Earth and Moon is 384,400 km, so the distance d is 4,670 km; i.e., the
barycenter lies within the Earth. The center of the Earth moves around this point
with the same rotational angular velocity ωL as does the Moon (Fig. 4.1), and
describes a circle with radius d.
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Let the Earth–Moon barycenter be at B and the center of the Earth at O; let the
Earth’s radius be R, the Moon’s mass beM, and the distance between the centers
of Earth and Moon be rL, as in Fig. 4.1. At the center of the Earth, the gravita-
tional acceleration aO towards the Moon exactly balances the centrifugal
acceleration ac =ωL

2d of the Earth’s motion around the circle with radius d, thus

GM

r2L
¼ ω2

Ld (4:3)

The point F on the far side of the Earth is at distance rL + R from the Moon
and R + d from the barycenter. The gravitational acceleration at F towards the
Moon is balanced by the centrifugal acceleration away from the Moon, and the
net acceleration at F towards the Moon is

aF ¼ GM

rL þ Rð Þ2 � ω2
L Rþ dð Þ (4:4)

Applying the binomial expansion up to fourth order gives

aF ¼ GM

r2L
� 2

GMR

r3L
þ 3

GMR2

r4L

� �
� ω2

Ld� ω2
LR (4:5)

The term ωL
2d is again the centrifugal acceleration of a rotation about a circle

with radius d, and is directed away from the Moon. The centrifugal acceleration
ωL

2R is also directed away from the Moon. It corresponds to motion of the point
F about a circle with radius R. This rotation displaces F to F′ in Fig. 4.1 and is a
component of the Earth’s rotation about its own axis. It does not contribute to
the lunar tidal acceleration. Omitting this term and using the result of (4.3), we
have for the tide-raising acceleration at F

d
M

r L

B NF

ω L

R
O

E

F

Ω

ω L
ω L

Fig. 4.1. Geometry of Earth and Moon in the plane of the Moon’s orbit. The
barycenter of the rotation is at B; ωL is the rotation rate of the Moon about its axis
and about the Earth; Ω is the Earth’s own rotation rate, assumed normal to the
Moon’s orbit.
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aF ¼ � 2
GMR

r3L
� 3

GMR2

r4L

� �
(4:6)

The negative sign indicates that the net acceleration at F is away from theMoon.
This causes a tide on the far side of the Earth from the Moon.
Similar arguments can be applied to the accelerations at N on the near side of the

Earth, which is at distance rL – R from the Moon and R – d from the barycenter.
The centrifugal acceleration of the common rotation augments the gravitational
acceleration of the Moon, and the net acceleration aN towards the Moon is

aN ¼ GM

rL � Rð Þ2 þ ω2
L R� dð Þ (4:7)

The binomial expansion leads to the following equation for the acceleration at N
towards the Moon:

aN ¼ GM

r2L
þ 2

GMR

r3L
þ 3

GMR2

r4L

� �
� ω2

Ldþ ω2
LR (4:8)

As before, the bracketed term is the lunar gravitational attraction and the
centrifugal acceleration ωL

2d is away from the barycenter. The centrifugal
acceleration ωL

2R is now directed towards the Moon, as expected for a rotation
about the Earth’s axis. The tide-raising acceleration at N is

aN ¼ 2
GMR

r3L
þ 3

GMR2

r4L

� �
(4:9)

This acceleration acts towards the Moon and is responsible for the tide on the
near side of the Earth.
The balance of the tidal forces is summarized in Fig. 4.2. The centrifugal

acceleration ωL
2d away from the Moon is present at all points of the Earth.

F

ac aO

Earth

MoonaNaFac ac

O N

Fig. 4.2. Accelerations responsible for the lunar tides on the Earth: aF, aO, and aN
are the gravitational accelerations of theMoon at the furthest point (F), center of the
Earth (O), and nearest point (N) to the Moon; ac is the constant acceleration due to
the Earth’s rotation about the barycenter, excluding the component of this rotation
about Earth’s own axis.
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It arises from the rigid-body rotation of the Earth about the barycenter (see
Lowrie (2007) for a graphical explanation).
Comparison of (4.6) and (4.9) shows that the tidal accelerations at F and N are

unequal. As a result, the lunar tide on the near side of the Earth is higher than
that on the far side. A more detailed analysis of the tidal components and the
direction of the tide-raising forces on the Earth is obtained by examining the
tidal potential.

4.2 Tidal potential of the Moon

The calculation of the potential of the Moon’s gravitational attraction at a point
in the Earth (Fig. 4.3) is similar to the development of MacCullagh’s formula.
Spherical polar coordinates are centered at the center of the Earth. The lunar
potential is calculated for a point P in the Earth at distance r from Earth’s center.
The radius to P makes an angle ψ with the direction to the Moon, and the
geometry has rotational symmetry about this axis. The lunar potential W at P is
inversely proportional to the distance u of P from the center of the Moon. The
reciprocal-distance formula introduces the Legendre polynomials to describe
the potential:

W ¼ �G
M

u
¼ �G

M

rL
1þ

X1
n¼1

r

rL

� �n

PnðcosψÞ
 !

(4:10)

Upon expanding the first few terms in the summation we get

W ¼ �G
M

rL
� G

Mr cosψ

r2L
� G

Mr2P2ðcosψÞ
r3L

� G
Mr3P3ðcosψÞ

r4L
� � � �

(4:11)

r u

P

ψ M

E

rLxO Q

Fig. 4.3. Calculation of the lunar potential for a point P in the Earth at distance r
from Earth’s center and distance u from the Moon.
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This equation is equivalent to a sum of individual potential terms, the first few of
which give

W ¼ W0 þW1 þW2 þW3 þ � � � (4:12)

4.2.1 Significance of individual terms in the lunar potential

Potential W0

W0 ¼ �G
M

rL
(4:13)

This first term in the sum is a constant, so its gradient is zero:

a0 ¼ �rW0 ¼ 0 (4:14)

This potential does not play a role in the tidal deformation of the Earth.

Potential W1

W1 ¼ �G
M r cosψð Þ

r2L
¼ �G

M

r2L
x (4:15)

Here we have defined OQ in Fig. 4.3 as x = r cosψ. The x-axis is along the
direction to the Moon. The gradient of the potential W1 gives

a1 ¼ �rW1 ¼ � ∂W1

∂x
¼ GM

r2L
; 0; 0

� �
(4:16)

This acceleration acts in the direction of positive x, i.e., towards the Moon. It is
independent of the position coordinates (r, ψ) and is therefore constant through-
out the body of the Earth. It does not contribute to the tide-raising forces but
balances the centrifugal acceleration of the Earth–Moon rotation about their
common barycenter. An equal and opposite acceleration acts on the Moon and
holds it in orbit around the Earth.

Potential W2

W2 ¼ �G
Mr2P2ðcosψÞ

r3L
(4:17)

This is the potential of the main tidal deformation. It is much larger than all
following terms and is regarded as the tidal potential, except in detailed
analyses. It is proportional to the second-order Legendre polynomial
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P2(cosψ) and so has rotational symmetry about the Earth–Moon axis and gives
equal tides on opposite sides of the Earth (Fig. 4.4(a)). For use in later dis-
cussions, let

A ¼ �G
M

r3L
(4:18)

This enables us to write the tidal potential in the more compact form

W2 ¼ Ar2P2ðcosψÞ ¼ Ar2P2 (4:19)

Potential W3

W3 ¼ �G
Mr3P3ðcosψÞ

r4L
(4:20)

This potential describes a deformation with the symmetry of the third-order
Legendre polynomial P3(cosψ). It is symmetric about the Earth–Moon axis but
results in a tidal elevation on Earth’s near side and a tidal depression on Earth’s
far side (Fig. 4.4(b)). Together with W2 it describes the unequal diurnal tides
explained in Section 4.1 (Fig. 4.4(c)). W3 is the second-largest term in the tidal
deformation, but is much smaller thanW2, as can be shown by forming the ratio
of the two potentials:

W2

W3
¼ r2P2ðcosψÞ

r3L

r4L
r3P3ðcosψÞ ¼

�
rL

r

�
P2

P3

� �
� 80 (4:21)

This and higher-order terms in the tidal potential are usually disregarded except
in detailed evaluation of the tidal heights.

(c)

P2 + P3

(a)

P2

(b)

P3

Fig. 4.4. Components of the lunar potential (not to scale): (a) main symmetric
deformation proportional to a second-order Legendre polynomial; (b) next-largest
component of deformation, proportional to a third-order Legendre polynomial; and
(c) superposition of these components that gives rise to the diurnal tidal inequality.
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4.2.2 The lunar tide-raising acceleration

The tide-raising acceleration is equal to the gradient of the tidal potential, for
which we will use the dominant potentialW2. Using polar coordinates (r, ψ) the
acceleration has a radial component ar given by

ar ¼ � ∂W2

∂r
¼ G

M

r3L
rð3 cos2ψ � 1Þ

¼ G
Mr

2r3L
� ð1þ 3 cos 2ψÞð Þ (4:22)

The transverse component aψ is

aψ ¼ � 1

r

∂W2

∂ψ
¼ G

M

r3L
r
∂
∂ψ

1

2
ð3 cos2ψ � 1Þ

¼ �G
Mr

2r3L
� 3 sin 2ψð Þ (4:23)

These accelerations cause tidal displacements that are vertical (i.e., radial) on the
Earth–Moon axis at ψ = 0 and ψ = π, as well as at an angular distance ψ = ±π/2
from the axis. At intermediate locations the tide-raising forces have a horizontal
as well as a radial component (Fig. 4.5).

4.2.3 The solar tide-raising acceleration

The tide-raising acceleration of the Sun can be described in a similar way to that
of the Moon. The dependence of the lunar tidal amplitude on the Moon’s mass

to the 
Moon

ψ
0

+π/2

−π/2

±π

Fig. 4.5. Direction of the lunar tidal-raising force as a function of angular distance
ψ from the Earth–Moon axis.
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and distance from the Earth is contained in the factor A defined in (4.18), which
we will call AL for this comparison. The tidal effect of the Sun depends on a
similar factor AS, in which the mass S of the Sun replaces the lunar massM, and
the Earth–Sun separation rS replaces the Earth–Moon separation rL. At any
given point (r, ψ) on the Earth the ratio AL/AS expresses the relative effects of the
lunar and solar tide-raising accelerations:

aL
aS

¼ AL

AS
¼ �GM=r3L

�GS=r3S
¼ M

S

rS
rL

� �3

¼ 2:2 (4:24)

The masses of Sun and Moon, and their distances from the Earth are listed in
Table 4.1. The ratio of the Sun’s mass to the Moon’s mass (S/M) is about
27,000,000. The ratio of the Sun’s distance to the Moon’s distance (rS/rL) is
389. However, in comparing the lunar and solar tidal effects the distance-ratio is
cubed, which attenuates the tidal effect of the Sun more than it does that of the
Moon. Consequently, the Sun is responsible for only about one third of the
observed tide, with two thirds being caused by the Moon.

Table 4.1. Rotational and orbital parameters of the Earth and Moon (sources:
Groten, 2004; McCarthy and Petit, 2004).

Parameter Symbol Units Value

Mass of Sun S 1030 kg 1.988 92
Heliocentric gravitational constant GS 1014 m3 s–2 3.986 004 418
Mass of Earth E 1024 kg 5.973 7
Geocentric gravitational constant GE 1020 m3 s–2 1.327 124 4
Solar mass ratio, S/E µS 105 3.329 46
Mass of Moon M 1022 kg 7.347 7
Selenocentric gravitational constant GM 1012 m3 s–2 4.902 799
Lunar mass ratio, M/E µL 0.012 300 034
Mean geocentric radius of the

Moon’s orbit
rL 108 m 3.844

Mean heliocentric radius of Earth’s
orbit

rS 1011 m 1.495 874 4

Present rotation rate of the Earth Ω0 10–5 rad s–1 7.292 1
Moment of inertia of Earth about its

rotation axis
C 1037 kg m2 8.019

Angular momentum of Earth–Moon
system

h 1034 kg m2 s–1 3.435

Earth’s mean radius R 106 m 6.371 000 4
Moon’s mean radius RL 106m 1.738
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The lunar and solar tidal accelerations depend on the relative phases of the
Sun and Moon. When they are aligned, on the same side of the Earth (known as
conjunction) or on opposite sides (opposition), their tidal accelerations reinforce
each other and give rise to extra-high spring tides. When the directions to Sun
and Moon are perpendicular, the tidal accelerations are in quadrature and tend
to cancel each other out partially, causing extra-low neap tides.

4.3 Love’s numbers and the tidal deformation

When we think of the tides, we usually mean the observed semidiurnal rise and
fall of the ocean surface. The marine tide is an elastic response of the Earth as a
whole to the lunar deforming potential. However, the tide is measured with
respect to the solid Earth, which is also deformed by the lunar gravitation. The
observed tide is the difference. The marine and bodily tides are characterized by
global elastic constants called Love’s numbers.

4.3.1 Tidal height

Let the elevation of the equipotential surface due toW2 at any particular point be
H0. The uplift takes place against the acceleration of gravity, so the work done
(gH0) is equal to the change in potential. The height of the elevation is given by

H0 ¼ W2

g
(4:25)

Tidal deformations are the elastic response of the Earth to the lunar deforming
forces. The redistribution of mass gives rise to an additional potential, which
must be taken into account in analyzing the tidal potential. In 1911, A. E. H.
Love, an English mathematician, reasoned that the extra potential U2 of the
deformation should be proportional to the deforming potential W2, i.e.,

U2 ¼ kW2 (4:26)

The proportionality constant k is a global value for the elastic response of
the Earth as a whole. The added potential enhances the total tidal potential to
(1 + k)W2 and increases the vertical tidal displacement to H1 (Fig. 4.6):

H1 ¼ W2 þU2

g
¼ 1þ kð ÞW2

g
(4:27)

The solid body of the Earth is involved in the tidal response. The potential of
the solid surface displacement is also proportional to the perturbing potential
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W2, with proportionality constant h, so the height H2 of the bodily tide can be
expressed as

H2 ¼ h
W2

g
(4:28)

On combining the results, the height H of the equilibrium tide is seen with
reference to Fig. 4.6 to be

H ¼ H1 �H2 ¼ 1þ k� hð ÞW2

g
¼ αH0 (4:29)

where

α ¼ 1þ k� h (4:30)

Here α is the ratio of the observed vertical tidal height to the theoretical height
on a rigid Earth (k = h = 0). Empirical values can be obtained from direct
measurements of tidal height. However, restrictive conditions for direct tidal
observations must be observed. The body of water must be small enough that it
has a short reaction time to the perturbing potential and there is no phase lag.
The shape and bathymetry of the body of water must not amplify the tidal
effects. For these reasons enclosed bodies of water with natural periods less than
a day have been favored in direct measurements. These give a value α ≈ 0.7.

4.3.2 Tidal gravity anomaly

The lunar tidal attraction affects measurements of gravity made on Earth,
necessitating a tidal correction. The tidal gravity anomaly derives from three
potentials that affect a gravimeter set up on the Earth’s surface: (1) the geo-
potential, (2) the lunar tidal potential, and (3) the potential of the tidal

H
H0

U(R + H0)

U(R)

H1

H20

W2

(1 +k )W2

Fig. 4.6. Factors involved in computation of the height of the equilibrium tide on
an elastic Earth. W2 is the lunar tidal potential and k is Love’s first number.
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deformation. For the first of these it is adequate to substitute the Earth’s gravita-
tional potential, while the second potential is the lunar deforming potential W2.
As explained in the previous section, the lunar tide corresponds to a mass
redistribution within the Earth, which has a potential kW2. We need to determine
the potential of this deformation outside the Earth on the measurement surface.
Equation (4.19) shows that the deformation potential kW2 is equal to

kAr2P2(cosψ). This is a solution of Laplace’s equation for a space in which r
can be zero, i.e., inside the Earth. We seek a solution that is valid outside the
Earth. In general, a potential Φ satisfying Laplace’s equation may be written

Φ ¼ Ar2 þ B

r3

� �
P2ðcosψÞ (4:31)

We separate this potential Φ into two potentials for different realms:

Φi ¼ Ar2P2ðcosψÞ; r5R

Φe ¼ B

r3
P2ðcosψÞ; r � R

(4:32)

The first part, Φi, is valid inside the Earth, where r can be zero; the second part,
Φe, is valid outside the Earth, where r can be infinite. The two solutions vary
differently with radial distance. At the same azimuth ψ from the symmetry axis
they are in the ratio

Φe

Φi
¼ B=r3

Ar2
¼ B

A

� �
1

r5
(4:33)

The potential must be continuous at the Earth’s surface, i.e.,Φe =Φi where r = R,
thus

B

A
¼ R5 (4:34)

and

Φe ¼ R

r

� �5
Φi (4:35)

By applying this result to the lunar tidal deformation, we find that its potential
inside the Earth is kW2, so its potential outside the Earth is kW2(R/r)

5. Thus the
potential UT of the tidal gravity anomaly, as measured outside the Earth, is

UT ¼ �G
E

r
þW2 þ kW2

R

r

� �5
(4:36)
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The first term represents the gravity potential of the undeformed Earth, the
second term that of the Moon. The third term is the gravity potential associated
with the tidal deformation. The acceleration due to gravity is the radial gradient
due to UT:

gðrÞ ¼ � ∂UT

∂r
¼ �G

E

r2
� ∂

∂r
W2 � k

∂
∂r

W2
R

r

� �5
(4:37)

Each termmust be evaluated at the surface of the solid Earth. The tidal displacement
of the solid surface (4.28) raises this to the position

r ¼ RþH2 ¼ R 1þ h
H0

R

� �
(4:38)

The tidal elevationH0 is very small compared with the Earth’s radius, so we can
make use of the binomial expansion to first order, by writing

1þ h
H0

R

� �n

� 1þ nh
H0

R
(4:39)

On differentiating the first term in (4.36) and using this simplification, we get

�G
E

r2

����
r¼R 1þhH0=Rð Þ

¼ �G
E

R2
1þ h

H0

R

� ��2

� gðRÞ 1� 2h
H0

R

� �
(4:40)

Differentiating the second term and neglecting terms of order (H0/R)
2 and

higher gives

� ∂
∂r

W2 ¼ � ∂
∂r

Ar2P2ðcosψÞ ¼ �2
W2

r

����
r¼R 1þhH0=Rð Þ

¼ �2g
H0

R
1� h

H0

R

� �

� �2gðRÞH0

R
(4:41)

By applying the same rules to expand the third term in (4.37) we obtain

�k
∂
∂r

W2
R

r

� �5

¼ �kAP2ðcosψÞ ∂
∂r

R5

r3

¼ 3kAP2ðcosψÞR
5

r4
(4:42)
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3kAP2ðcosψÞR
5

r4

����
r¼R 1þhH0=Rð Þ

¼ 3kAP2ðcosψÞR
5

R4
1� 4h

H0

R

� �

� 3k
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1� 4h

H0

R

� �
(4:43)

�k
∂
∂r

W2
R

r

� �5
� 3kgðRÞH0

R
(4:44)

On combining the results of (4.40), (4.41), and (4.44) we have

gðrÞ ¼ gðRÞ 1� 2h
H0

R

� �
� 2gðRÞH0

R
þ 3kgðRÞH0

R
(4:45)

gðrÞ ¼ gðRÞ 1� 2
H0

R
� 2h

H0

R
þ 3k

H0

R

� �
(4:46)

The difference between g(r) and g(R) is the gravity anomaly Δg caused by the
lunar tide on the deformed Earth:

Dg ¼ gðrÞ � gðRÞ ¼ �2gðRÞH0

R
1þ h� 3

2
k

� �
(4:47)

If the Earth were rigid (k = h = 0) and unable to deform in response to the lunar
tidal forces, there would still be a tidal gravity anomaly, corresponding to the
gravitational attraction of the Moon

Dg0 ¼ �2gðRÞH0

R
(4:48)

Thus,

Dg ¼ Dg0 1þ h� 3

2
k

� �
¼ βΔg0 (4:49)

where

β ¼ 1þ h� 3

2
k (4:50)

is the ratio of the observed tidal gravity anomaly on the deformed Earth to the
theoretical value for a rigid Earth. Direct measurements give β ≈ 1.15.
The simultaneous solution of (4.30) and (4.50) using the measured values for

α and β yields values k ≈ 0.3 and h ≈ 0.6 for the Love numbers.
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4.3.3 Tidal deflection of the vertical

The horizontal component of the tide-raising acceleration (Fig. 4.5) produces a
horizontal tidal displacement. As before, the tidal potential W2 is enhanced by
the tidal bulge to (1 + k)W2. In 1912 T. Shida introduced the number l to account
for the potential of the horizontal tide, which, analogously to Love’s number h,
is proportional to the deforming potential W2. The complete potential of the
horizontal tide is then

Wh ¼ 1þ k� lð ÞW2 (4:51)

The effect of the horizontal tide is to deflect the vertical direction. The
deforming tidal potential W2 produces horizontal components of gravity gψ
and g� in the directions of increasing polar angle ψ and longitude �, respec-
tively. At the Earth’s surface r = R these are given by

gψ ¼ � 1

R

∂Wh

∂ψ

g� ¼ � 1

R sinψ
∂Wh

∂�

(4:52)

The vertical direction is deflected by amounts φψ and φ� corresponding to the
angles formed between the horizontal components of gravity and the radial
component:

φψ � tan φψ ¼ gψ

g

φ� � tan φ� ¼ g�
g

(4:53)

The deflections of the vertical of tidal origin are obtained by combining (4.51),
(4.52), and (4.53):

φψ ¼ � 1þ k� lð Þ 1

gR

∂W2

∂ψ

φ� ¼ � 1þ k� lð Þ 1

gR sinψ
∂W2

∂�

(4:54)

On a rigid Earth k = l = 0 and the deflections of the vertical are

ðφψÞ0 ¼ � 1

gR

∂W2

∂ψ

ðφ�Þ0 ¼ � 1

gR sinψ
∂W2

∂�

(4:55)
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The quantity

χ ¼ 1þ k� l (4:56)

represents the ratio of the observed deflection of the vertical caused by the lunar
tide on an elastic Earth to the theoretical deflection for a rigid Earth. Analysis of
the tidal deflection of the vertical shows that Shida’s number is a very small
quantity (l ≈ 0.08).

4.3.4 Satellite-derived values for k, h, and l

Satellite observations have replaced direct measurement as a means of deter-
mining the Love and Shida numbers. The tidal deformations of the geopotential
cause slight perturbations of satellite orbits. The observed satellite orbits are
compared with what would be expected for a model Earth. The models have to
incorporate some assumptions, namely that the Earth is spherical, non-rotating,
elastic, and isotropic. The elastic constants then vary only with depth, and may
be interpreted from observations of seismic travel times. The most widely used
is the Preliminary Reference Earth Model (PREM) (Dziewonski and Anderson,
1981). The satellite-derived values of Love’s number and Shida’s number for
the ellipsoidal tidal deformation are k = 0.2980, h = 0.6032, and l = 0.0839.

4.4 Tidal friction and deceleration of terrestrial
and lunar rotations

The tidal bulge of the Earth is, to a first approximation, a prolate ellipsoid with
symmetry axis aligned with the Earth–Moon axis. This configuration would
give high tides at positions directly under the Moon and on the opposite side of
the Earth. However, for several reasons the reaction of the Earth to the tidal
forces is delayed. This is partly because the response of the solid Earth to forces
on the timescale of the tides is not perfectly elastic. Also, the redistribution of
water in the oceans is hindered by its viscosity, as well as by the presence of
islands, bays, and uneven bottom topography. These interactions act as a fric-
tional resistance that delays the tidal deformation. During the delay time the
Earth’s own rotation carries the tidal bulge forward. By the time the bulge has
reached its peak height the axis of the tidal bulge has advanced about 2.9° past
the Earth–Moon axis (Fig. 4.7).
Suppose the excess mass in the tidal bulge at Q to be concentrated at a point.

The gravitational attraction of the Moon exerts a force F2 on this part of the
bulge. Similarly, a force F1 acts on the part of the bulge at P. Because Q is closer
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to the Moon than P, the force F2 is stronger than F1; also, the acute angle at Q is
larger than the acute angle at P, so the component of F2 normal to the axis of the
tidal bulge is larger than that of F1. The forces cause a torque on the spinning
Earth opposite to its direction of rotation. The frictional torque slows the Earth’s
rotation, causing the length of the day to increase by about 2.4 seconds per
century. To maintain constant angular momentum of the closed Earth–Moon
system, the rates of rotation of the Moon about its axis and about the Earth also
decrease, and the Earth–Moon separation increases. The Moon’s rotation rate
about its axis has decreased to the extent that it is now synchronous with its
rotation rate about the Earth. As a result an observer on Earth always seems to
see the same face of the Moon.
In fact, the maximum amount of the Moon’s surface visible at any time from

the Earth is about 40%, because the curvature of the Moon’s surface means that
the periphery of the lunar globe is not visible from Earth. However, the Moon’s
orbit is slightly elliptical, its axis is slightly tilted to the pole to its orbit around
the Earth, and due to Earth’s rotation an observer views the Moon from slightly
different angles at different times of day. These effects cause irregularities in the
Moon’s motion as viewed from Earth – called librations – that over time enable
us to see 59% of the Moon’s surface.

4.4.1 Angular momentum of the Earth–Moon system

The dimensions and rates of rotation of the Earth and the Moon, their separa-
tion, and the location of their barycenter are shown schematically in Fig. 4.1, as
viewed from above the orbital plane of theMoon; the values of these parameters
are given in Table 4.1. The focus of the orbit is at the barycenter, which is at a
distance d from the mid-point of the Earth and at rL – d from the mid-point of the
Moon. Let the moment of inertia of the Earth about its rotation axis beC and that
of the Moon about its axis be CL. The rotation axes are assumed to be
perpendicular to the orbital plane.

F22.9

F1

E

M

ω L

ω L

P

QΩ

Fig. 4.7. Relationship of the torque that decelerates the Earth’s rotation to the delay
of the lunar tidal bulge due to inelastic and frictional effects.
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The angular momentum of the system consists of contributions from (1) the
Earth about its rotation axis, CΩ; (2) the Moon about its rotation axis, CLωL;
(3) the Earth about the barycenter, Ed2ωL; and (4) the Moon about the bary-
center, M(rL – d)2ωL. The sum of these terms is

h ¼ CΩþ CLωL þ Ed 2ωL þM rL � dð Þ2ωL (4:57)

It was shown in Section 3.3.2 that the moment of inertia of a sphere is propor-
tional to its mass times the square of its radius. The proportionality constants for
most Earth-like planets are around 0.3, so the ratio of the angular momenta of
the Earth and Moon can be estimated:

CLωL

CΩ
� M

E

RL

R

� �2 ωL

Ω
� 1

81
� 1
13

� 1
27

� 3:3� 10�5 (4:58)

In this comparison the lunar mass ratio is M/E = 0.0123 = 1/81, the equatorial
radius of the Moon is RL ≈ 1,738 km, that of the Earth is R = 6,378 km, and the
lunar sidereal rotation rate is 27.3 days. The very small value of the ratio shows
that the angular momentum of the Moon’s own rotation can be ignored in this
discussion.
From (4.2) the distance of the center of the Moon from the barycenter is

rL � d ¼ E

EþM
rL (4:59)

By inserting this and (4.2) into (4.57), we get the angular momentum of the
Earth–Moon system:

h ¼ CΩþ EωLr
2
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M

EþM
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þMωLr
2
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EþM
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(4:60)

h� CΩ ¼ ωLr
2
L

EM

EþM

� �
(4:61)

4.4.2 Slowing of terrestrial and lunar rotations

Equation (4.61) has implications for the rates of rotation of the Earth and Moon.
The gravitational attraction of the Earth on the Moon exactly balances the
centrifugal acceleration of the Moon’s orbital acceleration about the barycenter.
This provides the additional equation

GE

r2L
¼ ω2

L rL � dð Þ (4:62)
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and, on substituting for (rL – d) from (4.59), this becomes

GE

r2L
¼ ω2

LrL
E

EþM

� �
(4:63)

and thus

G EþMð Þ ¼ ω2
Lr

3
L (4:64)

This is, in fact, Kepler’s Third Law for the Earth–Moon system. Now we square
both sides, getting

G2 EþMð Þ2¼ ω4
Lr

6
L (4:65)

Next we form the cube of (4.61),

h� CΩð Þ3 ¼ ω3
Lr

6
L

EM

EþM

� �3
(4:66)

Comparing (4.65) and (4.66) gives

h� CΩð Þ3¼ G2 EþMð Þ2
ωL

E3M3

EþMð Þ3 (4:67)

Simplifying so that only the constant terms G, E, and M are on the right of the
equation, we have

ωL h� CΩð Þ3¼ G2E3M3

EþM
(4:68)

The lunar tidal friction acts as a brake on the Earth’s rotation, slowing it down
and increasing the length of the day by about 2.4 ms per century. The total
angular momentum of the system, h, is constant, as is the right-hand side of the
equation. Thus, ifΩ on the left-hand side of the equation is decreasing, the lunar
rotation ωL must also be decreasing. At the same time, in order to maintain
(4.64), the distance between the Earth and Moon, rL, must be increasing. At
present the increase amounts to about 3.7 cm per year.

4.4.3 Development of the Earth–Moon separation

The tidal friction exerted by the Earth on the Moon has slowed the Moon’s
rotation until it is now synchronous with its orbital rotation around the Earth.
Eventually the lunar tidal friction will slow the Earth’s rotation so that it is also
synchronous with theMoon’s rotation. At that stage a terrestrial day, a lunar day,
and the month will all have the same length. Meanwhile the Moon will continue
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to move further from the Earth. How far will the Moon be from the Earth when
the rotations are synchronous?We can answer this question by settingωL =Ω in
(4.68). For convenience we also normalize the rotation in terms of Ω0, the
present rate of rotation of the Earth:

Ω
Ω0

h

CΩ0
� Ω
Ω0

� �3
¼ G2E3M3

C3Ω4
0 EþMð Þ (4:69)

Let the normalized rotation rate be n = Ω/Ω0 and the normalized angular
momentum be a = h/(CΩ0), and let the expression on the right-hand side of the
equation be b. Both a and b are constants, so we have to solve an equation with
the form

n a� nð Þ3¼ b (4:70)

This fourth-order equation in n has four roots, of which two are imaginary
and of no interest, and two are real. The real roots, obtained numerically or
graphically as in Box 4.1, are n = 0.213 and n = 4.92. The first solution

Box 4.1. Synchronous rotation of Earth and Moon

Equation (4.67) for the synchronous rotation of the Earth about its axis, the
Moon about the Earth, and the Moon about its own axis can be written as

n a� nð Þ3¼ b (1)

in which the normalized rotation rate is n = Ω/Ω0, and the constants a and b
are

a ¼ h

CΩ0
(2)

b ¼ G2E3M3

C3Ω4
0 EþMð Þ (3)

The numerical values of a and b are found by inserting the currently
accepted values of the relevant parameters (Table 4.1) into the defining
equation. This yields a = 5.8742 and b = 4.272. The equation becomes

n 5:8742� nð Þ3¼ 4:272 (4)
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corresponds to a rotation period of 47 days and an Earth–Moon separation of 87
times Earth’s radius (rL = 87R). The present distance between the centers of the
Earth and Moon is 60 times Earth’s radius, so this solution gives the conditions
for a future synchroneity of the rotations. The second root gives a rotation
period of 4.9 hr and a lunar distance of 2.3 times Earth’s radius (rL = 2.3R),
corresponding to an earlier time in the Moon’s history. However, this solution is
unrealistic because it places the Moon within the Roche limit of the Earth, at
which position the Earth’s gravity would tear the Moon apart.

The real roots of this fourth-order equation can be found by evaluating
numerically the functions

F1 nð Þ ¼ 5:8742� nð Þ3 (5)

F2 nð Þ ¼ 4:272

n
(6)

and finding the values of n that give F1(n) = F2(n). Alternatively, the
functions can be plotted as in Fig. B4.1 and the points of intersection of the
curves determined.

The equation has only two real roots, which are n = 0.0213 and n = 4.92.
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Fig. B4.1. Graphical solution for Ω, the synchronous rotation rate of the Earth
and Moon; Ω0 is the present rotation rate of the Earth.
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5

Earth’s rotation

The Earth is not rigid and its rotation causes it to deform, flattening at the poles
and bulging at the equator. The gravitational attractions of Sun and Moon on the
equatorial bulge result in torques on the Earth, which cause additional motions of
the rotation axis, known as precession and nutation. These motions occur relative
to a coordinate system fixed in space, for example in the solar system. The
rotation axis is inclined to the pole to the ecliptic plane at a mean angle of
23.425°; this angle is the obliquity of the axis. Precession is a very slow motion
of the tilted rotation axis around the pole to the ecliptic, with a period of 25,720 yr.
The nutation is superposed on this motion and consists of slight fluctuations in the
rate of precession as well as in the obliquity.
The other planets also affect the Earth’s rotation, causing small but significant

cyclical changes on a very long timescale. These are observable directly by
precise measurement of the position of the rotation axis using very-long-
baseline interferometry (VLBI). The fluctuations influence the intensity of
solar radiation incident on the Earth and produce cyclical climatic effects that
are evident in sedimentary processes, where they are known as the
Milankovitch (or Milanković) cycles. They correspond to retrograde precession
of the rotation axis (period ~ 26 kyr), changes in the angle of obliquity (period ~
41 kyr), prograde precession of Earth’s elliptical orbit (period ~ 100 kyr), and
variation of the ellipticity of the orbit (period ~ 100 kyr).
In addition to these phenomena, the Earth’s rotation is affected on a shorter

timescale by the planet’s mass distribution. When the instantaneous rotation
axis deviates from the axis of figure determined by the long-term rotation, a
cyclical motion of the rotation axis about its mean position arises. This is known
as the Chandler wobble. In contrast to the precession and nutation resulting
from external forces, the wobble results from the imbalance in mass distribution
with respect to the instantaneous rotation axis. It takes place in the Earth’s
coordinate system and is evident as small variations in latitude with a period of
435 days.
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5.1 Motion in a rotating coordinate system

The displacement of a body on the rotating Earth may be considered to have two
parts. The first is a simple displacement relative to coordinate axes defined for
the Earth. The second arises from the rotation of the Earth relative to a fixed set
of axes; these might be defined, for example, relative to the solar system.

5.1.1 Velocity

Consider an orthogonal spherical coordinate system with unit vectors (er, eθ, e�).
Let r be a displacement vector that makes an angle θ with the axis of rotation
(Fig. 5.1(a)). If the Earth rotates about this axis with angular velocityω relative to
fixed axes, then, in an infinitesimal time Δt, the vector r rotates through an angle
Δ�. This produces a rotational displacement Δr1 = (r sin θ Δ�) e� (Fig. 5.1(b)).
If, in the same time, r undergoes a local incremental change δr, the total displace-
ment relative to the fixed coordinate system is

Δr ¼ δrþ Δr1 ¼ δrþ r sin θ � Δ�ð Þe� (5:1)

Dividing throughout by the time increment Δt gives the relationship between a
velocity relative to the fixed axes and the velocity in the rotating system:

Δr
Δt

¼ δr
Δt

þ r sin θ � Δ�
Δt

� �
e� (5:2)

dr

dt
¼ lim

Δt!0

Δr

Δt

� �
¼ ∂r

∂t
þ r sin θ � ωð Þe� (5:3)

The last term in (5.3) is equal to (ω × r), thus
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Fig. 5.1. Rotation of a displacement vector r inclined at angle θ to the rotation axis.
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dr

dt
¼ ∂r

∂t
þ w � rð Þ (5:4)

Thus, we have

vf ¼ vþ w � rð Þ (5:5)

where vf is the velocity relative to the fixed axes, v is the velocity in the rotating
system, and (ω × r) is an additional velocity component due to the rotation of
the moving set of axes.

5.1.2 Acceleration

Equation (5.4) can be rewritten as

d

dt
r ¼ ∂

∂t
þ w�

� �
r (5:6)

The expression in parentheses may be regarded as an operator acting on the
vector r. This allows us to express the acceleration as

d 2

dt2
r ¼ d

dt

dr

dt

� �
¼ ∂

∂t
þ w�

� �
∂r
∂t

þ w � r

� �
(5:7)

Evaluating the right-hand side step-by-step gives

d 2r

dt2
¼ ∂2r

∂t2
þ ∂
∂t

w � rð Þ þ w � ∂r
∂t

� �
þ w � w � rð Þ (5:8)

If we assume that the angular velocity ω of the rotating system is constant, then

d 2r

dt2
¼ ∂2r

∂t2
þ 2 w � ∂r

∂t

� �
þ w � w � rð Þ (5:9)

On rearranging terms, we get

∂2r
∂t2

¼ d 2r

dt2
� w � w � rð Þ � 2 w � vð Þ (5:10)

or

ar ¼ af þ aR þ aC (5:11)

where ar = ∂2r/∂t2 is the acceleration experienced by a moving object in the
rotating system, and af = d2r/dt2 is the acceleration in the fixed coordinate
system. The second acceleration on the right-hand side is aR =−(ω × r × r).
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Inspection of the direction and magnitude of aR shows that it is the familiar
centrifugal acceleration. The final acceleration is

aC ¼ �2 w � vð Þ ¼ 2 v� wð Þ (5:12)

aC is called the Coriolis acceleration; it has important consequences for moving
objects in a rotating framework.

5.2 The Coriolis and Eötvös effects

Suppose that a body is moving with horizontal velocity v on the surface of the
Earth, which is rotatingwith angular velocityω about the rotation axis (Fig. 5.2(a)).
The unit vectors along orthogonal axes parallel to the north, east, and vertically
downward directions at the position of the object are (eN, eE, eD) and define a local
coordinate system. The horizontal velocity of the body has components (vN, vE, 0)
parallel to these axes. The angular velocity of rotation has a constant direction.
Transposed to the position of the moving body, it acts normal to the easterly
component and has a positive northerly component at all latitudes. However,
because eD is defined to be positive downward, the vertical component is negative
(upward) in the northern hemisphere and positive (downward) in the southern
hemisphere. Thus the components of the rotation vector in the northern hemisphere
are (ωN, 0, −ωD). The velocity and rotation vectors are

v ¼ vNeN þ vEeE (5:13)

eN

eE
v

(a) eN

eE

v = vN eN + vE eE

vE

vN

ωDvN

ωDvE
a

C
 = 2ωD( vE eN + vN eE)

(b)

eD

ω
ω

Fig. 5.2. (a) Directions of the north (eN), east (eE), and vertically downward (eD)
unit vectors of orthogonal reference axes, and the horizontal velocity v, in relation
to the rotation vector ω. (b) Vectors in the horizontal plane, showing that the
Coriolis acceleration aC acts perpendicularly to the right of the direction of
motion v in the northern hemisphere.
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w ¼ ωNeN � ωDeD (5:14)

Equation (5.12) can be evaluated by writing the vector cross product as a
determinant:

aC ¼ 2 v� wð Þ ¼ 2
eN eE eD
vN vE 0
ωN 0 �ωD

������
������ (5:15)

On evaluating the determinant, we get

aC ¼ 2 �vEωDeN þ vNωDeE � vEωNeDð Þ (5:16)

In a geographic frame, the Coriolis acceleration has a component parallel to the
vertical axis eD and a component in the horizontal plane defined by eN and eE.

5.2.1 Vertical component: the Eötvös effect

The last term in (5.16) describes the vertical component of the Coriolis
acceleration:

aEö ¼ �2vEωNeD (5:17)

The formation of a vertical acceleration through the interaction of a horizontal
east–west velocity with Earth’s rotation is known as the Eötvös effect. It
modifies the value of gravity measured from a moving platform, such as a
vehicle, ship, or aircraft. If the body has an eastward velocity component (i.e.,
vE is positive), aEö acts in the direction of –eD, i.e., upwards. Conversely, if
the velocity has a westward component, the Eötvös acceleration is downward.
Its magnitude is dependent on the velocity and on the latitude through the
value of ωN, which is maximum at the equator and zero at the poles. For
example, in a ship moving westwards at 7 knots (13 km hr−1) at latitude
30 °N, the Eötvös acceleration increases the measured gravity by about 45
mgal. This greatly exceeds the measurement sensitivity in a marine gravity
survey and necessitates a so-called Eötvös correction to gravity measurements.

5.2.2 Horizontal component: the Coriolis effect

The first two terms in (5.16) describe the horizontal component of the Coriolis
acceleration:

aH ¼ 2ωD �vEeN þ vNeEð Þ (5:18)
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Its direction is normal to the velocity of the moving body, as can be verified by
taking the scalar product of aH and v, which is zero:

aH·vð Þ ¼ 2ωD �vEeN þ vNeEð Þ · vNeN þ vEeEð Þ ¼ 0 (5:19)

The angular velocity of rotation has a constant direction. Its vertical component
ωD is negative (upward) in the northern hemisphere and positive (downward) in
the southern hemisphere. As a result, the Coriolis acceleration acts to the right of
the direction of motion in the northern hemisphere, as can be seen by inspection
of Fig. 5.2(b); it acts to the left in the southern hemisphere. The Coriolis effect
causes deflection of the motion of bodies, such as air masses, moving across the
surface of the Earth. In meteorology it gives rise to cyclonic and anticyclonic
wind systems.

5.3 Precession and forced nutation of Earth’s rotation axis

The main components of the precession and nutation result from the gravita-
tional torques of the Sun and Moon on the Earth. In addition, the Sun’s
attraction causes the Moon’s orbit to precess around the equator with a period
of 18.6 yr. This motion results in a contribution to the nutation of Earth’s
rotation axis, which will be considered later. We first evaluate the precession
and nutation caused by the solar torque, then extend the analysis to the lunar
torque.

5.3.1 Effects of the torque due to the Sun’s attraction

As the Earth moves around its orbit it experiences a variable torque due to the
gravitational attraction of the Sun (Fig. 5.3(a)). For convenience assume that the
Sun is at the center of the elliptical orbit. The tilt of the rotation axis inclines
the northern hemisphere towards the Sun at the summer solstice and away from
it at the winter solstice. Consider the Sun’s attraction at the summer solstice
(Fig. 5.3(b)). The gravitational attraction F1 on the part of the equatorial bulge
closest to the Sun is greater than the attraction F2 on the opposite side. These
forces are not collinear: the center of action of F1 is above the ecliptic, whereas
that of F2 is below the ecliptic. The resulting torqueT tries to reduce the tilt of the
rotation axis. This causes the angular momentum vector to precess (Fig. 5.4(a)).
The torque causes an incremental change in angular momentum, Δh, so that

the angular momentum vector is displaced (Fig. 5.4(b)). Successive positions of
the angular momentum vector lie on the surface of a cone whose axis is the pole
to the ecliptic. The gravitational torque acts about an axis parallel to the line of
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equinoxes, which in turn is perpendicular to the rotation axis. As the angular
momentum vector creeps over the surface of the cone, the line of equinoxes
perpendicular to it moves around the ecliptic plane. The sense of motion is
retrograde, opposite to the direction of the Earth’s rotation.
Let x-, y-, and z-axes be defined as the orthogonal reference axes of the

Earth’s figure, with the z-axis parallel to the Earth’s spin and the x–y plane
coincident with the equatorial plane (Fig. 5.5(a)). The spin vector is

s ¼ sez (5:20)

TT

T = 0
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to Sun trace of
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Fig. 5.3. (a) A torque of variable magnitude but constant direction is exerted by the
Sun on the spinning Earth as it moves around its orbit. (b) A section through the
inclined Earth in a plane normal to the ecliptic that includes the direction to the Sun,
showing how the solar torque arises from unequal gravitational attraction on the
equatorial bulge.
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Fig. 5.4. (a) Precessional motion of the rotation axis about the pole to the ecliptic,
on which nutation of the axis is superposed. (b) Incremental displacements of the
angular momentum vector define the surface of a cone whose axis is the pole to the
ecliptic. After Lowrie (2007).
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Now suppose that the reference axes are able to rotate with angular velocity ω
relative to a fixed set of coordinates, so that it has components (ωx,ωy,ωz) along
the respective reference axes of the Earth (Fig. 5.5(b)). Thus

w ¼ ωxex þ ωyey þ ωzez (5:21)

Let the principal moments of inertia of the Earth about the reference axes be
A, B, and C, respectively. The Earth’s angular momentum is

h ¼ hxex þ hyey þ hzez (5:22)

The components (hx, hy, hz) are given by

hx ¼ Aωx

hy ¼ Bωy

hz ¼ C sþ ωzð Þ
(5:23)

where hz includes both the Earth’s own spin and the z-component of the rotating
coordinate system. The angular momentum is

h ¼ Aωxex þ Bωyey þ C ωz þ sð Þez (5:24)

A torque T with components (L, M, N) along the respective reference axes
causes a change of angular momentum given by

T ¼ d

dt
h ¼ ∂

∂t
hþ w � hð Þ (5:25)
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Fig. 5.5. (a) Definition of orthogonal reference axes relative to the Earth (ex, ey, ez)
and to the ecliptic (ex0, ey0, ez0). (b) Rotations involved in the transformation of
vector components from Earth coordinates to the Sun’s coordinate system.
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The operator defined in (5.6) is used here to take into account the effect of
Earth’s rotation.
Using the determinant of components

w � h ¼
ex ey ez
ωx ωy ωz

hx hy hz

������
������ (5:26)

we obtain for the cross product

w � h ¼ ωyhz � ωzhy
� �

ex þ ωzhx � ωxhzð Þey þ ωxhy � ωyhx
� �

ez (5:27)

Each of the x-, y-, and z-components of the motion described by (5.23) may now
be analyzed in turn. For example, the x-component is

L ¼ ∂hx
∂t

þ ωyhz � ωzhy
� �

(5:28)

For succinctness we use the short form _ωx ¼ ∂ωx=∂t in the following time-
differentiations. We assume that the principal moments of inertia (A, B, C) are
constant and that the changes in angular momentum result only from changes in
angular rotation. Using the expressions in (5.23) for the components of angular
momentum (hx, hy, hz), we get

L ¼ A _ωx þ Cωy ωz þ sð Þ � Bωyωz (5:29)

The equations of motion for the y- and z-components of the torque,M andN, are
obtained in similar fashion and give the following:

M ¼ B _ωy � Cωx ωz þ sð Þ þ Aωzωx (5:30)

N ¼ C _ωz þ _sð Þ þ B� Að Þωxωy (5:31)

For the spheroidal Earth, the moments of inertia about all axes in the equatorial
plane are equal, thus A = B and (5.31) becomes

N ¼ C _ωz þ _sð Þ (5:32)

As explained above, the gravitational torque of the Sun acts parallel to the
line of equinoxes, and thus normal to the rotation axis. It has no component
along the rotation axis, i.e., N = 0. Thus,

_ωz þ _s ¼ 0 (5:33)

and

ωz þ s ¼ Ω (5:34)
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where Ω is a constant rate of rotation. The remaining equations of motion can
now be written as

L ¼ A _ωx þ CωyΩ� Aωyωz (5:35)

M ¼ A _ωy � CωxΩþ Aωzωx (5:36)

The torque components L andM result from the gravitational attraction of the
Sun on the spheroidal Earth (Fig. 5.3) and vary with the orbital position of the
Earth, which is defined relative to the fixed axes. The angular velocity compo-
nents are defined relative to Earth’s reference axes, which are free to rotate. To
solve the equations of motion it is necessary to establish a relationship between
the fixed and rotating coordinate systems. The Sun’s torque on the Earth must be
derived and its components L and M along the rotating axes resolved.

5.3.2 Comparison of vectors in the coordinate systems
of Earth and Sun

Let (ex0, ey0, ez0) be the orthogonal unit vectors of a solar coordinate system,
defined so that ez0 is the pole to the ecliptic, ex0 is parallel to the minor axis, and
ey0 is parallel to the major axis of Earth’s elliptical orbit. Let (ex, ey, ez) be
orthogonal unit vectors for the rotating Earth, such that ez is parallel to the spin
axis and ex lies along the intersection of the equatorial plane with the ecliptic,
i.e., the line of equinoxes (Fig. 5.5(a)). The angle θ between ez and ez0 is the
obliquity of the rotation axis, and the angle ψ between ex and ex0 defines the
position of the line of equinoxes in the ecliptic plane.
The transformation of vector components from the Earth’s coordinates to the

Sun’s coordinate system can be achieved with two rotations (Fig. 5.5(b)). The
first is a rotation of θ about the x-axis. This aligns the rotation axis with the pole
to the ecliptic, and brings ey into an intermediate orientation ey1 in the ecliptic.
The x-components of a vector are unchanged by this rotation. On comparing
vector components we see that

ey1 ¼ ey cos θ � ez sin θ

ez0 ¼ ey sin θ þ ez cos θ
(5:37)

A second rotation of ψ about the pole to the ecliptic aligns ex with ex0 and ey
with ey0. The ez0-components are not changed by this rotation, which gives the
equations

ex0 ¼ ex cosψ � ey1 sinψ

ey0 ¼ ex sinψ þ ey1 cosψ
(5:38)
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Substituting from (5.37) into (5.38) gives

ex0 ¼ ex cosψ � ey cos θ � ez sin θ
� �

sinψ (5:39)

ey0 ¼ ex sinψ þ ey cos θ � ez sin θ
� �

cosψ (5:40)

After arranging terms, we get a set of equations relating the unit vectors (ex0, ey0,
ez0) in the fixed coordinate system to the unit vectors (ex, ey, ez) in the rotating
coordinate system:

ex0 ¼ ex cosψ � ey cos θ sinψ þ ez sin θ sinψ

ey0 ¼ ex sinψ þ ey cos θ cosψ � ez sin θ cosψ

ez0 ¼ ey sin θ þ ez cos θ

(5:41)

5.3.3 Computation of the Sun’s torque on the Earth

The Sun’s torque can be computed from the potential energy of the Earth–Sun
pair. Let the angle between the Earth’s rotation axis and the radial direction to
the Sun at distance d be α (Fig. 5.6(a)). The gravitational potential UG of the
Earth at the Sun’s location is obtained from the MacCullagh formula
(Section 2.5),

UG ¼ �G
M

d
þ G

C� A

d 3
P2ðcos αÞ (5:42)

Multiplying by the mass S of the Sun gives the potential energy UPE of the
gravitational interaction of Sun and Earth:

UPE ¼ �G
ES

d
þ G

ðC� AÞS
d 3

P2ðcos αÞ (5:43)
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Fig. 5.6. (a) Definition of the angle α between the Earth’s rotation axis ez and the
radial direction d to the Sun. (b) Definition of the angular orbital position χ of the
Earth and the reference axes ex0 and ey0 in the ecliptic plane.
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The gravitational torque of the Sun on the Earth is obtained by differentiating
the potential energy with respect to the angle α,

T ¼ � ∂
∂α

UPE (5:44)

The first term in (5.43) does not depend on α, so

T ¼ �G
ðC� AÞS

d 3

∂
∂α

P2ðcos αÞ ¼ �G
ðC� AÞS

d 3

∂
∂α

3 cos2α� 1

2

� �
(5:45)

T ¼ 3G
ðC� AÞS

d 3
cos α sin α (5:46)

The Sun’s torque on the equatorial bulge depends on the difference between
the principal moments of inertia (C – A), which would not exist for a spherical
Earth. The torque depends on the angle α between the rotation axis ez and the
radius vector d from the Earth to the Sun, which varies as the Earth moves
around its orbit. From Fig. 5.6(a) the following relationships are obtained:

d · ezð Þ ¼ d cos α (5:47)

d� ezð Þ ¼ d sin α (5:48)

The cross product (d × ez) gives the correct sense of the torque of the Sun on the
Earth. We can now substitute for sin α and cos α in (5.46), obtaining

T ¼ 3G
C� Að ÞS

d 5
d · ezð Þ d� ezð Þ (5:49)

5.3.4 Equations of solar-induced precession and nutation

Referring to Fig. 5.6(b), the radial vector d can be written

d ¼ d cos χð Þex0 þ d sin χð Þey0 (5:50)

If the Earth orbits the Sun with constant angular velocity p, then in time t the
radius vector moves through an angle χ = pt. Therefore

d ¼ d ex0 cosð ptÞ þ ey0 sinð ptÞ
� �

(5:51)

The scalar product of d and ez is

d · ezð Þ ¼ d cosð ptÞ ex0 · ezð Þ þ d sinð ptÞ ey0 · ez
� �

(5:52)
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We now substitute the expressions for ex0 and ey0 from (5.39) and (5.40),
respectively, keeping in mind the following orthogonal relations between the
unit vectors:

ex · ezð Þ ¼ ey · ez
� � ¼ 0; ez · ezð Þ ¼ 1 (5:53)

This gives

ex0 · ezð Þ ¼ ex cosψ � ey cos θ sinψ þ ez sin θ sinψ
� �

· ez
¼ sin θ sinψ (5:54)

ey0 · ez
� � ¼ ex sinψ þ ey cos θ cosψ � ez sin θ cosψ

� �
· ez

¼ �sin θ cosψ (5:55)

Inserting (5.54) and (5.55) into (5.52) gives

d · ezð Þ ¼ d cosð ptÞsin θ sinψ � d sinð ptÞsin θ cosψ
¼ �d sin θ sin pt� ψð Þ (5:56)

In order to determine the cross product

d� ezð Þ ¼ d cosð ptÞ ex0 � ezð Þ þ d sinð ptÞ ey0 � ez
� �

(5:57)

we again make use of the orthogonality of the unit vectors:

ex � ezð Þ ¼ �ey; ey � ez
� � ¼ ex; ez � ezð Þ ¼ 0 (5:58)

By again substituting for ex0 and ey0 from (5.39) and (5.40) we get

ex0 � ezð Þ ¼ ex cosψ � ey cos θ sinψ þ ez sin θ sinψ
� �� ez

¼ ex � ezð Þcosψ � ey � ez
� �

cos θ sinψ

¼ �ey cosψ � ex cos θ sinψ (5:59)

ey0 � ez
� � ¼ ex sinψ þ ey cos θ cosψ � ez sin θ cosψ

� �� ez

¼ ex � ezð Þsinψ þ ey � ez
� �

cos θ cosψ

¼ �ey sinψ þ ex cos θ cosψ (5:60)

and, on inserting these expressions into (5.57), we have

d� ezð Þ ¼ � d cosð ptÞ ey cosψ þ ex cos θ sinψ
� �

þ d sinð ptÞ �ey sinψ þ ex cos θ cosψ
� �

(5:61)

This equation can be simplified further by making use of trigonometric
identities for the sine and cosine of the difference of two angles:
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d� ezð Þ ¼ d cos θ sinð ptÞcosψ � cosð ptÞsinψð Þex
� d cosð ptÞcosψ þ sinð ptÞsinψð Þey (5:62)

d� ezð Þ ¼ d cos θ sin pt� ψð Þex þ cos pt� ψð Þey
� �

(5:63)

By combining the results for the scalar product (5.56) and cross product (5.63)
we get the final expressions for the torque components L andM along the x- and
y-axes, respectively:

L ¼ �3G
C� Að ÞS

d 5
d 2 sin θ cos θ sin2 pt� ψð Þ

¼ �3G
C� Að ÞS
2d 3

sin θ cos θ 1� cos 2 pt� ψð Þð Þð Þ (5:64)

M ¼ 3G
C� Að ÞS

d 5
d 2 sin θ sin pt� ψð Þcos pt� ψð Þ

¼ 3G
C� Að ÞS
2d 3

sin θ sin 2 pt� ψð Þð Þ (5:65)

Upon inserting the equations for L and M into (5.35) and (5.36) we get

A _ωx þ CωyΩ� Aωyωz ¼ �3G
C� Að ÞS
2d 3

sin θ cos θ 1� cos 2 pt� ψð Þð Þð Þ
(5:66)

A _ωy � CωxΩþ Aωxωz ¼ 3G
C� Að ÞS
2d 3

sin θ sin 2 pt� ψð Þð Þ (5:67)

5.3.5 Simplification of the equations of motion

The equations describe a forced harmonic motion, with the driving force
dependent on the sine and cosine of 2(pt – ψ). It is easier to proceed with the
solution of the equations if we simplify them by comparing the magnitudes of
the terms on the left-hand side of each equation. This allows us to neglect terms
that are unimportant to first order. Let the sine and cosine functions be repre-
sented by the real and imaginary parts of a complex number (Section 1.2) with
phase equal to 2(pt – ψ); we can write it as exp[2i(pt – ψ)]. Each equation then
has the form

a _ωþ bωþ cω2 � exp 2ið pt� ψÞ½ � (5:68)

in whichω stands for either of the angular velocitiesωx andωy. The driving force
on the right-hand side of the equation is periodic with angular frequency 2p.
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The solution of the equation must also be periodic, so we may expect that

_ωxj j � 2pωx and _ωy

�� �� � 2pωy.

The rotationΩ of the Earth about its axis has period 2π/Ω = 1 day; the angular
velocity p of the Earth about the Sun has period 365 days, so Ω = 365p. The
angular velocity components of the rotating coordinate system are much smaller
than the daily rotation rate of the Earth: ωx ~ ωy≪Ω. On comparing the first
and second terms on the left of (5.67) and (5.68) we see that the first term can be
neglected because

_ωj j � 2pω � Ωω (5:69)

Similarly, the magnitude of the third term may be neglected compared with the
second term because

ωyωz

�� �� � ω2 � Ωω (5:70)

ThusCωxΩ and CωyΩ are the dominant terms on the left of the equations and
the other terms on the left may be neglected by comparison. This leads to
simpler equations of motion, such as

CωxΩ ¼ �3G
C� Að ÞS
2d3

sin θ sin 2 pt� ψð Þð Þ (5:71)

from which

ωx ¼ � 3GS

2Ωd3
C� A

C

� �
sin θ sin 2 pt� ψð Þð Þ (5:72)

Similarly,

ωy ¼ � 3GS

2Ωd3
C� A

C

� �
sin θ cos θ 1� cos 2 pt� ψð Þð Þð Þ (5:73)

The angular velocities of the rotating coordinate axes are related to the rates
of change with time of the angles θ and ψ. It is evident by reference to Fig. 5.5(b)
that

ωx ¼ ∂θ
∂t

; ωy ¼ sin θ
∂ψ
∂t

; ωz ¼ cos θ
∂ψ
∂t

(5:74)

The same parameters appear on the right of each equation of motion. We can
substitute

FS ¼ � 3GS

2Ωd3
C� A

C

� �
(5:75)
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Using these relationships, the equations of motion become

∂θ
∂t

¼ FS sin θ sin 2 pt� ψð Þð Þ (5:76)

∂ψ
∂t

¼ FS cos θ � FS cos θ cos 2 pt� ψð Þð Þ (5:77)

5.3.6 Precession and nutation induced by the Sun

The angle ψ defines the position of the line of equinoxes in the ecliptic plane.
Equation (5.77) shows that the rate of change of ψ consists of two parts. The first
term, FS cos θ, describes a motion of the x-axis – the line of equinoxes – around
the ecliptic plane, at a constant rate. The rotation axis (z-axis) moves accord-
ingly, staying orthogonal to the x-axis. The rotation axis thus moves across the
surface of a cone whose axis is the pole to the ecliptic (Fig. 5.4(a)). This motion
is the precession of the rotation axis. The mean precession rate is 50.385 arcsec
per year, corresponding to a period of 25,720 yr. The term FS is negative (5.75),
so the precession is retrograde, i.e., the motion is in the opposite sense to Earth’s
rotation. The parameters that define FS have constant values, all of which are
known except the moments of inertia, A and C. The ratio H defined by

H ¼ C� A

C
(5:78)

is the dynamic ellipticity of the Earth. It can be calculated from the observed rate
of precession and has the value 3.273 787 5 × 10−3 (1/305.457).
The term on the right of (5.76) describes a periodic fluctuation in the obliquity

θ. This “nodding”motion is called the nutation in obliquity of the rotation axis.
A similar fluctuation of the angle ψ is shown by the second term on the right of
(5.77). This fluctuation occurs in the plane of the ecliptic and is known as the
nutation in longitude. These forced nutations each have the same frequency, 2p,
corresponding to a period of half a year (183 days). They are called the semi-
annual nutations. Their amplitudes are very small and unequal, amounting to
only a few seconds of arc. Using for convenience the short form for time-
differentiations, we can write

_θ
FS sin θ

¼ sin 2 pt� ψð Þð Þ (5:79)

_ψ � FS cos θ
FS cos θ

¼ �cos 2 pt� ψð Þð Þ (5:80)
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Squaring both sides and summing gives

_ψ � FS cos θð Þ2
FS cos θð Þ2 þ

_θ
� �2

FS sin θð Þ2 ¼ 1 (5:81)

The equation of an ellipse with semi-major axes a and b is

x2

a2
þ y2

b2
¼ 1 (5:82)

On comparing (5.79) and (5.80) we see that the two forced nutations
combine to produce an elliptical motion of the rotation axis about its mean
position, superposed on the steady motion around the precession cone
(Fig. 5.4(a)).

5.3.7 Precession and nutation induced by the Moon

The Earth’s nearest neighbor, the Moon, is much smaller than the distant Sun,
but its gravitational effect also causes both precession and nutation of the
Earth’s rotation axis. The combined effects of Sun and Moon are known as
the lunisolar precession and nutation. The effects of the attraction of theMoon’s
mass M on Earth’s equatorial bulge are analyzed in the same way as the solar
torque, and we get equations that have the same form as (5.76) and (5.77). Using
subscript L to identify the lunar parameters, we get

_θL ¼ FL sin θL sin 2 pLt� ψLð Þð Þ (5:83)

_ψL ¼ FL cos θL � FL cos θL cos 2 pLt� ψLð Þð Þ (5:84)

Here the angles θL and ψL locate the rotation axis relative to the Moon’s orbit,
and pL is the angular velocity of the Moon around the Earth. This gives a
nutation component with a period of half a month. Because the Moon’s orbit is
only slightly inclined to the ecliptic, the solar and lunar effects can be added as
scalars.
The constant FL depends on the massM of the Moon and its distance dL from

the Earth:

FL ¼ � 3GM

2ΩdL3
C� A

C

� �
(5:85)

It is interesting to compare this term for the lunar effect with the corresponding
term for the Sun’s influence on the precession (using subscript S for the
respective solar parameters):
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FL

FS
¼

� 3GM

2ΩdL3
C� A

C

� �

� 3GS
2ΩdS

3

C� A

C

� � ¼ M

S

� �
dS
dL

� �3

(5:86)

The masses of the Sun and Moon and their distances from the Earth are given in
Table 4.1. Inserting the appropriate values gives

FL

FS
¼ M

S

� �
dS
dL

� �3

¼ 2:2 (5:87)

The ratio is the same as that involved in comparing the tide-raising accelerations
of the Sun and Moon (Section 4.2.3), and the explanation of the result is the
same. The mass of the Moon is much smaller than that of the Sun, but the ratio
of their influences depends on the cube of the distance ratio, so the Moon
accounts for about two thirds of the combined lunisolar precession and nutation,
and the Sun about one third.

5.3.8 Nutation due to precession of the Moon’s orbit

As a result of tidal friction the Moon’s spin rate about its own axis is the same as
its orbital angular velocity pL about the Earth. If the moment of inertia of the
Moon about its spin axis is IL, its mass M and radius RL (1,738 km), the spin
angular momentum is

hL ¼ ILpL ¼ kLMR2
LpL (5:88)

For the Moon kL is equal to 0.394. For a uniform sphere kL = 0.4. A smaller
value indicates that density increases with depth, e.g., for the Earth kE = 0.3308.
The orbital angular momentum is

hO ¼ Mr2LpL (5:89)

where rL is the radius of the Moon’s orbit (384,400 km)
On comparing the spin and orbital angular momenta, we have

hL
hO

¼ kLMR2
LpL

Mr2LpL
¼ kL

RL

rL

� �2

(5:90)

Upon inserting appropriate values, it is evident that the Moon’s spin angular
momentum is much less than its orbital angular momentum.
The Moon’s orbit and its angular momentum vector are inclined at a small

angle (5.145°) to the ecliptic plane. The Sun’s attraction results in a torque that
attempts to turn the inclined angular momentum vector normal to the ecliptic.
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Similarly to the effect of the Sun on Earth’s angular momentum (Fig. 5.4(b)), the
solar torque causes the Moon’s orbit to precess about the pole to the ecliptic. The
effective inclination of theMoon’s orbit to the Earth’s rotation axis varies between
18.28° and 28.58° (i.e., 23.43 ± 5.15°) with a period of 18.6 yr, which results in a
corresponding component in the nutation of Earth’s rotation axis. The precession
of the Moon’s orbit causes the largest part of the nutation, with amplitudes of 9.2
arcsec in obliquity and 17.3 arcsec in longitude. The semi-annual nutation has
amplitudes of only 1.3 arcsec in longitude and 0.6 arcsec in obliquity.

5.4 The free, Eulerian nutation of a rigid Earth

External forces on the spinning Earth give rise to the forced nutation and
precession of the rotation axis. These were described by allowing the reference
axes of the Earth to rotate relative to the spin axis. The long-term average
rotation of the Earth gives it a spheroidal shape about the axis of figure. If a
symmetric body spins freely about its axis of symmetry, its orientation in space
remains fixed. However, if some event displaces the spin axis from its mean
direction, the Earth’s instantaneous rotation is no longer about its axis of
symmetry. This results in a motion called the free nutation. It was predicted in
the eighteenth century by the Swiss mathematician Leonhard Euler, and is also
called Eulerian nutation. The use of the term nutation is an unfortunate mis-
nomer as the motion does not involve “nodding” of the spin axis. In Eulerian
nutation the instantaneous rotation axis moves around the surface of a cone
whose axis is the axis of symmetry.
Let the reference axes be defined relative to the figure of the Earth so that the

z-axis agrees with the axis of symmetry and the x- and y-axes lie in the equatorial
plane (Fig. 5.7). The reference axes rotate along with the Earth, so the angular

x

y

z

ωx

ωy

(λ, , ν)μ

Ω

Fig. 5.7. Angular velocity components (ωx,ωy,Ω) and direction cosines (λ, μ, ν) of
the displaced instantaneous rotation axis.
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velocity ωz about the z-axis is the same as the Earth’s spinΩ. A displacement of
the instantaneous spin vector is represented by angular velocities ωx and ωy

about the equatorial axes. The instantaneous rotation vector is then

w ¼ ωxex þ ωyey þ ωzez (5:91)

Using as before A, B, and C for the principal moments of inertia about the x-, y-,
and z-axes, respectively, the angular momentum is given by

h ¼ Aωxex þ Bωyey þ Cωzez (5:92)

In contrast to the forced motion of the rotation axis caused by solar and lunar
attraction, the motion of the rotation axis is in this case free of external torques.
Thus

T ¼ d h

dt
¼ ∂h

∂t
þ w � hð Þ ¼ 0 (5:93)

Assuming that the Earth rotates as a rigid body, the equations of motion for each
of the reference axes can be developed as in the case of forced nutation
(see Section 5.3.1):

A _ωx þ C� Bð Þωyωz ¼ 0

B _ωy þ A� Cð Þωxωz ¼ 0

C _ωz þ B� Að Þωxωy ¼ 0

(5:94)

The symmetry of the Earth’s figure implies that the equatorial moments of
inertia are equal, A = B:

A _ωx þ C� Að Þωyωz ¼ 0 (5:95)

A _ωy � C� Að Þωxωz ¼ 0 (5:96)

C _ωz ¼ 0 (5:97)

The last equation requires that the angular velocity about the z-axis is constant:

ωz ¼ Ω (5:98)

Rewriting (5.95) and (5.96) gives

_ωx þ C� A

A

� �
Ωωy ¼ 0 (5:99)

_ωy � C� A

A

� �
Ωωx ¼ 0 (5:100)
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Differentiating (5.99) with respect to time t gives

€ωx þ C� A

A

� �
Ω _ωy ¼ 0 (5:101)

We can now substitute from (5.100) into (5.101), which gives an equation for
ωx:

€ωx þ C� A

A

� �2

Ω2ωx ¼ 0 (5:102)

This equation represents a simple harmonic motion and has the solution

ωx ¼ ω0 cos
C� A

A
Ωtþ δ

� �
(5:103)

where ω0 is the amplitude and δ the phase. By substituting this result into
(5.100) and solving for ωy we get

ωy ¼ ω0 sin
C� A

A
Ωtþ δ

� �
(5:104)

Equations (5.103) and (5.104) describe a periodic motion of the instanta-
neous spin axis about the axis of figure. It is called the free nutation (or Euler
nutation). Its period is

τ0 ¼ 2π
Ω

A

C� A

� �
(5:105)

The factor 2π/Ω represents the daily rotation of the Earth, so the period of the free
nutation is A/(C – A) days. The dynamic ellipticity obtained from the precession
period (5.78) indicates that this period is about 305 days (~10months). However,
astronomers in the eighteenth and early nineteenth centuries were unable to
detect a motion of Earth’s axis with this period. The reason lies in the assumption
that the Earth rotates as a rigid body. In fact its elasticity allows it to deform
slightly as a result of the displacement of the instantaneous rotation axis from
the axis of figure, and this extends the period to 435 days (~14 months). The
observed motion is called the Chandler wobble.

5.5 The Chandler wobble

The Chandler wobble is a somewhat irregular cyclical motion of the instanta-
neous rotation axis with a period of about 435 days and an amplitude of a few
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tenths of a second of arc, approximately 10–15 m (Fig. 5.8). The displacement
of the rotation axis from its mean position is thought to result from changes in
oceanic circulation and fluctuations in atmospheric pressure. The displacement
of the instantaneous rotation axis from the axis of figure gives rise to an
asymmetry in the Earth’s shape. The moments of inertia A, B, and C about the
reference axes are no longer adequate to describe the inertia tensor. The
products of inertia H, J, and K are needed to express the asymmetry of the
mass distribution (see Box 2.2). Let the instantaneous rotation axis have a
direction specified by direction cosines (λ, μ, ν) relative to the x-, y-, and
z-axes defined in Fig. 5.7. The moment of inertia I about the instantaneous
rotation axis is given by (2.134):

I ¼ Aλ2 þ Bμ2 þ Cν2 � 2Kλμ� 2Hμν� 2Jνλ

On writing I11 = A, I22 = B, and I33 = C for the principal moments of inertia
and I12 = I21 =−K, I13 = I31 = −J, and I23 = I32 = −H for the products of inertia
(Box 5.1), this equation becomes
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Fig. 5.8. The instantaneous rotation axis of the Earth exhibits a nearly circular
motion with period 435 days – the Chandler wobble – and an annual circular
motion. These motions are superposed on a slow drift of about 20 m per century
along longitude 80 °W. Data source: International Earth Rotation and Reference
Systems Service.
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I ¼ I11λ
2 þ I22μ

2 þ I33ν
2 þ 2I12λμþ 2I23μνþ 2I31νλ (5:106)

The angular velocity has components (ωx,ωy,Ω). Using numerical subscripts
1, 2, and 3 for the x-, y-, and z-components, respectively, the angular momentum
h and angular velocity ω are related by the tensor equation

hi ¼ Iijωj (5:107)

where the symmetric inertia tensor Iij (Box 5.1) represents the elements of the
matrix

Box 5.1. The inertia tensor

Let a rigid body be composed of elementary particles with mass mi and
coordinates (xi, yi, zi) relative to an orthogonal Cartesian coordinate system.
Let the body rotate with angular velocity ω about an axis through the origin.
The linear velocity of a particle mi at distance ri from the origin is

vi ¼ w � ri (1)

The linear momentum of the particle is mivi and its contribution to the
angular momentum of the rotating body is

hi ¼ ri �mivi (2)

The angular momentum of the body is

h ¼
X
i

mi ri � við Þ ¼
X
i

mi ri � w � rið Þð Þ (3)

Using the identity in (1.18), the vector cross product is

ri � w � rið Þ ¼ wr2i � ri w · rið Þ (4)

On substituting this expression into (3), the angular momentum becomes

h ¼ w
X
i

mir
2
i �

X
i

miri w · rið Þ (5)

The x-component hx is

hx ¼ ωx

X
i

mi x
2
i þ y2i þ z2i

� ��X
i

mixi ωxxi þ ωyyi þ ωzzi
� �

(6)
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hx ¼ ωx

X
i

mi y
2
i þ z2i

� �� ωy

X
i

mixiyi � ωz

X
i

mizixi (7)

Analogously, the y- and z-components, hy and hz, of the angular momentum
are, respectively,

hy ¼ �ωx

X
i

miyixi þ ωy

X
i

mi z
2
i þ x2i

� �� ωz

X
i

miyizi (8)

hz ¼ �ωx

X
i

mizixi � ωy

X
i

miziyi þ ωz

X
i

mi x
2
i þ y2i

� �
(9)

Using the definitions of moments and products of inertia in Box 2.2, the
angular momentum components are

hx ¼ Aωx � Kωy � Jωz

hy ¼ �Kωx þ Bωy �Hωz

hz ¼ �Jωx �Hωy þ Cωz

(10)

These equations relating the components of h and ω can be written as a
single matrix equation,

hx
hy
hz

0
@

1
A ¼

A �K �J
�K B �H
�J �H C

0
@

1
A ωx

ωy

ωz

0
@

1
A (11)

Using numerical subscripts 1, 2, and 3 for the x-, y-, and z-components,
respectively, the moments of inertia (diagonal elements) are represented by
I11 = A, I22 = B, and I33 = C. The products of inertia (non-diagonal elements)
are I12 = I21 = −K, I13 = I31 = −J, and I23 = I32 = −H. The matrix equation is
then

h1
h2
h3

0
@

1
A ¼

I11 I12 I13
I21 I22 I23
I31 I32 I33

0
@

1
A ω1

ω2

ω3

0
@

1
A (12)

In tensor notation this equation is written succinctly as

hi ¼ Iijωj i ¼ 1; 2; 3; j ¼ 1; 2; 3ð Þ (13)

The symmetric, second-order tensor Iij, whose components are the moments
and products of inertia, is called the inertia tensor.
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Iij ¼
I11 I12 I13
I21 I22 I23
I31 I32 I33

0
@

1
A (5:108)

Equation (5.93) for the free motion of the displaced instantaneous rotation
axis becomes

_hi þ ðw � hÞi ¼ 0 (5:109)

Upon inserting (5.107), we have for the first term

_hi ¼ ∂
∂t
ðIijωjÞ ¼ _Iijωj þ Iij _ωj (5:110)

The x-, y-, and z-components of the cross product have the form

ðw � hÞ1 ¼ ω2I3kωk � ω3I2kωk (5:111)

The components of the equation of motion become

_h1 þ ω2I3kωk � ω3I2kωk ¼ 0

_h2 þ ω3I1kωk � ω1I3kωk ¼ 0

_h3 þ ω1I2kωk � ω2I1kωk ¼ 0

(5:112)

By expanding these equations of motion separately, we obtain expressions for
each individual component.
For the x-component,

I11 _ω1 þ I12 _ω2 þ I13 _ω3 þ _I11ω1 þ _I12ω2 þ _I13ω3

þ ω2I31ω1 þ ω2I32ω2 þ ω2I33ω3 � ω3I21ω1 � ω3I22ω2 � ω3I23ω3 ¼ 0

(5:113)

For the y-component,

I21 _ω1 þ I22 _ω2 þ I23 _ω3 þ _I21ω1 þ _I22ω2 þ _I23ω3

þ ω3I11ω1 þ ω3I12ω2 þ ω3I13ω3 � ω1I31ω1 � ω1I32ω2 � ω1I33ω3 ¼ 0

(5:114)

For the z-component,

I31 _ω1 þ I32 _ω2 þ I33 _ω3 þ _I31ω1 þ _I32ω2 þ _I33ω3

þ ω1I21ω1 þ ω1I22ω2 þ ω1I23ω3 � ω2I11ω1 � ω2I12ω2 � ω2I13ω3 ¼ 0

(5:115)
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5.5.1 Simplification of the equations of motion

Each of the equations of motion contains many terms, some of which are
effectively irrelevant because they are very small compared with other terms.
In order to obtain an analytical solution it is necessary to introduce some
approximations, as follows.

1. The angular velocities (ω1,ω2) are small compared with the daily rotationΩ.
We will retain ω1 and ω2 to first order but neglect their products and higher
orders, i.e.,

ω2
1 ¼ ω2

2 ¼ ω1ω2 ¼ 0

2. The products of inertia (non-diagonal elements in the inertia tensor) are
small, and we may neglect their products with the velocities (ω1, ω2), i.e.,

I13ω1 ¼ I13ω2 ¼ I12ω1 ¼ I12ω2 ¼ I23ω1 ¼ I23ω2 ¼ 0

3. We may also assume that the products of inertia change very slowly with
time. In this case we may neglect further products with the velocities
(ω1, ω2), i.e.,

_I13ω1 ¼ _I13ω2 ¼ _I12ω1 ¼ _I12ω2 ¼ _I23ω1 ¼ _I23ω2 ¼ 0

4. We may assume that the principal moments of inertia A, B, and C do not
change with time, i.e., only the asymmetry in the mass distribution is
responsible for the wobble of the rotation axis. That is,

_Iii ¼ 0

If we now apply these assumptions to the equations of motion, most of the terms
drop out. For example, (5.115) reduces to

I33 _ω3 ¼ 0 (5:116)

This leads to the same result as for the Euler precession of the rigid Earth,
namely that the angular velocity about the axis of figure is constant:

ω3 ¼ Ω (5:117)

The remaining two equations of motion reduce to

I11 _ω1 þ _I13ω3 þ ω2ω3 I33 � I22ð Þ � ω2
3I23 ¼ 0 (5:118)

I22 _ω2 þ _I23ω3 þ ω3ω1 I11 � I33ð Þ þ ω2
3I13 ¼ 0 (5:119)
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These can now be rewritten with the more easily recognizable parameters for the
moments and products of inertia:

A _ω1 þ ω2Ω C� Að Þ þ Ω2H� _JΩ ¼ 0 (5:120)

A _ω2 � ω1Ω C� Að Þ � Ω2J� _HΩ ¼ 0 (5:121)

The displacement of the instantaneous axis of rotation from the z-axis is very
small, amounting to less than 0.25 arcsec. The direction cosines of the rotation
axis may therefore be written as (λ, μ, 1) and the angular velocities as (ω1 = λΩ,
ω2 = μΩ). Upon inserting these values into the equations of motion and dividing
throughout by Ω, we get the simultaneous equations

A_λþ μΩ C� Að Þ þ ΩH� _J ¼ 0 (5:122)

A _μ� λΩ C� Að Þ � ΩJ� _H ¼ 0 (5:123)

Note that the product of inertia K, which describes asymmetry in the x–y
plane, does not play a role in the wobble equations. Only asymmetries in the y–z
and z–x planes that include the rotation axis determine the wobble motion. This
will become evident when we compute the values of the products of inertia H
and J, which we will obtain from a comparison with the MacCullagh equation
for the gravitational potential of the non-spheroidal Earth.

5.5.2 Computation of the products of inertia

The Earth is deformed by the centrifugal force of its rotation, the main result
being its spheroidal shape. If the axis of rotation is displaced from the axis of
symmetry of a rigid Earth, the spheroid exhibits Euler nutation about the spin
axis without additional deformation (Fig. 5.9(a)). However, the body of an
elastic Earth can adjust its shape to the displaced spin axis by deforming further,
as illustrated in Fig. 5.9(b). Parts of the ellipsoid are elevated above the original
spheroid (regions “e”), while other parts are depressed below it (regions “d”).
The shape conforming to the elastic deformation caused by the Chandler
wobble is not symmetric with respect to the reference axes. This gives rise to
the products of inertia H and J.
At a point in the Earth specified by co-latitude θ and radial distance r the

distance from the rotation axis is r sin θ and the potential Φ of the centrifugal
acceleration is

Φ ¼ � 1

2
Ω2r2 sin2 θ ¼ � 1

2
Ω2r2 þ 1

2
Ω2r2 cos2 θ (5:124)
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Let the Cartesian coordinates of the point be (x, y, z). The direction cosines
(λ0, μ0, ν0) of the radius through the point at (r, θ) are

λ0 ¼ x

r
; μ0 ¼

y

r
; ν0 ¼ z

r
(5:125)

If the direction cosines of the instantaneous rotation axis are (λ, μ, ν), then θ is
approximately the angle between the two lines, and

cos θ ¼ λλ0 þ μμ0 þ νν0 (5:126)

Inserting the values from (5.125) gives

r cos θ ¼ λxþ μyþ νz (5:127)

and, using this relationship in (5.124), we get the centrifugal potential

Φ ¼ � 1

2
Ω2 x2 þ y2 þ z2
� �þ 1

2
Ω2 λxþ μyþ νzð Þ2 (5:128)

Φ ¼ � 1

2
Ω2 x2 þ y2 þ z2
� �

þ 1

2
Ω2 λ2x2 þ μ2y2 þ ν2z2 þ 2λμxyþ 2μνyzþ 2νλzx
� �

(5:129)

This may be simplified as before by setting the second-order values λ2 = μ2

= λμ = 0 and ν2 = ν = 1. Then

Φ ¼ � 1

2
Ω2 x2 þ y2
� �þΩ2z λxþ μyð Þ (5:130)

The first term here is the centrifugal potential due to rotation about the axis of
figure. The second term is the extra centrifugal potential Φ2 due to the displace-
ment of the instantaneous rotation axis in the Chandler wobble,

z

x

(b) elastic

e

e

d

d

z

x

(a) rigid

Fig. 5.9. (a) Displacement of the rotation axis of a rigid Earth results in Euler
nutation without additional deformation. (b) The elastic Earth adjusts its shape to
the displaced spin axis by deforming further, so that regions “e” lie above and
regions “d” lie below the elliptical section (dashed) of the rigid body.
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Φ2 ¼ Ω2z λxþ μyð Þ (5:131)

The wobble potential is a second-order solution of Laplace’s equation, because

r2Φ2 ¼ Ω2 ∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

� �
λzxþ μyzð Þ ¼ 0 (5:132)

Φ2 is a deforming potential and causes a corresponding deformation that has its
own gravitational potentialΦi, which, as in the theory of the equilibrium tides, is
proportional to Φ2,

Φi ¼ kΩ2z λxþ μyð Þ (5:133)

The constant of proportionality k is the first Love number. The potential Φi is
a solution of Laplace’s equation for a space in which r can be zero. In our case it
describes the wobble centrifugal potential within the Earth. We need a solution
that is valid outside the Earth. As shown in Section 4.3.2 for the tidal gravity
anomaly, the general solution Φ of Laplace’s equation may be written

Φ ¼ Ar2 þ B

r3

� �
P2ðcos θÞ ¼ Φi þ Φe (5:134)

where the first part Φi is valid inside and the second partΦe outside a volume of
interest. The two solutions vary differently with radial distance r, but their ratio
for the Earth with radius R is

Φe ¼ R

r

� �5

Φi (5:135)

On substituting for Φi from (5.133), the potential of the deformation caused by
the wobble is

Φe ¼ R5

r5
kΩ2z λxþ μyð Þ (5:136)

On converting the Cartesian coordinates (x, y, z) to direction cosines (λ0, μ0, ν0)
of the line through the point of observation (5.125), we get the potential Φe of
the wobble deformation at an external point:

Φe ¼ kΩ2R5ν0 λλ0 þ μμ0ð Þ
r3

(5:137)
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5.5.3 Comparison of the wobble potential with MacCullagh’s
formula

TheMacCullagh formula for the gravitational potentialUG of a triaxial ellipsoid
with mass E at an external point is given by (2.128), repeated here:

UG ¼ �G
E

r
� G

Aþ Bþ C� 3I

2r3
(5:138)

I is the moment of inertia about a radial line passing through the point of
observation. Substituting (5.106) for I with direction cosines (λ0, μ0, ν0) gives

UG ¼� G
E

r

� G
AþBþC�3 Aλ20 þ Bμ20 þ Cν20 � 2Kλ0μ0�2Hμ0ν0 � 2Jν0λ0

� �
2r3

 !

(5:139)

The terms involving products of inertia describe contributions to the potential
from features that deviate from symmetry with respect to the x–y, y–z, and z–x
planes. The potential of the deformation associated with the Chandler wobble
depends on the products of direction cosines λ0ν0 and μ0ν0. On comparing the
coefficients of these products in (5.137) and (5.139) we get the following
expressions for the products of inertia:

H ¼ �Ω2R5k

3G
μ (5:140)

J ¼ �Ω2R5k

3G
λ (5:141)

5.5.4 Period of the Chandler wobble

The products of inertia H and J in the equations of motion (5.122) and (5.123)
may now be replaced by the above expressions. The pair of simultaneous
equations becomes

A _λþ μΩ C� Að Þ � Ω3R5k

3G
μþ Ω2R5k

3G
_λ ¼ 0 (5:142)

A _μ� λΩ C� Að Þ þ Ω3R5k

3G
λþΩ2R5k

3G
_μ ¼ 0 (5:143)
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On regrouping the terms in these equations we get

AþΩ2R5k

3G

� �
_λþ μΩ C� Að Þ � Ω2R5k

3G

� �
¼ 0 (5:144)

AþΩ2R5k

3G

� �
_μ� λΩ C� Að Þ � Ω2R5k

3G

� �
¼ 0 (5:145)

Analogous equations (5.95) and (5.96) for the rigid Earth yielded the period of
the free, Eulerian nutation,

τ0 ¼ 2π
Ω

A

C� A

� �
(5:146)

Proceeding in the same manner, the solutions of the nutation equations for an
elastic Earth are reduced to a simple harmonic motion of the rotation axis with
period

τ ¼ 2π
Ω

Aþ Ω2R5k=ð3GÞ
C� A� Ω2R5k=ð3GÞ

� �
(5:147)

This is the period of the Chandler wobble. The numerator in (5.147) is larger
than that in (5.146) and the denominator is smaller than that in (5.146). Thus the
period of the Chandler wobble for the elastic Earth is longer than the period of
the Eulerian nutation for a rigid Earth. The difference in periods can be used to
compute a measure of the Earth’s elastic yielding.

5.5.5 Calculation of Love’s number k from the period of the
Chandler wobble

Love’s number k, which we encountered in the theory of the tides, is a measure
of the global yielding of the Earth to the deforming tidal forces. A similar
situation is encountered here: the elastic yielding of the Earth to the centrifugal
force related to the free nutation results in the lengthened period observed in the
Chandler wobble, which therefore depends on k.
The density distribution in the Earth is dependent on the ratio m between the

centrifugal acceleration and the gravitational attraction at the equator (Box 3.2):

m ¼ ω2a

GE=a2
¼ ω2a3

GE
(5:148)

Ignoring the small differences between the equatorial radius and mean radius,
and using Ω for the Earth’s rotation, we can replace this definition of m by
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m � Ω2R3

GE
(5:149)

It follows that in (5.147) we can write

Ω2R5

3G
¼ mER2

3
(5:150)

τ ¼ 2π
Ω

Aþ kmER2=3

C� A� kmER2=3

� �

¼ 2π
Ω

A

C� A

� �
1þ kmER2=ð3AÞ

1� kmER2=3 C� Að Þ
� �

(5:151)

τ ¼ τ0
1þ kmER2=ð3AÞ

1� kmER2= 3 C� Að Þð Þ
� �

(5:152)

In (3.39) we established a relationship between the principal moments of
inertia A and C, the flattening ƒ, and the centrifugal acceleration ratio m,

C� A

ER2
¼ 2f�m

3
(5:153)

and from (3.43) we know that the approximate values of A and C are

A � C � 1

3
ER2 (5:154)

We can substitute these values into (5.152), which simplifies to

1

τ
¼ 1

τ0
1� k

m

2f�m

� �
1þ kmð Þ�1 (5:155)

This relationship can be expanded as a binomial series. Neglecting second-order
and higher powers of m and ƒ, we obtain to first order

1

τ
¼ 1

τ0
1� k

m

2f�m
� km

� �
¼ 1

τ0
1� km

1

2f�m
� 1

� �� �
(5:156)

This reduces further to

1

τ
¼ 1

τ0
1� k

m

2f�m

� �
(5:157)

By rearranging terms and solving for Love’s number we get
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k ¼ 1� τ0
τ

� � 2f�m

m

� �
(5:158)

Upon inserting the known values for ƒ, m, τ0, and τ we get k = 0.28, in good
agreement with the value obtained from the theory of the tides.
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6

Earth’s heat

The early thermal history of the Earth is a matter of some speculation. Current
scientific consensus is that planet Earth formed by accretion of material with the
same composition as chondritic meteorites. Accretion, a process that generated
heat as colliding material gave up kinetic energy, led to differentiation of the
planetary constituents into concentric layers. When the temperature of the early
Earth reached the melting point of iron, the dense iron, accompanied by other
siderophile elements such as nickel and sulfur, sank towards the center of the planet
to form a liquid core. Meanwhile lighter elements rose to form an outer layer, the
primitive mantle. Further differentiation took place later, creating a chemically
different thin crust atop themantle. Only the outer core is nowmolten, surrounding
a solid inner core of iron that solidified out of the core fluid. Lighter elements left
behind in the core rise through the core fluid and result in a composition-driven
convection in the outer core, which is in addition to thermal convection. Although
the short-term behavior of the mantle is like that of a solid, allowing the passage of
seismic shear waves, its long-term behavior is characterized by plastic flow, so heat
transport by convection or advection is possible. In the solid lithosphere and inner
core heat is transported dominantly by thermal conduction.
The physical states of the Earth’s mantle and core are well understood, but the

variation of temperature with depth is not well known. Direct access is impossible
and it is very difficult in laboratory experiments to achieve the temperatures and
pressures in the Earth’s deep interior. Consequently, some important thermody-
namic parameters are inadequately known. Points on the melting-point curve can
be determined from experiments at high temperature and pressure. Convection
ensures that the temperature profile in the mantle and outer core is close to the
adiabatic temperature curve, which can be calculated. From these considerations
an approximate temperature profile in the Earth’s interior can be estimated
(Fig. 6.1). The temperatures in the mantle and outer core are close to the adiabatic
curve, little temperature change occurs in the solid inner core, and comparatively
rapid change occurs in the asthenosphere and lithosphere.

170



6.1 Energy and entropy

Analysis of the thermal conditions in the Earth is based upon the First and
Second Laws of Thermodynamics. The First Law is an application of the
conservation of energy to a thermodynamic system. It states that energy cannot
be created or destroyed in a closed system, but can only be transformed from
one form to another. In an open system, extra terms must be considered to allow
for the transfer of energy into or out the system (e.g., by the flow of matter). The
total energy, Q, of a closed system consists of its internal energy, U, and the
work,W, done in any external transfer of energy to the surroundings. The energy
balance is expressed by the equation

dQ ¼ dUþ dW (6:1)

Heat added to (or removed from) a closed system is used to increase the internal
energy and to perform external work. For example, the gas molecules in a heated
balloon aremore energetic, and, if it is able to expand, the volume,V, increases. The
external work dW due to the change in volume at constant pressure, P, is

dW ¼ PdV (6:2)

and so from the First Law of Thermodynamics the energy equation is

dQ ¼ dUþ PdV (6:3)
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Fig. 6.1. Models of the adiabatic temperature profile (geotherm, solid curve) and
the melting-point curve (solidus, dashed curve) in the Earth’s interior. Data sources:
tables in appendix G of Stacey and Davis (2008); for mantle solidus, Stacey (1992),
appendix G.
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The Second Law of Thermodynamics asserts that the energy of an isolated
system tends to become uniformly distributed with the passage of time. The
concept of entropy, S, is used as a measure of the microscopic disorder in a
system at a particular temperature. The change dS in the entropy of a system
caused by a change in energy dQ at a temperature T is defined as

dS ¼ dQ

T
(6:4)

On substituting this into the energy equation we get

TdS ¼ dUþ PdV (6:5)

This important relation, uniting the First and Second Laws, is the central
equation of thermodynamics. It is important in the analysis of thermal condi-
tions inside the Earth, because it defines adiabatic conditions.

An adiabatic thermodynamic process is one in which heat cannot enter or
leave the system, i.e., dQ = 0. The entropy of an adiabatic reaction remains
constant, because dS = dQ/T = 0. The adiabatic temperature gradient in the Earth
serves as an important reference for estimates of the actual temperature gradient
and for determining how heat is transferred.

6.2 Thermodynamic potentials and Maxwell’s relations

The thermodynamic state of a system can be expressed with the aid of scalar
functions called thermodynamic potentials. These are the internal energy,U, the
enthalpy, H, the Helmholtz energy, A, and the Gibbs free energy, G. Each
potential consists of a particular combination of the physical parameters pres-
sure, temperature, volume, and entropy.

6.2.1 Thermodynamic potentials

Internal energy (U) has been described and defined above. A change in internal
energy at constant temperature and pressure is related to changes in volume and
entropy by

dU ¼ TdS� PdV (6:6)

Enthalpy (H) is a measure of the total energy of a system; it is a combination
of the internal energy and the product of the pressure and volume:

H ¼ Uþ PV (6:7)

By taking the differentials of both sides of the equation we get
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dH ¼ dUþ PdVþ VdP (6:8)

The conservation of energy, expressed in (6.5), allows us to reduce this to

dH ¼ TdSþ VdP (6:9)

The Helmholtz energy (A) is defined from the relationship between the
thermodynamic properties of macroscopic materials and their behavior on a
microscopic level through statistical mechanics. It is a measure of the work
obtainable from a closed thermodynamic system at constant temperature and
constant volume, and is defined as

A ¼ U� TS (6:10)

Taking the differentials of both sides gives

dA ¼ dU� TdS� SdT (6:11)

Using (6.5), this becomes

dA ¼ �PdV� SdT (6:12)

TheGibbs energy (G) is defined in a similar way to the Helmholtz energy, but
for constant pressure and temperature. It represents the maximum amount of
energy obtainable from a closed system (i.e., one isolated from its surroundings)
without increasing its volume, and is defined as

G ¼ Aþ PV (6:13)

The differentials give the equation

dG ¼ dAþ PdVþ VdP (6:14)

Combining this with (6.12) gives

dG ¼ VdP� S dT (6:15)

6.2.2 Maxwell’s thermodynamic relations

Maxwell’s relations are a set of partial differential equations derived from the
definitions of the thermodynamic potentials that relate the parameters S, V, T,
and P. The relations depend on the mathematical equality between the second
derivatives of these parameters. This follows because the order of differentia-
tion of a function F(x, y) of two variables x and y is not important:

∂
∂x

∂F
∂y

� �
x

¼ ∂2F
∂x ∂y

¼ ∂2F
∂y ∂x

¼ ∂
∂y

∂F
∂x

� �
y
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Maxwell’s thermodynamic relations are derived in Box 6.1 by applying this
condition to the different thermodynamic potentials. Summarized, they are

Box 6.1. Derivation of Maxwell’s thermodynamic relations

The internal energy, U, changes with V and S as in (6.6):

dU ¼ TdS� PdV (1)

dU can be written as a perfect differential using the partial derivatives of U
with respect to V and S:

dU ¼ ∂U
∂S

� �
V

dSþ ∂U
∂V

� �
S

dV (2)

The coefficients of dV and dS in these expressions must be equivalent, thus

P ¼ � ∂U
∂V

� �
S

(3)

T ¼ ∂U
∂S

� �
V

(4)

∂P
∂S

¼ � ∂2U
∂T ∂S

(5)

∂T
∂V

¼ ∂2U
∂T ∂S

(6)

∂T
∂V

� �
S

¼ � ∂P
∂S

� �
V

(7)

This is one of the Maxwell thermodynamic relations. The three others are
obtained in a like manner.

The enthalpy, H, changes with P and T as in (6.9):

dH ¼ TdSþ VdP (8)

dH can be written as a perfect differential using the partial derivatives of H
with respect to T and P:
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dH ¼ ∂H
∂S

� �
P

dSþ ∂H
∂P

� �
S

dP (9)

On equating the coefficients of dS and dP in these expressions, we have
T ¼ ∂H=∂Sð ÞP and V ¼ ∂H=∂Pð ÞS. Differentiating Twith respect to P and
V with respect to S gives

∂T
∂P

� �
S

¼ ∂V
∂S

� �
P

(10)

The Helmholtz energy, A, changes with V and T as in (6.12):

dA ¼ �PdV� S dT (11)

dA can be written as a perfect differential using the partial derivatives of A
with respect to T and P:

dA ¼ ∂A
∂V

� �
T

dVþ ∂A
∂T

� �
V

dT (12)

On equating the coefficients of dV and dT in these expressions, we have
P ¼ � ∂A=∂Vð ÞT and S ¼ � ∂A=∂Tð ÞV. Differentiating P with respect to T
and S with respect to V gives

∂P
∂T

� �
V

¼ ∂S
∂V

� �
T

(13)

The Gibbs energy, G, changes with P and T as in (6.15):

dG ¼ VdP� SdT (14)

dG can be written as a perfect differential using the partial derivatives of G
with respect to T and P:

dG ¼ ∂G
∂P

� �
T

dPþ ∂G
∂T

� �
P

dT (15)

On equating the coefficients of dP and dT in these expressions, we have
V ¼ ∂G=∂Pð ÞT and S ¼ � ∂G=∂Tð ÞP. Differentiating V with respect to T
and S with respect to P gives

∂V
∂T

� �
P

¼ � ∂S
∂P

� �
T

(16)
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∂T
∂V

� �
S

¼ � ∂P
∂S

� �
V

(6:16)

∂T
∂P

� �
S

¼ ∂V
∂S

� �
P

(6:17)

∂P
∂T

� �
V

¼ ∂S
∂V

� �
T

(6:18)

∂V
∂T

� �
P

¼ � ∂S
∂P

� �
T

(6:19)

6.3 The melting-temperature gradient in the core

The ambient pressure has a strong influence on the temperature at which the
inner core solidifies from the core fluid. At the inner-core boundary the pressure
is 330 GPa and the melting point of iron is around Tm = 5,000 K. If the latent
heat of fusion of iron is L, the amount of heat exchanged when a massmmelts is
dQ = mL and the change in entropy is

dS ¼ dQ

T
¼ mL

Tm
(6:20)

Writing (6.17) in terms of full differentials, with T = Tm and substituting (6.20)
for dS, we have

dTm

dP

� �
S

¼ dV

dS

� �
P

¼ VL � VS

mL=Tm
(6:21)

where VL is the volume occupied by the mass of iron in a liquid state, and VS is
its volume in a solid state. We can write (6.21) as

dTm

dP

� �
S

¼ Tm

mL
ðVL � VSÞ (6:22)

This is known as the Clausius–Clapeyron equation for the change of state.
During solidification the density changes from ρL for the liquid to ρS for the
solid. The volume of a mass m of the material changes from VL = m/ρL before
the change of state to VS = m/ρS after the change of state, so that

1

Tm

dTm

dP
¼ 1

L

1

ρL
� 1

ρS

� �
(6:23)
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This equation must now be converted into a function of depth. The pressure
inside the Earth is assumed to be hydrostatic. Under these conditions an increase
in depth dz results in an increase in pressure dP solely because of the extra
material added to the vertical column. If the local gravity at depth z is g(z) and
the local density is ρL(z), the hydrostatic pressure increase is

dP ¼ gðzÞρLðzÞdz (6:24)

On substituting this into (6.23), we get an equation relating the increase in
melting temperature to increasing depth:

1

Tm

dTm

dz
¼ g

L
1� ρL

ρS

� �
(6:25)

The conditions in the core can be estimated from experiments and modeling.
The melting temperature and the latent heat of fusion of iron at the enormous
pressure in the core are not accurately known. For example, temperature
estimates lie within the range 5,000–6,000 K. Some representative values of
physical properties in the core are given in Table 6.1. Using values for the
boundary between the inner and outer core in the modified Clausius–Clapeyron
equation (6.25) the gradient of the melting temperature curve at that boundary is

dTm

dz
� 1:4 Kkm�1 (6:26)

Table 6.1. Values of some physical parameters in the outer and inner core near
to the core–mantle boundary (CMB) and inner-core boundary (ICB) (sources:
(1) Dziewonski and Anderson, 1981; (2) Stacey, 2007)

Physical property Units
Outer core
at CMB

Outer core
at ICB

Inner core
at ICB Source

Gravity, g m s−2 10.7 4.4 4.4 1
Density, ρ kg m−3 9,900 12,160 12,980 1
Bulk modulus, KS GPa 646 1,300 1,300 1
Φ = KS/ρ m2 s−2 67.3 107 107 1
Specific heat, cP J K−1 kg−1 815 794 728 2
Temperature, T K 3,700 5,000 5,000 2
Grüneisen parameter, γ 1.44 1.39 1.39 2
Volume expansion

coefficient, α 10−6 K−1 18.0 10.3 9.7 2
Latent heat of melting,

L 105 J kg−1 – 9.6 – 2
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6.4 The adiabatic temperature gradient in the core

When heat is added to a material it causes an increase in temperature. The
specific heat of the material is the amount of heat needed to raise the temperature
of 1 kg of the material by 1 K; it can be defined for constant pressure, cP, or
constant volume, cV. For a mass m of the material the heat dQ required to raise
the temperature by dT at constant pressure is

dQ ¼ mcP dT (6:27)

from which we get

∂Q
∂T

� �
P

¼ mcP (6:28)

The increase in temperature causes the material to expand. The coefficient of
thermal expansion αP is defined as the fractional increase in volume per degree
increase in temperature. This can be written

αP ¼ 1

V

∂V
∂T

� �
P

(6:29)

The change in energy due to the heat added can be expressed as a perfect
differential, giving

dQ ¼ ∂Q
∂T

� �
P

dTþ ∂Q
∂P

� �
T

dP (6:30)

Using the definition of entropy, this becomes

TdS ¼ ∂Q
∂T

� �
P

dTþ T
∂S
∂P

� �
T

dP (6:31)

Equation (6.28) can be used in the first term on the right, and the Maxwell
relation from (6.19) can be used in the second term:

TdS ¼ mcP dT� T
∂V
∂T

� �
P

dP (6:32)

The condition for an adiabatic process, in which no heat is gained or lost by
the system, is that the entropy remains constant, dS = 0, so

mcP dT ¼ TVαP dP (6:33)

∂T
∂P

� �
S

¼ TVαP
mcP

¼ TαP
ρcP

(6:34)
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This gives the adiabatic change of temperature with increasing pressure. Using
(6.24), we convert the change in pressure to a change in depth and obtain the
adiabatic temperature gradient,

∂T
∂z

� �
S

¼ gTαP
cP

(6:35)

The depth profile of the adiabatic temperature is important for understanding
conditions in the fluid core. If the actual temperature profile deviates from the
adiabatic curve, this gives rise to convection currents, which redistribute the
temperature to maintain adiabatic conditions. The physical parameters in
Table 6.1 give an adiabatic temperature gradient in the fluid core of

∂T
∂z

� �
S

� 0:88 K km�1 (6:36)

at the core–mantle boundary, and

∂T
∂z

� �
S

� 0:29 K km�1 (6:37)

at the boundary with the inner core.
Comparison of these values with (6.26) shows that the melting temperature Tm

increasesmore rapidly with depth than does the adiabatic temperature. In the early
Earth, cooling from the surface, themelting temperature would have been reached
first at the center. The core would have solidified from the bottom upwards, thus
giving rise to the present layering of fluid outer core and solid inner core. Once the
inner core became solid, it could cool further only by conduction, whereas
convection continues to be the dominant process of heat transfer in the outer core.

6.5 The Grüneisen parameter

The atoms of a metal are located at specific sites in a regular lattice, forming a
crystalline pattern that corresponds to the ambient conditions. Iron has a body-
centered cubic (b.c.c.) structure at room pressure and temperature, but, as the
pressure increases, the structure changes to a denser face-centered cubic (f.c.c.)
packing, and eventually to hexagonal close packing (h.c.p.). At the pressure
(330 GPa) and temperature (6,000 K) of the inner-core boundary iron is
believed to have the h.c.p. structure. On a microscopic level the atoms in the
iron lattice vibrate at a frequency given by the temperature. The atomic vibra-
tions cannot take arbitrary values, but exhibit normal modes like classical
vibrations of a string. The quantized vibrations, or phonons, are responsible
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for heat conduction in the solid and the long-wavelength phonons transport
sound. A change in the temperature of a solid causes a change in volume, which
alters the inter-atomic distances and thus the vibrational modes (phonon fre-
quencies) of the crystal lattice. In solid-state physics this change is described by
the Grüneisen parameter, γ. This is a dimensionless parameter, originally
defined to represent the dependence of a particular mode of lattice vibration
(phonon frequency) on a change of volume V. The microscopic definition of a
Grüneisen parameter for a particular mode with frequency νi is

γi ¼ � ∂ ln νi
∂ lnV

� �
T

(6:38)

It is difficult to adapt this definition to measurable quantities, because to do so
requires detailed knowledge of the lattice dynamics. A more useful macro-
scopic definition of the Grüneisen parameter relates it to thermodynamic prop-
erties such as the bulk modulus,KS, density, ρ, specific heat, c, and coefficient of
thermal expansion, α. The definition at constant pressure is

γ ¼ αPKS

ρcP
(6:39)

The importance of γ in geophysics is due to its occurrence in equations that
describe the dependence of physical properties on temperature and pressure,
and therefore on depth. However, it is difficult to obtain values for the physical
properties that define γ in laboratory experiments at high pressure and temper-
ature that are representative for the conditions in the core. Conveniently, γ varies
only slowly with pressure and temperature. It changes noticeably at Earth’s
important internal boundaries, but between these γ does not change much over
large ranges of depth (Fig. 6.2).

Equation (6.35) for the adiabatic temperature gradient can be reformulated as
follows:

dT

dz

� �
S

¼ gρT
KS

αPKS

ρcP

� �
(6:40)

Inserting the macroscopic definition of γ allows the temperature gradient to be
written as

dT

dz

� �
S

¼ γ
gρT
KS

(6:41)

This equation can be refined further by using the velocities of seismic waves
through the Earth, which are determined by the elastic constants. The relations
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between the P-wave velocity α and S-wave velocity β and the bulk modulus KS,
rigidity μ, and density ρ are developed in Section 8.5, giving

α2 ¼
KS þ 4

3
μ

ρ
(6:42)

β2 ¼ μ
ρ

(6:43)

KS

ρ
¼ α2 � 4

3
β2 ¼ Φ (6:44)

Φ is called the seismic parameter and is well known as a function of depth in the
Earth because of the precise knowledge of seismic velocities on which Earth
models such as PREM (Dziewonski and Anderson, 1981) are founded. Using
this function, the equation for the adiabatic temperature gradient reduces to

dT

dz

� �
S

¼ γ
gT

Φ
(6:45)

6.5.1 Temperature and density in the Earth

Thermal convection is the main form of heat transport in the outer core and is
also important in the Earth’s mantle. It keeps the ambient temperature close to
the adiabatic temperature in these regions. Equation (6.41) for the adiabatic
gradient can be reformulated as a function of pressure instead of depth,
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Fig. 6.2. Estimated variations of the Grüneisen parameter in different regions of
the Earth’s interior. Data source: Stacey and Davis (2008), appendix G.
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dT ¼ γ
gρT
KS

dz ¼ γ
T

KS
dP (6:46)

When the pressure increases, the volume normally decreases. In an elastic
material the fractional change in volume is proportional to the pressure change;
the proportionality constant is the bulk modulus, which under adiabatic con-
ditions is denoted KS,

KS ¼ �V
dP

dV

� �
S

¼ ρ
dP

dρ

� �
S

(6:47)

On rearranging this relationship we obtain

dP

KS
¼ dρ

ρ
(6:48)

Substituting into the adiabatic equation gives

dT

T
¼ γ

dP

KS
¼ γ

dρ
ρ

(6:49)

Integrating both sides gives

ln
T2

T1

� �
¼ γ ln

ρ2
ρ1

� �
(6:50)

T2

T1
¼ ρ2

ρ1

� �γ

(6:51)

In this way, knowing the Grüneisen parameter for a particular domain allows the
variation of temperature to be estimated from the variation of density with
depth, which is well known.

6.6 Heat flow

When a straight conductor is heated so that one end is maintained at temperature
T1 and the other at a higher temperature T2 (Fig. 6.3), the amount of heat ΔQ
flowing out of the cooler end is inversely proportional to the length L of the
conductor, and directly proportional to its cross-sectional area A, the measure-
ment time Δt, and the temperature difference between the ends:

DQ / A
T2 � T1

L
Dt (6:52)

We use this observation to define the vertical flow of heat at the Earth’s surface.
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6.6.1 The heat-flow equation

Let Cartesian axes be defined so that the z-axis is vertically downwards and the
x- and y-axes lie in the horizontal plane (Fig. 6.4). Consider the heat flowing
vertically upwards along a very short conductor of cross-sectional area Az

normal to the z-direction and of length dz, such that its upper, cooler end at
depth z has temperature T and the lower, warmer end at z + dz has temperature
T+ dT. Upon inserting these values into (6.52) and introducing a proportion-
ality constant k we obtain a differential equation for the heat loss per unit time:

dQz

dt
¼ �kAz

dT

dz
(6:53)

The minus sign indicates that the heat flows in the direction of decreasing z (i.e.,
upwards). The proportionality constant is a material property of the conductor,
namely its thermal conductivity. The heat flow qz is defined as the heat crossing
unit area per second:

qz ¼ 1

Az

dQz

dt
¼ �k

dT

dz
(6:54)

This gives the vertical heat flow along the z-axis; it is possible to define
horizontal components along the x- and y-axes in a similar way, so in general
we can write the heat flow as a vector,

q ¼ �krT (6:55)

6.6.2 The thermal-conduction equation

Returning to the one-dimensional situation, consider the heat flowing vertically
upwards (along the z-axis) through a small rectangular box of sides Δx, Δy, and

Q

T1

T2 >T1

A

L

Fig. 6.3. The flow of heatQ along a conductor of length L and cross-section A, with
ends maintained at different temperatures T1 and T2 (T2 > T1).
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Δz with top surface at depth z, where the temperature is T (Fig. 6.4). The heat
flow through the top surface is qz, and the area of the surface normal to the flow
is Az = ΔxΔy, so the total vertical loss of heat Qz in time Δt is

Qz ¼ qzðDx � DyÞDt (6:56)

At depth z + dz the heat entering the bottom end of the box is Qz + ΔQz, where

Qz þ DQz ¼ Qz þ ∂Qz

∂z
Dz (6:57)

The amount of heat remaining in the box is the difference between the amounts
entering and leaving it; on substituting from the right-hand side of (6.56) we have

DQz ¼ ∂Qz

∂z
Dz ¼ ∂qz

∂z
DzðDx � DyÞDt (6:58)

Now we substitute the definition of the heat flow from (6.54) to obtain the
amount of heat ΔQz retained in the box

DQz ¼ ∂
∂z

�k
∂T
∂z

� �
DVDt ¼ �k

∂2T
∂z2

DVDt (6:59)

Let cP be the specific heat at constant pressure and ρ the density of the material
in the box, and let the rise in temperature caused by the extra heat beΔT. Themass
of matter in the box is m = ρ ΔV, so, using the definition of specific heat,

DQz ¼ cPmDT ¼ ρcP DVDT (6:60)

By equating this with (6.59) and deleting the factor ΔVon each side, we get

x
y

z

T  + dT

T

z

z + dz

qz

Az

qz +dqz

dx

dy

Fig. 6.4. Heat Qz + ΔQz flows vertically into the base Az of a small box with sides
Δx, Δy, and Δz, whereas the amount of heat that leaves the top of the box is Qz.
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ρcP
∂T
∂t

¼ �k
∂2T
∂z2

(6:61)

∂T
∂t

¼ � k

ρcP

� �
∂2T
∂z2

(6:62)

The combination of physical parameters in parentheses defines the thermal
diffusivity, κ,

κ ¼ k

ρcP
(6:63)

The one-dimensional equation of heat conduction is therefore

∂T
∂t

¼ �κ
∂2T
∂z2

(6:64)

This equation is one of the most important in geophysics. An equation with
identical form describes the process of diffusion, by which a net flux of randomly
moving particles that is proportional to the gradient in concentration of the particles
can take place. Consequently, the thermal-conduction equation is sometimes
called the heat-diffusion equation. Two specific examples of one-dimensional
heat conduction are described in the following sections: the penetration of external
heat into the Earth and the loss of heat from a cooling half-space.
By extension to the x- and y-directions, similar components are found, the

only difference being that the second-order differentiation is with respect to x
and y, respectively. The heat-conduction equation for three dimensions is

∂T
∂t

¼ �κ
∂2T
∂x2

þ ∂2T
∂y2

þ ∂2T
∂z2

� �
(6:65)

or

∂T
∂t

¼ �κr2T (6:66)

6.6.3 Penetration of solar heat in the Earth

Solar energy heats Earth’s surface in a quasi-cyclical fashion, with a high and a
low temperature each day, and a warmest and coldest month each year. The solar
heat is transported downwards by conduction and is able to penetrate some
distance into the Earth. The decay of temperature with depth below the surface
can be evaluated by solving the one-dimensional heat-conduction equation with
appropriate boundary conditions.
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Let the z-axis again be the vertical direction. The temperature satisfying
(6.64) is a function of both depth and time: T = T(z, t). As in other cases, we
apply the method of separation of variables. The depth variation is described by
the function Z(z) and the time variation by τ (t). Then

Tðz; tÞ ¼ ZðzÞτðtÞ (6:67)

This expression is inserted into the heat-conduction equation, and both sides are
then divided by the product Z(z)τ(t). We have

Z
∂τ
∂t

¼ κτ
∂2Z
∂z2

(6:68)

1

τ
∂τ
∂t

¼ κ
1

Z

∂2Z
∂z2

(6:69)

Each side of this equation involves a different independent variable, thus
both sides equal the same constant. This allows us to separate the equation
into two parts. We must choose the constant to fit the boundary conditions of
the stated problem. If the incident solar energy is a periodic function of time,
then the solution will also be periodic. The time dependence of the surface
temperature can be expressed by the real part of the complex function
exp(iωt):

T ¼ T0 cosðωtÞ ¼ T0 Re exp iωtð Þð Þ (6:70)

On comparing this with the left-hand side of (6.69), we see that the common
constant in this equation must equal iω:

1

τ
∂τ
∂t

¼ iω (6:71)

The time dependence of the temperature variation at depth is therefore

τ ¼ τ0 exp iωtð Þ (6:72)

Because both sides of (6.69) equal the same constant, the depth function
satisfies

κ
1

Z

∂2Z
∂z2

¼ iω (6:73)

∂2Z
∂z2

� i
ω
κ
Z ¼ 0 (6:74)

This has the form of a simple harmonic equation,
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∂2Z
∂z2

þ n2Z ¼ 0 (6:75)

with solution

Z ¼ Z1 exp inzð Þ þ Z0 exp �inzð Þ (6:76)

On comparing (6.74) and (6.75) we have

n2 ¼ �i
ω
κ

(6:77)

in ¼
ffiffiffiffiffiffi
i
ω
κ

r
(6:78)

As shown in Section 1.2, the complex number exp(iθ) can be written

exp iθð Þ ¼ cos θ þ i sin θ (6:79)

Thus

i ¼ exp

�
i
π
2

�
(6:80)

and ffiffi
i

p
¼ exp

�
i
π
4

�
¼ cos

�
π
4

�
þ i sin

�
π
4

�
¼ 1ffiffiffi

2
p ð1þ iÞ (6:81)

Equation (6.78) can now be written

in ¼
ffiffiffiffiffi
ω
2κ

r
ð1þ iÞ (6:82)

Upon inserting this into (6.76), the variation of temperature with depth becomes

Z ¼ Z1 exp

ffiffiffiffiffi
ω
2κ

r
1þ ið Þz

� �
þ Z0 exp �

ffiffiffiffiffi
ω
2κ

r
1þ ið Þz

� �
(6:83)

In this problem of solar heating we are interested in the flow of heat down-
wards into the Earth, in the +z-direction. The temperature fluctuation related to
solar heating decreases with increasing depth, thus dZ/dzmust be negative. The
first term in (6.83) increases exponentially with depth, so we exclude it by
setting Z1 = 0 and obtain

Tðz; tÞ ¼ Z0 exp �
ffiffiffiffiffi
ω
2κ

r
1þ ið Þz

� �
� τ0 exp iωtð Þ (6:84)
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The initial conditions at the surface (depth z = 0, time t = 0) are that the
temperature is equal to T0. Thus Z0τ0 = T0 and the solution to the heat-
conduction equation is

Tðz; tÞ ¼ T0 exp �
ffiffiffiffiffi
ω
2κ

r
z

� �
exp i ωt�

ffiffiffiffiffi
ω
2κ

r
z

� �� �
(6:85)

The temperature variation with time and depth is the real part of this solution:

Tðz; tÞ ¼ T0 exp

�
� z

d

�
cos

�
ωt� z

d

�
(6:86)

We have simplified the result by using

d ¼
ffiffiffiffiffi
2κ
ω

r
(6:87)

This is a characteristic depth for the problem, often called the penetration
depth. It is the depth at which the temperature fluctuation has decreased to 1/e of
its surface value. It depends both on the frequency of the fluctuation and on the
material properties of the ground. The thermal diffusivity is defined on the basis
of the specific heat, density, and thermal conductivity, all of which vary with
temperature. Consequently the thermal diffusivity is temperature-dependent; in
common rocks it decreases with increasing temperature. Assuming representa-
tive values of the physical properties of some common near-surface rock types,
typical penetration depths can be calculated (Table 6.2). The penetration depth
of the daily temperature variation (period = 86,400 s,ω = 7.27 × 10−5 rad s−1) is
around 18 cm; that of the annual fluctuation (period = 3.15 × 107 s, ω = 1.99 ×
10−7 rad s−1) is around 3.5 m.

Table 6.2. Calculated penetration depths of solar energy in continental surface
rocks for daily and annual temperature fluctuations (source: average values
from graphed data in Vosteen and Schellschmidt (2003))

Thermal property Units Mean value

Thermal conductivity, k W m−1 K−1 2.5
Specific heat, cP J kg−1 K−1 800
Density, ρ kg m−3 2,750
Thermal diffusivity, κ 10−6 m2 s−1 1.1
Penetration depth of daily fluctuation m 0.18
Penetration depth of annual fluctuation m 3.4
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Note that the penetration depth d is not the maximum depth to which the
solar energy can penetrate, but merely the depth at which the amplitude sinks
to 1/e. The surface temperature change is felt well below the penetration
depth. At a depth of 5d the signal has attenuated to about 1% of the surface
value.
The attenuation of the surface temperature fluctuation is accompanied by a

shift in phase of the signal. We can write (6.86) as

Tðz; tÞ ¼ T0 exp

�
� z

d

�
cos ω t� t0ð Þð Þ (6:88)

The time t0 represents a delay in the time at which the surface extreme values are
felt at depth z:

t0 ¼ z

ωd
¼ z

ω

ffiffiffiffiffiffiffiffiffiffiffiffi
ω
2κ

� �s
¼ zffiffiffiffiffiffiffiffiffi

2κω
p (6:89)

Figure 6.5 shows the attenuation and phase shift of the temperature for a
hypothetical sedimentary rock, using the data in Table 6.2. The surface temper-
ature is assumed to vary periodically between +10 °C and –10 °C. At depths
below about 1 m the daily surface change is barely discernible; the correspond-
ing depth for the annual fluctuation is about 19 m. At depth z = πd (around 11 m
in this case) the phase shift of the annual variation with respect to surface values
is 180°; i.e., when the surface temperature is at its peak, the temperature at this
depth is minimum.
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Fig. 6.5. Effect of surface solar heating on near-surface temperatures in a sedimentary
rock. Attenuation and phase shift of (a) daily and (b) annual temperature fluctuations.
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6.6.4 Cooling of a semi-infinite half-space

The second application of the heat-conduction equation is to the outward
vertical flow of heat from the Earth’s interior as it cools from an initially hot
state. We assume a one-dimensional model consisting of a semi-infinite half-
space that extends to infinity in the (vertical) z-direction. Lateral components of
heat flow, such as result from modification by surface topography, are ignored.
The problem consists of determining the temperature distribution T(z, t) as a
function of depth z in the half-space at time t after it starts to cool.
Let the temperature of the upper surface be zero. The temperature in the

cooling half-space must satisfy the heat-conduction equation, and is obtained by
separation of the variables as in (6.69):

1

κ
1

τ
∂τ
∂t

¼ 1

Z

∂2Z
∂z2

(6:90)

In this instance we are studying not a fluctuating temperature, but a steady
cooling process. Separating the variables as before, we set the separation
constant equal to –n2:

1

κ
1

τ
∂τ
∂t

¼ �n2 (6:91)

1

Z

∂2Z
∂z2

¼ �n2 (6:92)

The particular solution of the time-dependent part is

τ ¼ τ0 exp �κn2t
� �

(6:93)

and that of the spatial part is

Z ¼ An cosðnzÞ þ Bn sinðnzÞ (6:94)

The boundary condition on the upper surface at z = 0 is T(0, t) = 0, which
requires An = 0. The general solution is a sum over all possible values of n:

Tðz; tÞ ¼ τ0
X1
n¼0

exp �κn2t
� �

Bn sinðnzÞ (6:95)

For a continuous temperature distribution the summation can be replaced by an
integral inwhich the constants τ0 andBn are combined in a continuous functionB(n):

Tðz; tÞ ¼
Z1
n¼0

exp �κn2t
� �

BðnÞsinðnzÞdn (6:96)
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Suppose that at t = 0 the cooling half-space has an initial temperature distribu-
tion T(z):

Tðz; 0Þ ¼ TðzÞ ¼
Z1
n¼0

BðnÞsinðnzÞdn (6:97)

This is a Fourier integral equation, in which the amplitude function B(n) must
be determined. This is obtained by using the properties of Fourier sine trans-
forms, which are explained briefly in Section 1.17. The Fourier sine transform
allows us to write the amplitude function as

BðnÞ ¼ 2

π

Z1
z¼0

TðzÞsinðnzÞdz ¼ 2

π

Z1
ζ¼0

Tðζ Þsinðnζ Þdζ (6:98)

In the final expression the integration variable has been changed from z to ζ to
avoid subsequent confusion when we insert the result back into (6.96). The
substitution gives

Tðz; tÞ ¼ 2

π

Z1
ζ¼0

Tðζ Þ
Z1
n¼0

exp �κn2t
� �

sinðnzÞsinðnζ Þdn
2
4

3
5dζ (6:99)

Now we can change the integrand by using the trigonometric relationship

2 sinðnzÞsinðnζ Þ ¼ cosðnðζ � zÞÞ � cosðnðζ þ zÞÞ (6:100)

giving

Tðz; tÞ ¼ 1

π

Z1
ζ¼0

Tðζ Þ
" Z1

n¼0

ðexpð�κn2tÞcosðnðζ � zÞÞ:

� expð�κn2tÞcosðnðζ þ zÞÞÞdn
#
dζ (6:101)

Each of the integrals inside the square brackets has the same form, namelyR1
n¼0exp �αn2

� �
cosðnuÞdn, with α = κt and u = ζ – z or u = ζ + z, respectively.

The integration of this function is shown in Box 6.2 to be

Z1
n¼0

exp �αn2
� �

cosðnuÞdn ¼ 1

2

ffiffiffi
π
α

r
exp � u2

4α

� �
(6:102)

Applying this solution to each integral in the square brackets in (6.101), with
α = κt, gives
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Box 6.2. The cooling half-space integration

The cooling half-space solution requires evaluation of the integral

Y ¼
Zn¼1

n¼0

exp �αn2
� �

cosðnuÞdn (1)

Note that, on differentiating with respect to u,

∂Y
∂u

¼
Zn¼1

n¼0

�n exp �αn2
� �

sinðnuÞdn (2)

Integrating (2) by parts with respect to n gives

∂Y
∂u

¼ exp �αn2� �
2α

sinðnuÞ
	 
1

0

� u

2α

Z1
0

exp �αn2
� �

cosðnuÞdn ¼ � u

2α
Y (3)

1

Y

∂Y
∂u

¼ ∂
∂u

lnðYÞ ¼ � u

2α
(4)

lnðYÞ ¼ � u2

4α
þ lnðY0Þ

Here we have introduced Y0 as a constant of integration, and the solution to
the integration is

Y ¼ Y0 exp � u2

4α

� �
(5)

The constant Y0 is the value of the integral Y for u = 0. This constant
may be determined as follows:

Y0 ¼
Z1

x¼0

exp �αx2
� �

dx ¼
Z1
y¼0

exp �αy2
� �

dy (6)

Y0ð Þ2¼
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dx

0
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1
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exp �αy2
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0
B@
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¼
Z1

x¼0
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dx dy (7)
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Tðz; tÞ ¼ 1

2
ffiffiffiffiffiffiffi
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Tðζ Þ exp � ζ � zð Þ2
4κt
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(6:103)

If the cooling body has initially a uniform temperature T0, then T(z) = T0 and
the temperature distribution can be written

Tðz; tÞ ¼ T0

2
ffiffiffiffiffiffiffi
πκt

p
Z1
ζ¼0

exp � ζ � zð Þ2
4κt

 !
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>;

(6:104)

In the first integration, on writing w ¼ ðζ � zÞ=ð2 ffiffiffiffi
κt

p Þ, we have

dw ¼ ½1=ð2 ffiffiffiffi
κt

p Þ�dζ and the upper and lower limits of the integration change

to∞ and�z=ð2 ffiffiffiffi
κt

p Þ, respectively. Similarly, on writing v ¼ ðζ þ zÞ=ð2 ffiffiffiffi
κt

p Þ in
the second integration, we get an equivalent expression for dv, but the integra-

tion limits become ∞ and z=ð2 ffiffiffiffi
κt

p Þ, respectively. Equation (6.104) becomes

On changing to polar coordinates (r, θ), we have x = r cos θ and y = r sin θ,
and the element of area becomes dx dy = r drdθ. The limits of integration
change from (0 ≤ x ≤ ∞; 0 ≤ y ≤ ∞) to (0 ≤ r ≤ ∞; 0 ≤ θ ≤ π/2):

Y0ð Þ2 ¼
Zπ=2
θ¼0

Z1
r¼0

exp �αr2
� �

r dr dθ¼
Zπ=2

θ¼0

Z1
r¼0

exp �αr2
� �

r dr

0
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1
Adθ (8)
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2α
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Y0 ¼ 1

2

ffiffiffi
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By inserting this value into (5) we get the evaluated integral:

Y ¼ 1
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ffiffiffi
π
α

r
exp � u2

4α

� �
(11)
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Tðz; tÞ ¼ T0ffiffiffi
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The integration variables w and v in this equation are interchangeable, and can
be combined in a single integration, modifying the integration limits accord-
ingly. This gives

Tðz; tÞ ¼ T0ffiffiffi
π

p
Zz=ð2 ffiffiffiκtp Þ
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Tðz; tÞ ¼ T0
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Zz=ð2 ffiffiffiκtp Þ
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expð�w2Þdw
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The expression in brackets is the error function (Box 6.3), defined as

Box 6.3. The error function

The error function is closely related to the bell-shaped normal distribution.
However, only positive values of the independent variable u are considered, so
the graph of the defining function is similar to the right half of a normal
distribution as in Fig. B6.3(a). Its equation is

f uð Þ ¼ 2ffiffiffi
π

p exp �u2
� �

(1)

The error function erf(η) is defined as the area under this curve from the origin
at u = 0 to the value u = η:

erfðηÞ ¼ 2ffiffiffi
π

p
Zη
0

exp �u2
� �

du (2)

The complementary error function, erfc(η), is defined as

erfcðηÞ ¼ 1� erfðηÞ ¼ 2ffiffiffi
π

p
Z1
η

exp �u2
� �

du (3)
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erf ηð Þ ¼ 2ffiffiffi
π

p
Zη

u¼0

exp �u2
� �

du (6:108)

Values of the error function are tabulated for any finite argument. The solution
for the temperature distribution as a function of time and depth in the cooling
half-space is therefore

Tðz; tÞ ¼ T0 erf
z

2
ffiffiffiffi
κt

p
� �

(6:109)

This equation allows us to understand the heat flow measured over oceanic
crust.

6.6.5 Cooling of oceanic lithosphere

In plate-tectonic theory the oceanic lithosphere is formed at a ridge axis and is
transported away from the ridge by sea-floor spreading, cooling as it does so.
The age, or cooling-time t, of the lithosphere at any place is proportional to its
distance from the ridge axis, assuming a constant spreading rate. Two models
are in common use: a one-dimensional half-space model as described above,

The value of erf(η) or erfc(η) for any particular value of η may be obtained
from standard tables, or from a graph like Fig. B6.3(b).
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Fig. B6.3. (a) The error function erf(η) is defined as the area under the normal
distribution curve from the origin at u = 0 to the value u = η. (b) Graphs of the error
function erf(η) and complementary error function erfc(η).
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and a plate model that considers the lithosphere to be a cooling boundary layer
with its top surface at sea-floor temperature, and with its base and the edge at the
spreading ridge at the temperature of the asthenosphere. The first of these is
discussed further here.
The half-space model divides the lithosphere into narrow vertical columns,

initially at the same uniform temperature as the ridge material. When a block is
transported away from the ridge, it cools and emits a vertical heat flow;
horizontal heat conduction is ignored. In this simple model the temperature T
of an oceanic plate at a time t after forming at temperature T0 at the ridge is given
by an equation such as (6.109). The heat flow qz over oceanic crust of age t is
obtained from the vertical temperature gradient:

qz ¼ �k
dT

dz
¼ �k

dT

dη
dη
dz

(6:110)

dT

dη
¼ T0

d

dη
erfðηÞ ¼ 2T0ffiffiffi

π
p d

dη

Zη
u¼0

exp �u2
� �

du

¼ 2T0ffiffiffi
π

p exp �η2
� � (6:111)

dη
dz

¼ d

dz

z

2
ffiffiffiffi
κt

p
� �

¼ 1

2
ffiffiffiffi
κt

p (6:112)

On combining these equations, we obtain the heat flow

qz ¼ T0ffiffiffiffiffiffiffi
πκt

p exp �η2
� �

(6:113)

At the surface of the oceanic plate, η = z = 0, and exp(–η2) = 1, so the heat flow
over crust of age t is given by

qz ¼ T0ffiffiffiffiffiffiffi
πκt

p (6:114)

The inverse-square-root dependence on age predicted by the half-space
model agrees well with observed oceanic heat-flow values (Fig. 6.6).
Heat-flow data in young sea floor, and where sediment cover is thin, are

systematically biased by hydrothermal circulation, which transports some of the
heat by advection. This can be compensated for by considering only sites that
have sufficient sediment cover and are far enough from basement outcrops that
hydrothermal circulation perturbations are minimal. In particular, Fig. 6.6
shows sites on young sea floor where detailed investigations (seismic imaging
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of the buried basement topography, closely spaced heat-flowmeasurements and
profiles) have been carried out. The heat-flow values at these sites agree very
well with the predictions of both cooling models. For older oceanic lithosphere
the plate model fits the data more closely than the half-space model and appears
to be a better overall model.
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7

Geomagnetism

The existence of amagnetic force was known for centuries beforeWilliamGilbert
pointed out in 1600 that the Earth itself behaved like a huge magnet. Gradually
maps were made of the geomagnetic elements. Systematic investigation of
magnetic behavior was undertaken in the late eighteenth and early nineteenth
centuries. The French scientist Charles Augustin de Coulomb showed experi-
mentally that forces of attraction and repulsion exist between the ends of long thin
magnetized rods, and that they obey rules similar to those determining the
interaction of electrical charges. A freely suspended magnet was observed to
align approximately north–south; the north-seeking end became known as its
north pole, the opposite end as its south pole. The origin of magnetic force was
attributed to magnetic charges, which, through association, became known as
magnetic poles. Subsequently, it was shown that individual magnetic poles, or
monopoles, do not exist. All magnetic fields originate in electric currents. This is
true even at atomic dimensions; circulating (and spinning) electrical charges
impart magnetic properties to atoms. However, the concept of multiple pole
combinations (e.g., the dipole, quadrupole, and octupole) proved to be very useful
for describing the geometries of magnetic fields.

7.1 The dipole magnetic field and potential

The most important field geometry is that of a magnetic dipole. This was
originally imagined to consist of two equal and opposite magnetic poles that
lie infinitesimally close to each other (Appendix A2). At distances several times
greater than the size of the source the field of a very short bar magnet is very
nearly a dipole field, as is the magnetic field produced by an electric current in a
small plane loop. In an external magnetic field B a magnetic dipole experiences
a torque τ that aligns it with the field (Appendix A4). The torque is governed by
the relationship
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m� B (7:1)τ =

In this equation m is the magnetic moment of the dipole, a measure of its
strength. For a current-carrying loop m is equal to the product of the current I
in the loop and its area A, and its direction en is that of the normal to the plane of
the loop (Appendix A4):

m ¼ IAð Þen (7:2)

The dimensions of magnetic moment are by this definition A m2; the dimen-
sions of torque are Nm; thus the SI unit of the magnetic fieldB, the tesla, has the
dimensions N A−1 m−1.
The potentialW of a dipole magnetic momentm at distance r from its center

and at an azimuthal angle θ between the dipole axis and the radial direction is
(Appendix A2)

W ¼ μ0
4π

m cos θ
r2

(7:3)

The constant μ0 is the magnetic field constant. It is defined in SI units to be
exactly 4π × 10−7 N A−2 (alternatively designated henry m−1). The dipole
potential is the most important component of the geomagnetic field, represent-
ing more than 93% of its energy density.
The dipole magnetic field B is the gradient of the dipole potential: B = −∇W.

In spherical coordinates the field has a radial component Br and an azimuthal
component Bθ. These are

Br ¼ � ∂
∂r

μ0
4π

m cos θ
r2

� �
¼ μ0

4π
2m cos θ

r3
(7:4)

Bθ ¼ � 1

r

∂
∂θ

μ0
4π

m cos θ
r2

� �
¼ μ0

4π

m sin θ
r3

(7:5)

For a dipole at the center of the spherical Earth, the azimuthal component of
the field, Bθ, is horizontal. Moreover, if the dipole is aligned with the Earth’s
axis, the angle θ is the complement of the magnetic latitude β. The direction of
the field makes an angle I with the horizontal called the inclination of the field
(see Fig. 7.1(b) and Appendix A, Fig. A1). The inclination, magnetic co-
latitude, and magnetic latitude are related by

tan I ¼ Br

Bθ
¼ 2 cot θ ¼ 2 tan β (7:6)

This equation forms the basis of paleomagnetic determination of ancient pale-
olatitudes from the inclinations of remanent magnetizations measured in ori-
ented rock samples.
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7.2 Potential of the geomagnetic field

The empirical laws that govern electricity and magnetism are summarized in
Maxwell’s equations (Appendix B). Analysis of the present geomagnetic field
requires Gauss’s law and Ampère’s law.
Gauss’s law established that the net magnetic flux through any closed surface

is zero. This is equivalent to stating that there are no magnetic monopoles:
dipole sources such as current circuits, even at atomic scale, produce zero net
flux through a surrounding surface. The corresponding equation is

r ·B ¼ 0 (7:7)

Ampère’s law showed that an electric current produces a magnetic field in the
surrounding space, and it relates the strength of the magnetic field B to the
electric field E that causes the current:

r� B ¼ μ0σEþ μ0ε0
∂E
∂t

(7:8)

The first term on the right is the electric current associated with the flow of free
charges in a conductor and relies on Ohm’s law; the second term is the electric
displacement current that results from time-dependent motions of charges
bound to a parent atom. The parameter μ0 is the magnetic field constant, or
permeability of free space, and ε0 is the electric field constant, or permittivity of
free space; σ is the electrical conductivity of the medium.
In a region that is free of sources of the magnetic field (such as the space just

above the Earth’s surface in which the field is measured), we can assume that
there are no electric or displacement currents, thus

r� B ¼ 0 (7:9)

Consequently, the magnetic field B can be written as the gradient of a scalar
potential, W:

B ¼ �rW (7:10)

On substituting forB in (7.7) the potentialWof the Earth’s magnetic field is seen
to satisfy Laplace’s equation:

r2W ¼ 0 (7:11)

7.2.1 The fields of internal and external origin

The geomagnetic potential at Earth’s surface arises from two sources. The most
important part of the field originates in the Earth’s interior, and the rest
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originates outside the Earth, e.g., from current systems in the ionosphere. LetWi

be the potential of the field of internal origin andWe be the potential of the field
of external origin. The total geomagnetic potential W at Earth’s surface is

W ¼ We þWi (7:12)

The geomagnetic potential has to be conformable with Earth’s approximately
spherical geometry, so the solution of (7.11) requires spherical polar coordi-
nates. The general solution of Laplace’s equation is therefore as described in
Section 1.16. The variation of potential on a spherical surface is described by
spherical harmonic functions of the co-latitude θ and longitude �. The variation
of potential with radial distance r consists of two parts. In a region where r can
be zero, the potential is proportional to rn. At Earth’s surface this condition
applies to the field due to sources outside the Earth, so We must vary as rn. In a
region where r can be very large or infinite, the potential is proportional to
1/rn+1. Outside the Earth and on its surface, this applies to the potential of the
field of internal origin, so Wi must vary as 1/rn+1. These considerations lead to
the following definition for the potential We of the field of external origin:

We ¼ R
X1
n¼1

Xn
m¼0

r

R

� �n

Gm
n cos m�ð Þ þHm

n sin m�ð Þ� �
Pm
n ðcos θÞ; r5R

(7:13)

Similarly, the potential Wi of the field of internal origin is

Wi ¼ R
X1
n¼1

Xn
m¼0

R

r

� �nþ1

gmn cos m�ð Þ þ hmn sin m�ð Þ� �
Pm
n ðcos θÞ; r4R

(7:14)

Terms with n = 0 are absent from these expressions because magnetic monop-
oles do not exist. At the Earth’s surface the expressions simplify to

We ¼ R
X1
n¼1

Xn
m¼0

Gm
n cos m�ð Þ þHm

n sin m�ð Þ� �
Pm
n ðcos θÞ (7:15)

Wi ¼ R
X1
n¼1

Xn
m¼0

gmn cos m�ð Þ þ hmn sin m�ð Þ� �
Pm
n ðcos θÞ (7:16)

In a convention adopted in 1939 by the scientific body that preceded the
modern International Association of Geomagnetism and Aeronomy (IAGA), it
was agreed to base the spherical harmonic functions in the magnetic potential on
the partially normalized Schmidt polynomials (Section 1.15.2). The coefficients
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(gmn , h
m
n ) and (G

m
n ,H

m
n ) are called the Gauss (or Gauss–Schmidt) coefficients of

the fields of internal and external origin, respectively. They have the dimensions
of magnetic field and their magnitudes diagnose the relative importance of the
external and internal sources of the field.

7.2.2 Determination of the Gauss coefficients

It is not possible to measure the geomagnetic potential directly, so the Gauss
coefficients are calculated from measurements of the northward (X ), eastward
(Y ), and vertically downward (Z ) components of the magnetic field at or above
the Earth’s surface (Fig. 7.1(a)). These components are related to other geo-
magnetic elements, such as the horizontal field (H ), total field (T ), angle of
inclination (I ), and angle of declination (D), as illustrated in Fig. 7.1(b). The
field components in spherical polar coordinates are

X ¼ �Bθ ¼ 1

r

∂W
∂θ

����
r¼R

(7:17)

Y ¼ B� ¼ �1

r sin θ
∂W
∂�

����
r¼R

(7:18)

Z ¼ �Br¼ ∂W
∂r

����
r¼R

(7:19)

The differentiations, after evaluating on the Earth’s surface at r = R, result in
the following set of equations involving the unknown Gauss coefficients:

r
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θ
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D
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magnetic
North
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Br

Bφ

Bθ

Fig. 7.1. (a) Relationship between the north (X), east (Y), and vertical (Z)
components of the geomagnetic field and the spherical polar components Br, Bθ,
and B�. (b) The field may be described by the X, Y, and Z components, or by its
intensity (T), declination (D), and inclination (I). A magnetic compass aligns with
the horizontal component H, which is directed towards magnetic north.
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X ¼
X1
n¼1

Xn
m¼0
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(7:20)

Y ¼
X1
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(7:21)

Z ¼ � P1
n¼1

Pn
m¼0

ðnþ 1Þgmn � nGm
n
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n ðcos θÞ
(7:22)

Note that the Gauss coefficients have the same dimensions as the magnetic field
B, namely tesla. The tesla is a large magnetic field, so the geomagnetic field
intensity and the Gauss coefficients are usually expressed in nanotesla (1 nT =
10−9 T). In the north and east components the Gauss coefficients occur as

gmn þ Gm
n

� �
and hmn þHm

n

� �
, and therefore the horizontal components alone

do not allow separation of the external and internal parts. However, the Gauss
coefficients occur in a different combination in the vertical field, and by virtue of
this the external and internal fields can be separated.
In theory, the summations are over an infinite number of terms, but in practice

they are truncated after a certain degree N. The coefficients h0n and H0
n do not

exist, because sin(m�) = 0 form = 0, and these terms make no contribution to the

potential. For n = 1 there are three coefficients for the internal field (g01; g
1
1; h

1
1)

and three for the external field (G0
1;G

1
1;H

1
1). Similarly, there are five of each for

n = 2, and in general 2(2n + 1) for degree n. The total number of coefficients Sn
up to and including order N for each part of the field is

SN ¼ 2ð1Þ þ 1½ � þ 2ð2Þ þ 1½ � þ 2ð3Þ þ 1½ � þ � � � þ 2ðNÞ þ 1½ �
¼ 2 1þ 2þ 3þ � � � þ Nð Þ þN (7:23)

The sum of the first N natural numbers is N(N + 1)/2, so the number of
coefficients up to degree and order N of the internal field is N(N + 2). The same
number is obtained for the external field. Thus separation requires knowing the
field values at a minimum of 2N(N + 2) stations.
From 1835 to 1841 Carl Friedrich Gauss and Wilhelm Weber organized the

semi-continuous (every 5 minutes, 24 hr/day) acquisition of data from up to 50
magnetic observatories distributed worldwide, albeit unevenly. Gauss in 1839
carried out the first analysis of the geomagnetic field up to degree and order 4, and
established that it is dominantly of internal origin; the coefficients of the external
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field are small compared with those of the internal field, and may to a first
approximation be neglected. The potential of the internal field is given by (7.14).
Magnetic field components have historically been measured and recorded at

geomagnetic observatories. A drawback of the data from observatories is their
uneven geographic distribution. A superior global coverage has been obtained
during the last decades with the addition of data from satellites. The coefficients
of the modern geomagnetic field have now been evaluated reliably up to degree
and order 13. The data are updated and published regularly as the coefficients of
the International Geomagnetic Reference Field (IGRF). The coefficients up to
degree and order 3, corresponding to the dipole, quadrupole, and octupole
components of the field at the Earth’s surface are listed in Table 7.1 for some
selected field models. The terms with n = 1 describe a dipole field; the higher-
order terms with n ≥ 2 are referred to collectively as the non-dipole field.

Table 7.1. Dipole (n = 1), quadrupole (n = 2), and octupole (n = 3) Gauss–
Schmidt coefficients from some historical field analyses. The coefficients DGRF
are for Definitive Geomagnetic Reference Fields that will not be modified
further. Details of the construction of the International Geomagnetic Reference
Field IGRF 2010 are given in Finlay et al. (2010).

Epoch and source

1835,
Gauss,
in 1839

1885,
Schmidt,
in 1895

1922,
Dyson and
Furner (1923)

1965,
DGRF

1985,
DGRF

2010,
IGRF

g1
0 −32,350 −31,730 −30,920 −30,334 −29,873 −29,496.5

g1
1 −3,110 −2,360 −2,260 −2,119 −1,905 −1,585.9

h1
1 6,250 5,990 5,920 5,776 5,500 4,945.1

g2
0 510 −520 −890 −1,662 −2,072 −2,396.6

g2
1 2,920 2,830 2,990 2,997 3,044 3,026.0

h2
1 120 −720 −1,240 −2,016 −2,197 −2,707.7

g2
2 −20 680 1,440 1,594 1,687 1,668.6

h2
2 1,570 1,500 840 114 −306 −575.4

g3
0 – 940 1,140 1,297 1,296 1,339.7

g3
1 – −1,230 −1,650 −2,038 −2,208 −2,326.3

h3
1 – −300 −460 −404 −310 −160.5

g3
2 – 1,430 1,200 1,292 1,247 1,231.7

h3
2 – 30 120 240 284 251.7

g3
3 – 400 880 856 829 634.2

h3
3 – 680 230 −165 −297 −536.8
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7.3 The Earth’s dipole magnetic field

The dominant component of the Earth’s surface magnetic field is the dipole
component. The axis of the dipole is inclined to the rotation axis, thus it can be
separated into an axial dipole and two orthogonal equatorial dipoles. As we will
see, shifting these dipoles from the center of the Earth generates higher-order
components in the geomagnetic potential.

7.3.1 The geocentric axial dipole

Each term in the geomagnetic potential (7.14) represents the potential of a partic-

ular pole configuration. The potential described by the largest coefficient, g01, is

W 0
1 ¼

R3g01
r2

P0
1 cos θð Þ ¼ R3g01 cos θ

r2
(7:24)

Comparison with (7.3) shows that this is the potential at distance r from the mid-
point of a magnetic dipole and at angle θ from the dipole axis. In Earth coor-
dinates this is the potential at co-latitude θ of a geocentric dipole aligned with the
rotation axis and pointing to the north pole with magnetic moment m given by

m ¼ 4πR3

μ0
g01 (7:25)

Themagnetic field of an axial dipole is horizontal at the equator (see (7.4) and
(7.5)). Its value at Earth’s surface is

Bθ ¼ � 1

r

∂
∂θ

R3g01 cos θ
r2

� �����
r¼R

¼ g01 sin θ (7:26)

At the equator this is equal to g01.

7.3.2 The geocentric inclined dipole

The coefficients of degree n = 1 and order m = 1 also have an inverse-square

dependence on distance, so g11 and h
1
1 too must represent dipoles. The combined

potential of the dipole terms is

W1 ¼ R
R

r

� �2

g01P
0
1ðcos θÞ þ ðg11 cos�þ h11 sin�ÞP1

1ðcos θÞ
� �

(7:27)

W1 ¼ R
R

r

� �2

g01 cos θ þ g11 cos� sin θ þ h11 sin� sin θ
� �

(7:28)
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Consider now the direction cosines of a line OP inclined at angle θ to the
reference axis and at angle � to the reference axis � = 0, as in Fig. 7.2. The
direction cosines (α, β, γ) of OP are

α ¼ sin θ cos�

β ¼ sin θ sin�

γ ¼ cos θ

(7:29)

Suppose the axis of a magnetic dipole to be inclined at angle θ0 to the z-axis and
at angle �0 to the reference axis � = 0. The direction cosines (α0, β0, γ0) of the
dipole axis are

α0 ¼ sin θ0 cos�0

β0 ¼ sin θ0 sin�0

γ0 ¼ cos θ0

(7:30)

IfΘ is the angle between OP and the dipole axis, and r the distance of P from the
dipole center, the magnetic potential at P is

W1 ¼ μ0m
4πr2

cosΘ ¼ μ0m
4πr2

αα0 þ ββ0 þ γγ0ð Þ (7:31)

The components of the dipole moment m along the reference axes (Fig. 7.3) are

(θ0 φ0)

site
P(θ,φ) 

θ
θ0

φ

φ0

Θ

geographic
pole

equator

Greenwich 
meridian

φ = 0

magnetic
pole

O

,

Fig. 7.2. Angular relationships pertaining to the computation of the potential of an
inclined geocentric magnetic dipole.
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mx ¼ m cos θx ¼ mα0
my ¼ m cos θy ¼ mβ0
mz ¼ m cos θ0 ¼ mγ0

(7:32)

The potential of the inclined dipole becomes

W1 ¼ μ0
4πr2

αmx þ βmy þ γmz

� �
(7:33)

Using the relationships in (7.29), the potential of the inclined dipole is

W1 ¼ μ0
4πr2

mz cos θ þmx cos� sin θ þmy sin� sin θ
� �

(7:34)

On equating individual terms with the expression for the potential using Gauss

coefficients (7.28) it is evident that the coefficients g11 and h11 represent orthog-
onal dipoles in the equatorial plane. The equatorial dipole components are

mx ¼ 4πR3

μ0
g11 (7:35)

my ¼ 4πR3

μ0
h11 (7:36)

The axial component of the dipole is

mz ¼ 4πR3

μ0
g01 (7:37)

mz

mx

my

θ0

m

z

x

y

θx
θy

(α0, β0 , γ0)

φ0

Fig. 7.3. Relationship between the Cartesian components and direction cosines of
a magnetic dipole m, which is inclined at angle θ0 to the rotation axis and has an
azimuth �0 in the equatorial meridian.
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The points where the dipole axis intersects the Earth’s surface are called the
geomagnetic poles (Fig. 7.2). At these points the dipole magnetic field is normal
to the surface. The geomagnetic poles are antipodal to each other, because they
lie at the opposite ends of the inclined axis. The co-latitude θ0 of the pole is
equal to the tilt of the inclined axis. From (7.30) and (7.32)

m sin θ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

x þm2
y

q
¼ 4π

μ0
R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11
� �2 þ h11

� �2q
(7:38)

Together with the axial component, this defines the tilt θ0 of the dipole axis,
which is also the co-latitude of its pole:

tan θ0 ¼ m sin θ0
m cos θ0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11
� �2 þ h11

� �2q
g01

(7:39)

The components of the dipole moment in the equatorial plane,mx andmy, define
the longitude �0 of the pole. From (7.35) and (7.36)

tan�0 ¼ β0
α0

¼ my

mx
¼ h11

g11
(7:40)

The dipole magnetic moment m is obtained by squaring and summing mx, my,
and mz, giving

m ¼ 4π
μ0

R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g01
� �2 þ g11

� �2 þ h11
� �2q

(7:41)

Analysis of the geomagnetic field for epoch 2010 (Finlay et al., 2010) locates
the north geomagnetic pole at 80.08 °N, 287.78 °E and the south geomagnetic
pole at 80.08 °S, 107.78 °E. The places where the total magnetic field of the
Earth is normal to the surface are the magnetic dip poles. The total field is
expressed by all the terms in (7.14). Because of the non-dipole components the
magnetic dip poles are not antipodal; also, because of secular variation
(Section 7.4) the pole locations change slowly with time. For epoch 2010, the
north dip pole was at 85.01 °N, 227.34 °E; the south dip pole was at 64.43 °S,
137.32 °E, which is outside the Antarctic Circle.

7.3.3 Axial dipole with axial offset

The terms with n = 2 are referred to as the quadrupole component of the field.
However, one must keep in mind that the multipole expression of the magnetic
field is a mathematical convenience that simply allows us to subdivide it for
convenient reference. That is, just as there are no physical magnetic dipoles
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inside the Earth, there are also no quadrupoles; a complex system of electric
currents deep in the Earth causes the magnetic phenomena that wemeasure. The
n = 2 coefficients are responsible for an offset of the magnetic dipole from the
Earth’s center. This can be shown as follows.
Let the axial magnetic dipole be displaced a small distance d along the dipole

axis, as in Fig. 7.4(a). The position P is now a distance u from the center of the
dipole at D, and the line DP makes an angle ψ with the dipole axis. The dipole
potential at P is now

W ¼ μ0
4π

m cosψ
u2

(7:42)

The line DP makes a small angle δwith the radius OP of length r. In the triangle
ODP ψ = θ + δ, so

cosψ ¼ cosðθ þ δÞ ¼ cos θ cos δ� sin θ sin δ (7:43)

u2 ¼ r2 þ d2 � 2rd cos θ � r2 1� 2
d

r
cos θ

� �
(7:44)

In the triangle SDP, created by drawing DS perpendicular to OP,

sin δ ¼ DS

u
¼ d sin θ

u
(7:45)

For a very small displacement d� r, the distances r and u are almost equal, so
the following relationships are approximately true to first order:

sin δ � d sin θ
r

and cos δ � 1 (7:46)

cosψ � cos θ � d

r
sin2θ (7:47)

P

S

O
d D

r

u

θ ψ

δ

(b)
P

SO

d

D

r

u

θ

ψ δ

(a)

Fig. 7.4. (a) Geometry for calculation of the potential at P of an axial magnetic
dipole at D, displaced a distance d along the rotation axis from the Earth’s center at
O. (b) The similar case of an axial magnetic dipole displaced in the equatorial plane.
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The potential of the axially displaced dipole may now be written

W � μ0m
4πr2

cos θ � d=r sin2θ
� �

1� 2d=r cos θð Þ (7:48)

Using the binomial expansion and truncating it after the first order in d/r,

W � μ0m
4πr2

cos θ � d

r
sin2θ

� �
1þ 2

d

r
cos θ

� �
(7:49)

W � μ0m
4πr2

cos θ � d

r
sin2θ þ 2

d

r
cos2θ

� �
(7:50)

W � μ0m
4πr2

cos θ þ μ0md

4πr3
3 cos2θ � 1
� �

(7:51)

W � μ0m
4πr2

P0
1ðcos θÞ þ

μ0 2mdð Þ
4πr3

P0
2ðcos θÞ (7:52)

The first term is the potential of a geocentric axial dipole; the second term is that
of a geocentric axial quadrupole. An axial displacement of the dipole is equiv-

alent to introducing the quadrupole term. The two terms are equivalent to the g01
and g02 terms in (7.14) for the multipole expansion of the potential.

7.3.4 Axial dipole with equatorial offset

To determine the effect of displacing the center of the axial dipole in the
equatorial plane, we use the same approach as in the previous section. The
geometry is as in Fig. 7.4(b) and the potential at P is, as before,

W ¼ μ0
4π

m cosψ
u2

(7:53)

With reference to the triangle ODP, we now have ψ = θ – δ, so

cosψ ¼ cosðθ � δÞ ¼ cos θ cos δþ sin θ sin δ (7:54)

u2 ¼ r2 þ d 2 � 2rd cos

�
π
2
� θ

�
� r2 1� 2

d

r
sin θ

� �
(7:55)

For a very small displacement d� r, the distances r and u are almost equal, so to
first order

sin δ � d sin θ

r
and cos δ � 1 (7:56)
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cosψ � cos θ þ d

r
sin2θ (7:57)

In the triangle SDP, created by drawing DS perpendicular to OP,

sin δ ¼ DS

u
¼ d

u
sin

�
π
2
� θ

�
� d

r
cos θ (7:58)

Using the binomial expansion and truncating it after the first order in d/r, the
potential of the equatorially displaced dipole (7.53) may now be written

W � μ0m
4πr2

cos θ þ d

r
sin2θ

� �,
1� 2

d

r
sin θ

� �

� μ0m
4πr2

cos θ þ d

r
sin2θ

� �
1þ 2

d

r
sin θ

� � (7:59)

W � μ0m
4πr2

cos θ þ 2
d

r
sin θ cos θ þ d

r
sin2θ

� �
(7:60)

W � μ0m
4πr2

cos θ þ μ0 2mdð Þ
4πr3

sin θ cos θ þ μ0 mdð Þ
4πr3

sin2θ (7:61)

Reference to Table 1.2 shows that the angular dependence of each term can be
replaced by an associated Legendre polynomial, which gives

W � μ0m
4πr2

P0
1 cos θð Þ þ μ0 2md=3ð Þ

4πr3
P1
2 cos θð Þ þ μ0 md=3ð Þ

4πr3
P2
2 cos θð Þ (7:62)

As before, the main term is the centered axial dipole. The additional terms result
from the equatorial displacement, and are equivalent to the terms governed by

coefficients g12 and g22 in (7.14).

7.3.5 Best-fitting eccentric inclined dipole

The best fit of a dipole to the observed magnetic field is obtained with an
eccentric inclined dipole centered a few hundred kilometers from the center of
the Earth (Box 7.1). To compute the offset of the dipole it is necessary to use all
terms of degree and order n ≤ 2 in the multipole expansion of the potential.
Using the Gauss coefficients for IGRF 2010 (Table 7.1), the location of the best-
fitting eccentric inclined dipole has displacements x0 = −400 km, y0 = 208 km, z0
= 210 km, r0 = 498 km; i.e., it lies north of the equator under the North Pacific
Ocean (Fig. 7.5) at 25 °N, 153 °E. The location of the eccentric dipole based on
Quaternary and Recent paleomagnetic data and deep-sea cores (Creer et al.,
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1973) was found to be offset by about 200 km in the same direction, suggesting
the existence of persistent non-axial components in the global field.
It is important to remember that the multipole method of expressing the

geomagnetic potential is a mathematical convenience. In reality there are no

Box 7.1. The eccentric dipole

The geomagnetic field is dominantly that of a dipole. The question
naturally arises as to the location of the dipole that best fits the present
field. Several methods of finding the optimum position have been
summarized by Lowes (1994). The most commonly used is a method that
was developed in 1934 by A. Schmidt, which yields the equations below
(Schmidt, 1934).

The tilt of the dipole axis is determined by the Gauss coefficients of first
degree, n = 1. The best-fitting dipole is not centered at the center of the
Earth but is displaced to a position with coordinates (x0, y0, z0), where z0 is
the shift of the dipole center along the rotation axis, x0 the shift in the
direction of the Greenwich meridian, and y0 the shift orthogonal to these
displacements. The displacements can be determined approximately using
all Gauss coefficients with n ≤ 2; a more exact solution requires the n = 3
coefficients as well. The following equations describe the location of the
dipole center in a spherical Earth with radius R for n ≤ 2:

x0 ¼ R L1 � g11E
� �

=ð3m2Þ
y0 ¼ R L2 � h11E

� �
=ð3m2Þ

z0 ¼ R L0 � g01E
� �

=ð3m2Þ
m2 ¼ g01

� �2þ g11
� �2 þ h11

� �2
E ¼ L0g

0
1 þ L1g

1
1 þ L2h

1
1

� �
=ð4m2Þ

L0 ¼ 2g01g
0
2 þ g11g

1
2 þ h11h

1
2

� � ffiffiffi
3

p

L1 ¼ �g11g
0
2 þ g01g

1
2 þ g11g

2
2 þ h11h

2
2

� � ffiffiffi
3

p

L2 ¼ �h11g
0
2 þ g01h

1
2 � h11g

2
2 þ g11h

2
2

� � ffiffiffi
3

p

The displacement r0 of the center of the eccentric inclined dipole from the
center of the Earth is

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ð Þ2 þ y0ð Þ2þ z0ð Þ2

q
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dipoles, quadrupoles, or other multipoles. However, these concepts provide a
convenient way of visualizing the geometry of parts of the field. As noted
above, a displacement of a dipole from the center of coordinates creates higher-
order terms in the multipole expansion. Thus it is possible to model the field
with a moderate number of displaced dipoles. If each dipole corresponds to a
current loop, this type of model may be physically more realistic. However, it is
not practical for a mathematical description of the field.

7.4 Secular variation

The Gauss coefficients are not constants but change slowly with time, a
phenomenon known as the secular variation of the field. Both the dipole and
the non-dipole parts of the field exhibit secular variations. The dipole secular
variations can be illustrated graphically by plotting the strength of the dipole
magnetic moment and the orientation of the dipole axis, expressed as the
latitude and longitude of a geomagnetic pole (Fig. 7.6). The timescale of dipole
secular variations is of the order of thousands of years. The strength of the
dipole magnetic moment has declined steadily over the past 150 years, during
which observatory measurements of the field have been made. In the same time
interval, the tilt of the dipole axis changed little until about 1960, but has since
been decreasing. Similarly, the longitude of the geomagnetic pole was steady
until the middle of the twentieth century, but has since been decreasing; this
corresponds to a westward motion of the dipole axis around the rotation axis.

North 
Pacific 

equator

Greenwich 
meridian

East

y0

z0

x0

rotation 
axis

z

x

y

m

Fig. 7.5. The location of the best-fitting eccentric dipole for IGRF 2010 is offset
into the northern hemisphere and the Pacific hemisphere. The orientation of the
dipole is not changed by the offset.
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When the dipole component is subtracted from the total field, the remainder –
described by the Gauss coefficients with n ≥ 2 – is called the non-dipole field.
Maps of the non-dipole field are characterized by large positive and negative
anomalies that can have amplitudes amounting to a large fraction of the dipole
field. These anomalies have a cell-like appearance, and change position and
intensity with time. The non-dipole field has a standing (stationary) part, which
exhibits intensity fluctuations without significant displacement, and a drifting
(mobile) part. The best-known feature is a westward drift of many of the
mapped cells at an average rate of about 0.3° per year.

7.5 Power spectrum of the internal field

The depth of the sources of the geomagnetic field of internal origin can be
determined from the power spectrum of the Gauss coefficients. The power (or
energy density) ℜn associated with the coefficients of degree n at the Earth’s
surface is given by Lowes (1966, 1974):

<n ¼ ðnþ 1Þ
Xn
m¼0

gmn
� �2 þ hmn

� �2� �
(7:63)

The term of degree n in the geomagnetic potential varies with radial distance r as
r−(n+1), so the strength of the field varies as r−(n+2). The power, or energy density,
is proportional to the square of the amplitude, and thus varies as r−2(n+2). If the
coefficients gmn and hmn have been determined on the surface of a sphere of radius
r, the power spectrum on a surface of radius R closer to the center of the Earth is
found by augmenting the spectrum by the ratio (r/R)2(n+2). The process is called
downward continuation. The power spectrum on the surface of radius R is then
given by
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Fig. 7.6. Geomagnetic secular variations: the dipole magnetic moment, the tilt of
the dipole axis relative to the rotation axis, and the longitude of the geomagnetic
pole.
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<n Rð Þ ¼
�
r

R

�2 nþ2ð Þ
<n rð Þ (7:64)

<n Rð Þ ¼ ðnþ 1Þ
�
r

R

�2 nþ2ð Þ Xn
m¼0

gmn
� �2þ hmn

� �2� �
(7:65)

The satellite MAGSAT measured the magnetic field at an average altitude of
420 km, equal to a radial distance of r = 6,791 km. The large quantity of data
allowed harmonic analysis up to degree n = 63. The power spectrum based on
the Gauss coefficients derived from the MAGSAT data is shown in Fig. 7.7
(lower curve). The n = 1 dipole term lies disproportionately above the other
terms. On a semi-logarithmic plot the data form two almost linear segments,
above and below n = 14. The part of the spectrum with n ≤ 14 is attributed
mainly to sources in the core; the part with higher values of n arises from
sources mainly in the crust; the signal above n ≈ 50 was considered to be noise,
which averaged 0.091 nT2 per degree. The two parts of the spectrum overlap
around the break in slope.
The upper curve in Fig. 7.7 shows the data after downward continuation to

the Earth’s surface (radius R = 6,371 km). Note that the slope of the line for

1010

Wn (nT2)
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 at 420 km altitude

at Earth s surface

optimized

Fig. 7.7. The energy intensity associated with each degree of the spherical-
harmonic analysis of the geomagnetic field, from measurements by the
MAGSAT satellite at altitude 420 km, after reduction to the Earth’s surface. Data
source: Cain et al. (1989).
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core sources (n ≤ 14) is flatter than that at altitude 420 km. This suggests that
if downward continuation is carried out to even deeper surfaces the slope
might become zero. For n > 15 the slope of the line becomes positive. This is
because downward continuation amplifies preferentially higher frequencies,
including the noise inherent in the measured signal. When the noise is
removed, the downward-continued spectrum at the Earth’s surface is almost
flat for n > 15 (the smooth curve in Fig. 7.7). The data after removing the
average noise (and without the dipole term) can be fitted by a continuous
curve with equation

<n ¼ 9:66� 108 0:286ð Þn þ 19:1 0:996ð Þn (7:66)

7.5.1 Estimation of the source depth of the main field

Amethod for estimating the approximate depth of the source layer of a magnetic
or gravity anomaly is to assume that the power spectrum is “white” at that level
(i.e., every part of the spectrum has the same amplitude). This can be applied to
the non-dipole core field, for which

<n ¼ 9:66� 108ð0:286Þn (7:67)

The power of a signal is defined to be the square of its amplitude. Thus the term
of degree n in the power spectrum has amplitude

Bn ¼
ffiffiffiffiffiffi
<n

p
¼ 3:108� 104 0:535ð Þn (7:68)

The ratio of the amplitudes of successive terms is

Bnþ1

Bn
¼ 0:535 (7:69)

The Gauss coefficients in the power spectrum of the internal field are defined
from the solution of Laplace’s equation given in (7.14). The amplitude of the nth
term in the potential varies with radial distance according to

Wn / Bn
R

r

� �nþ1

(7:70)

The ratio of successive terms in the potential is then

Wnþ1

Wn
¼ Bnþ1

Bn

R

r

� �
¼ 0:535

R

r

� �
(7:71)

216 Geomagnetism



If the power spectrum becomes white, then all terms in the potential are equal,
Wn = Wn+1, and

r ¼ 0:535R (7:72)

This result locates the source layer of the non-dipole terms (2 ≤ n ≤ 14) at a radial
distance of about 3,400 km. The radius of the core is 3,480 km, thus the source
depth of the non-dipole terms is in the outer core, close to the core–mantle
boundary.
The power spectrum at the Earth’s surface, corrected for noise (solid line in

Fig. 7.7), is almost flat above n = 15, signifying that the source layer of this part
of the spectrum is very close to the surface and hence can be associated with
crustal sources.

7.6 The origin of the internal field

William Gilbert’s concept in 1600 of the Earth as a giant permanently magne-
tized sphere proved to be unrealistic in light of later knowledge of rock magnetic
properties and the internal structure of the Earth. The magnetic field of a
geocentric axial dipole is horizontal at the magnetic equator, where its strength
Be on the surface r = R is

Be ¼ μ0
4π

m sin π=2ð Þ
R3

¼ μ0
4πR3

m (7:73)

The magnetization M is equal to the magnetic moment m per unit volume, so

Be ¼ μ0
4πR3

4πR3

3
M ¼ μ0

3
M (7:74)

The equatorial field is equal to g01 (i.e., ~30,000 nT), which gives a mean
magnetization of 70 Am−1. This greatly exceeds the magnetization of the
most common strongly magnetized rocks (M is about 1 Am−1 in basalt).
Moreover, it does not take into account that the temperature inside the Earth
soon exceeds the Curie temperature of magnetic minerals, above which no
permanent magnetization is possible, so only the thin outer shell could be
permanently magnetized. This would require an even greater magnetization
than that calculated. Finally, the concept of a permanent magnet does not
account for the observed secular variation of the magnetic field.
The experiments of Ampère and Ørsted in the early nineteenth century

showed that magnetism was caused by electric currents. It is reasonable to
assess whether the geomagnetic field has an electromagnetic origin.
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7.6.1 Electromagnetic model

Maxwell’s equations of electromagnetism (Appendix B) lead to an electro-
magnetic model for generation of the geomagnetic field in the fluid Earth’s
core. The electrical conductivity σ of the liquid-iron outer core is estimated to be
about 5 × 105 Ω−1 m−1 (Stacey and Anderson, 2001), which makes it a good
conductor. Any free charges would rapidly dissipate, so the free charge density
ρ in Coulomb’s law (Appendix B, part 1) is zero. A comparison of the magni-
tudes of the two terms on the right of Ampère’s law (Appendix B, part 2) for a
periodic variation with angular frequency ω = 2π/τ gives

∂D=∂tj j
Jj j ¼ ε0 ∂E=∂tj j

σ Ej j ¼ ε0 iωEj j
σ Ej j ¼ 2πε0

τσ
(7:75)

The electric field constant is ε0 = 8.854 × 10−12 C2 N−1 m−2 and the approximate
conductivity of the core is σ = 5 × 105Ω−1 m−1. For a period τ longer than a year
(3.15 × 107 s), the ratio in (7.75) is less than 10−24. Thus the displacement
current ∂D/∂t can be ignored in the core. Maxwell’s equations for the core
become

r ·E ¼ 0 ðCoulomb’s lawÞ (7:76)

r� B ¼ μ0J ðAmpère’s lawÞ (7:77)

r ·B ¼ 0 ðGauss’s lawÞ (7:78)

r� E ¼ � ∂B
∂t

ðFaraday’s lawÞ (7:79)

Taking the curl of both sides of (7.77) gives

r� r� Bð Þ ¼ μ0σ r� Eð Þ (7:80)

Substituting on the right from (7.79) gives

r� r� Bð Þ ¼ �μ0σ
∂B
∂t

(7:81)

Using the vector identity of (1.34), the left-hand side can be expanded, giving

r r ·Bð Þ � r2B ¼ �μ0σ
∂B
∂t

(7:82)

The first term can be eliminated because of Gauss’s law, leaving

r2B ¼ μ0σ
∂B
∂t

(7:83)
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∂B
∂t

¼ 1

μ0σ
r2B ¼ ηm r2B (7:84)

This differential equation has the same form as the diffusion equation (6.66),
and the parameter ηm = 1/(μ0σ) is called the magnetic diffusivity.
The magnetic field B must satisfy Gauss’s law, having a solution such as

B ¼ �rWþr� A (7:85)

In this solution the scalar potential W is the familiar solution of Laplace’s
equation, whereas A is a vector potential that must be added because of the
vector identity that the divergence of the curl of a vector is always zero (see
(1.33)). The scalar potential can be used for a magnetic field in a region that is
free of electric currents (such as the description of the geomagnetic field using
Gauss coefficients). A vector potential is appropriate to describe a field that
arises from electric currents. If we insert this solution into (7.84) we get

∂
∂t

�rWþr� Að Þ ¼ ηm r2 �rWþr� Að Þ (7:86)

r ∂W
∂t

� ηm r2W

� �
¼ ∂

∂t
r� Að Þ � ηm r2 r� Að Þ (7:87)

Both sides of this equation have the same form as the thermal conductivity
equation, if each side is set to zero. The solutions depend on space and time, and
can be obtained by separating the variables with appropriate boundary
conditions.
In a three-dimensional problem this can be complicated, but we can get an

order-of-magnitude solution by considering a one-dimensional case. Let the
scalar equation depend only on x and t,

∂W
∂t

¼ ηm
∂2W
∂x2

(7:88)

This is a magnetic equivalent of the heat-conduction equation (Section 6.6.2). A
possible solution is

W ¼ W0 sin

�
2πn

x

L

�
� exp �t=τð Þ (7:89)

The quantity L is a length that is characteristic of the problem. It may be
comparable to the size of the outer core, for example. The magnetic potential
W decays exponentially; the quantity τ is a relaxation time, over which the field
sinks to 1/e of its initial value. Upon inserting the solution into (7.88) and taking
the fundamental mode of the distance dependence (n = 1) we get
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� 1

τ
W ¼ � 4π2ηm

L2
W (7:90)

This gives the relaxation time in terms of other core parameters:

τ ¼ μ0σL
2

4π2
(7:91)

The electrical conductivity of the core is approximately 5 × 105 Ω−1 m−1 and
μ0 = 4π × 10−7 N A−2, so, taking a characteristic length L = 2,000 km, the
relaxation time τ is 6.4 × 1010 s or about 2,000 yr. In a time equal to 5τ an
exponential function sinks to less than 1% of its initial value, so the magnetic
field generated by a purely electromagnetic model would disappear in about
10,000 years. Magnetizations in ancient rocks show that the Earth has had a
magnetic field since the Pre-Cambrian, i.e., for times on the order of 109 yr, so
the electromagnetic model is inadequate. A satisfactory model must be capable
of sustaining a magnetic field for this long.
A further mechanism is needed to regenerate the magnetic field and prevent it

from diffusing away. This is provided by physical motion of the electrically
conducting core fluid, which interacts with the magnetic field lines in the core.
The mechanism is analogous to that of a dynamo, in which a coil of wire is
moved through the field of a magnet to create an electric current in the wire. The
process of generating the geomagnetic field by induction from the motion of the
conducting core fluid is known as the dynamo model.

7.6.2 The magnetohydrodynamic model

When an electrical charge qmoves with velocity v through a magnetic fieldB, it
experiences the Lorentz force F, which is normal to the field and to the direction
of motion (Appendix A3):

F ¼ qðv� BÞ (7:92)

In the case of the Earth’s core it gives rise to an additional electric fieldEL given by

EL ¼ F

q
¼ v� B (7:93)

The total electric field experienced by the material of the core is now Et = E +
EL, and for Ohm’s law we get

J ¼ σEt ¼ σ Eþ ELð Þ ¼ σ Eþ v� Bð Þ (7:94)

Ampère’s equation (7.77) becomes
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r� B ¼ μ0J ¼ μ0σ Eþ v� Bð Þ (7:95)

With the additional term we now proceed as for the electromagnetic model,
taking the curl of both sides of the equation:

r� r� Bð Þ ¼ μ0σ r� Eð Þ þ r � v� Bð Þð Þ (7:96)

rðr ·BÞ � r2B ¼ μ0σ � ∂B
∂t

þr� v� B

� �
(7:97)

The first term is zero because of Gauss’s law; rearranging the other terms gives

∂B
∂t

¼ ηm r2Bþ r� v� Bð Þ (7:98)

This is known as the magnetohydrodynamic induction equation. The con-
stant ηm is the magnetic diffusivity, as before. As a result of the additional term
on the right, the magnetic field no longer decays exponentially with time. The
first term describes the tendency of the field to decay by diffusion; the second
term provides additional energy to regenerate the field from the interaction of
the field with the motion of the conducting fluid. The ratio of the terms on the
right is called the magnetic Reynolds number, Rm, defined as

Rm ¼ r� v� Bj j
ηm r2Bj j (7:99)

The magnetic Reynolds number is defined by analogy with fluid mechanics,
where the Reynolds number is a property of a fluid that determines the predom-
inance of laminar flow or turbulent flow.At lowReynolds numbers viscous forces
are dominant, and the flow is laminar; at high Reynolds numbers inertial forces
result in turbulent flow, which is less stable and typified by random eddies. For a
magnetic Reynolds number Rm� 1, the magnetic field simply diffuses away by
ohmic dissipation as in the electromagnetic example discussed in the previous
section. If Rm� 1, the magnetic-field lines are carried along by the conducting
fluid and the fluid motion predominates in the generation of the field.
We can use dimensional analysis to estimate the magnitude of Rm in the core.

The dimension of a gradient is [L]−1, we can write [B] for the dimension of the
field, and the magnetic diffusivity ηm = 1/(μ0σ). Thus

Rm ¼ r� v� Bj j
ηm r2Bj j � μ0σ½L��1½v�½B�

½L��2½B� (7:100)

Rm ¼ μ0σvL (7:101)

7.6 Origin of the internal field 221



The quantities v and L are not known precisely. L is an unspecified length
assumed to be typical for a core motion; wemay use the same value as before for
the core, i.e., L = 2,000 km. The velocity v of the conducting fluid has
been estimated from the westward motion of field features to be on the order
of 10–20 km yr−1, i.e., v ≈ 0.3–0.6mm s−1. This gives a magnetic Reynolds
number of about 250–500. Even slower motions of the core give Rm� 1, so to a
first approximation we can ignore the diffusive term and write

∂B
∂t

¼ r� v� B (7:102)

This equation would be exactly true for a material with infinite conductivity,
but the finite conductivity of the core means that there is some leakage of the
magnetic flux. However, the assumption of infinite conductivity allows deeper
insight into the generation of the geomagnetic field.

7.6.3 The frozen-flux theorem

Let S be a surface bounded by a closed loop L in an electrically conducting fluid
at time t, and let B(t) be a magnetic field cutting S (Fig. 7.8). If dS is an element
of the surface area, the magnetic flux Φ0 through S is

Φ0 ¼
Z
S

BðtÞ · dS (7:103)

Suppose that the conductingfluidmoves with velocity v. In a short time increment
Δt the loop is displaced through a small distance dx= vΔt. This defines a cylinder
of volume V with a total surface area A, made up of (1) the bottom surface with

LT

nQ

Q

S, B(t)

n

nT

T, B(t + t)

L d l

dx

Fig. 7.8. Configuration for derivation of the “frozen-flux theorem.” At time t the
magnetic field B(t) intersects a surface S moving with velocity v through a
conducting fluid; at time t + Δt the field has changed to B(t + Δt) and the surface
area has changed to T. Relative to the enclosed volume, the normal directions nT
and nQ to surfaces T and Q are outward; the normal direction n to the bottom
surface S is inward.
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area S bounded by loop L, (2) the top surface with area T bounded by loop LT, and
(3) the side surfaces with area Q. During the elapsed time Δt the magnetic field
itself changes to B(t +Δt). The flux Φ2 through the top surface T is

Φ2 ¼
Z
T

Bðtþ DtÞ · dS (7:104)

We can apply the divergence theorem (Section 1.6) and Gauss’s law for magnet-
ism to the volume V cut by the field lines of B. At any timeZ

A

B · dS ¼
Z
V

r ·Bð ÞdV ¼ 0 (7:105)

The integration on the left is the flux of the magnetic field through all the
surfaces bounding the volume V. It can be written as the sum of the flux through
each end surface plus the flux through the side surface: thus, at time t + Δt,

�
Z
S

Bðtþ DtÞ · dSþ
Z
T

Bðtþ DtÞ · dS þ
Z
Q

Bðtþ DtÞ · dS ¼ 0 (7:106)

The negative sign in the first term is necessary because the normal direction to
each surface is outward, but we have defined the flux of the field to be inward
across S and outward across T. On rearranging terms, the flux across the top
surface T is given by

Φ2 ¼
Z
T

Bðtþ DtÞ · dS ¼
Z
S

Bðtþ DtÞ · dS�
Z
Q

Bðtþ DtÞ · dS (7:107)

The change in flux has two causes: the first is the change in the magnetic field
with time, and the second is the change of surface area through which the field
passes. If the time Δt is short, we can write the first term on the right to first
order as

Bðtþ DtÞ ¼ BðtÞ þ ∂BðtÞ
∂t

Dt (7:108)

Upon inserting this into (7.107) we have

Φ2 ¼
Z
S

BðtÞ · dS þ Dt
Z
S

∂BðtÞ
∂t

· dS�
Z
Q

Bðtþ DtÞ · dS (7:109)

The change in flux through the moving loop is
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DΦ ¼ Φ2 � Φ0 ¼ Dt
Z
S

∂BðtÞ
∂t

· dS�
Z
Q

Bðtþ DtÞ · dS (7:110)

The flux through the side surfaces must now be calculated. In time Δt the
displacement parallel to the local velocity vector of the fluid is dx = vΔt.
Together with an incremental distance dl along the loop L, this displacement
defines an element of the surface Q with area

dS ¼ d l� dx ¼ d l� vð ÞDt (7:111)

Thus the magnetic flux across the side surface Q isZ
Q

Bðtþ DtÞ · dS ¼ Dt
Z
Q

Bðtþ DtÞ · d l� vð Þ (7:112)

We can change the variable of integration by using the vector identity in (1.18).
The surface integration over Q is converted into a linear integration along dl,
i.e., around the closed loop L:Z

Q

Bðtþ DtÞ · dS ¼ Dt
Z
L

v� Bðtþ DtÞð Þ · d l (7:113)

Now we again use (7.108) to replace B(t + Δt) by B(t) and its time-derivative:

Z
Q

Bðtþ DtÞ · dS ¼ Dt
Z
L

v� BðtÞ þ ∂BðtÞ
∂t

Dt
� �� �

· d l

¼ Dt
Z
L

�
v� BðtÞ

�
· d lþ Dtð Þ2

Z
L

v� ∂BðtÞ
∂t

� �
· d l

(7:114)

By inserting this expression into (7.110) we obtain the change in flux in time Δt:

DΦ ¼ Dt
Z
S

∂BðtÞ
∂t

· dS� Dt
Z
L

�
v� BðtÞ

�
· d l� Dtð Þ2

Z
L

v� ∂BðtÞ
∂t

� �
· d l

(7:115)

On dividing throughout by Δt, we have

DΦ
Dt

¼
Z
S

∂BðtÞ
∂t

· dS�
Z
L

v� BðtÞð Þ · d l� Dt
Z
L

v� ∂BðtÞ
∂t

� �
· d l (7:116)
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The rate of change of magnetic flux is the limit of this expression as Δt tends to
zero; the final term disappears and

dΦ
dt

¼ lim
Dt¼0

DΦ
Dt

� �
¼

Z
S

∂BðtÞ
∂t

· dS�
Z
L

v� BðtÞð Þ · d l (7:117)

The integral around the closed loop L can be converted into an integral over the
open bounded surface S by applying Stokes’ theorem (Section 1.7):Z

L

v� BðtÞð Þ · dl ¼
Z
S

r� v� BðtÞð Þ · dS (7:118)

The rate of change of magnetic flux through the closed loop L is therefore

dΦ
dt

¼
Z
S

∂BðtÞ
∂t

�
�
r� v� BðtÞ

�� 
· dS (7:119)

If the electrical conductivity of the moving fluid is infinite, the approximation in
(7.102) applies, and the expression in brackets is zero. Therefore,

dΦ
dt

¼ 0 (7:120)

and

Φ ¼
Z
S

BðtÞ · dS ¼ constant (7:121)

This result states that the magnetic flux in a fluid with infinite electrical
conductivity does not change as the fluid moves. This is known as the frozen-
flux (or frozen-in-flux) theorem. It was formulated in 1943 by H. Alfvén, a
Swedish physicist, for an electrically conductive plasma (such as the solar
wind). The theorem can be applied as an approximation for any conducting
fluid with a high magnetic Reynolds number, such as the Earth’s liquid core. It
describes how, in an ideal case, magnetic field lines are trapped by the high
conductivity and compelled to move with the fluid. As a result, fluid motions in
the core, in particular thermally and compositionally driven convection, provide
the energy source and feedback mechanism for a self-sustaining magnetic field.
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8

Foundations of seismology

Our knowledge of Earth’s internal structure has been obtained from detailed
analysis of the travel-times of seismic waves in the Earth. A standard model of
the layered interior – PREM, the Preliminary Reference Earth Model
(Dziewonski and Anderson, 1981) – that gives the variations with depth of
seismic velocities, density, pressure, and elastic parameters has been derived.
This chapter handles the dependence of seismic-wave velocities on the elastic
properties of the medium in which they are transmitted.
The propagation of a seismic wave takes place by infinitesimal elastic displace-

ments of the material it passes through. An elastic displacement is reversible, i.e.,
after the disturbing force has been removed the material returns to its original
condition. The elastic properties and density of the material determine the type of
wave that passes through it, and the speed with which the wave travels.

8.1 Elastic deformation

Elastic deformation is governed by Hooke’s law, which was formulated in the
seventeenth century on the basis of empirical observations. These are illustrated
by the deformation of a rod of length x and cross-sectional area A, which extends
by an amount δx due to an applied force F (Fig. 8.1). In an elastic deformation
the fractional increase in length (δx/x) is directly proportional to the applied
force F and inversely proportional to its cross-section A:

δx
x

/ F

A
(8:1)

Stress and strain are defined for a small volume of a continuous medium as
limiting cases when the volume shrinks to zero, i.e., when both the length x and
the cross-sectional area A become very small. The limit of the force per unit area
(F/A) is the stress, σ, which has the units of pressure (pascal):
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σ ¼ lim
A!0

F

A

� �
(8:2)

The limit of the fractional change in dimension (δx/x) is the strain, ε, which is
dimensionless:

ε ¼ lim
x!0

δx
x

� �
(8:3)

Hooke’s law states that in an elastic deformation the stress and strain are
proportional to each other:

σ / ε (8:4)

The law describes the initial deformation of a material; the stress–strain relation-
ship is linear, and the behavior is said to be perfectly elastic. If the stress
increases continuously, the linearity breaks down, but the behavior is still elastic
and no permanent deformation results (Fig. 8.2). Eventually the limit of elastic
behavior is reached, permanent deformation results, and finally failure occurs.
The propagation of seismic waves takes place within the elastic range of
behavior.

8.2 Stress

The forces acting on an elastic body can be divided into body forces (e.g.,
gravity, centrifugal force) and surface forces (e.g., pressure, tension, and shear).
Imagine a small volume δV bounded by a surface S within a continuous larger
body of uniform density ρ. The body forces acting on δV (including inertial
forces) produce acceleration of δV and of the body as a whole. The material
surrounding δV exerts inward forces on the surface S; to maintain equilibrium,
equal and opposite surface forces act outwards across S. They cause the small
volume to change shape and define the state of stress in the body.

A

F
x

z

δx
y

Fig. 8.1. Extension of a rod of length x and cross-sectional area A due to an
applied force F.

228 Foundations of seismology



The definition of components of stress is illustrated for a small rectangular
box. Let F be a force with components F1, F2, and F3 referred to orthogonal
Cartesian coordinate axes x1, x2, and x3, respectively. F acts upon the surfaces of
a small rectangular box with sides parallel to the reference axes (Fig. 8.3). The
direction of each component of F is normal to one of the surfaces and tangential
to the other two. The orientation of each surface is specified by its outward
normal, and the respective areas are A1, A2, and A3.
The component of force F1 normal to the surface A1 produces a normal stress,

denoted σ11. The components F2 and F3 tangential to the surface A1 result in
shear stresses σ12 and σ13. The three components of stress acting on the surface
A1 are defined as

elastic

deformation

plastic

deformation

failure

Strain

Stress

linear 
range

elastic
limit

Hooke s 
law

Fig. 8.2. Hypothetical stress–strain relationship, showing the regions of elastic and
plastic deformation, and the linear range within which Hooke’s law holds.

A1 A2

A3

δx1

δx3

δx2

x1

x2

x3

F3

F1
F2

Fig. 8.3. Definitions of the quantities involved in calculating the components of
stress caused by force components F1, F2, and F3 acting on the sides of a small
rectangular box with surface areas A1, A2, and A3, respectively.
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σ11 ¼ lim
A1!0

F1

A1

� �
; σ12 ¼ lim

A1!0

F2

A1

� �
; σ13 ¼ lim

A1!0

F3

A1

� �
(8:5)

Similarly, the components of F acting on the surface A2 define a normal stress
σ22 and shear stresses σ21 and σ23, while the components of F acting on the
surface A3 define a normal stress σ33 and shear stresses σ31 and σ32 (Fig. 8.4).
The nine components σkn (k = 1, 2, 3; n = 1, 2, 3) form the elements of the stress
tensor, which in matrix form is

σkn ¼
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

0
@

1
A (8:6)

In each case the first index of a stress element identifies the orientation of a
surface and the second index identifies the component of force acting on the
surface.

8.2.1 Symmetry of the stress tensor

Let the sides of the small rectangular box have lengths δx1, δx2, and δx3 parallel
to the reference axes (Fig. 8.5). For the box to be in static equilibrium, the sum
of the forces on the box (which would displace it) must be zero, and the sum of
the moments of the forces (which would rotate it) must also be zero. Consider
first the balance of the moments acting on pairs of faces. The couple exerted
about a line through the center of the box parallel to the x3-axis by the shear
stresses on the faces normal to x1 (Fig. 8.5(a)) is (to first order, neglecting the
second-order term in δx1

2)

x
1

x
2

x3

σ11

σ12

σ13

σ31

σ32

σ33

σ21

σ22

σ23

Fig. 8.4. Definition of the components of normal and shear stress.
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σ12 þ ∂σ12
∂x1

δx1

� �
A1

δx1
2

þ σ12A1
δx1
2

¼ σ12 δx1 A1 ¼ σ12 δx1 δx2 δx3

¼ σ12 δV

(8:7)

A further couple is exerted about the x3-axis by the shear stresses on the faces
normal to x2 (Fig. 8.5(b)). This acts in the opposite sense to the first couple and
(also to first order) is equal to

σ21 þ ∂σ21
∂x2

δx2

� �
A2

δx2
2

þ σ21A2
δx2
2

¼ σ21 δx2 A2 ¼ σ21 δV (8:8)

The resulting couple about the x3-axis is the difference between (8.7) and (8.8).
For the box to be in equilibrium, the sum of the moments about the x3-axis must
be zero; therefore

σ12 � σ21ð ÞδV ¼ 0 (8:9)

This must be valid for any small volume δV; therefore,

σ12 ¼ σ21 (8:10)

Similar evaluations of the moments about the x1- and x2-axes show, respec-
tively, that σ23 = σ32 and σ31 = σ13. The equilibrium of moments acting on the

x1

σ22+
∂σ22

∂x2

δx2

−σ23

−σ22

−σ21

σ23+
∂σ23

∂x2

δx2

σ21+
∂σ21

∂x2

δx2

x3

x2

(b)

δx3

δx1

δx2

x1

σ12+
∂σ12

∂x1

δx1

−σ13

−σ12

−σ11

σ11+
∂σ11

∂x1

δx1

x2

x3

σ13+
∂σ13

∂x1

δx1

(a)

x1

σ32+
∂σ32

∂x3

δx3

−σ33

−σ32

−σ31

σ33+
∂σ33

∂x3

δx3

x2

x3

σ31+
∂σ31

∂x3

δx3

(c)

Fig. 8.5. Forces acting on the surfaces of a small rectangular box in the directions
of (a) the x1-axis, (b) the x2-axis, and (c) the x3-axis.
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elementary volume requires the stress tensor to be symmetric (σkn = σnk), which
reduces the number of different elements in the matrix to six.

8.2.2 Equation of motion

Let the small box experience a displacement u = unen, where en is a unit vector in
the direction of displacement. The acceleration of the box as a result of all forces
acting on it is a = anen, where

an ¼ ∂2un
∂t2

(8:11)

If the density of the material in the small box is ρ and the volume of the box is δV,
its massm is equal to ρ δV. Let the body force per unit mass have components F1,
F2, and F3. The resultant force along the x1-axis is due to the normal stresses
acting on the surfaces with area A1 (Fig. 8.5(a)) and the shear stresses on the
surfaces with areas A2 (Fig. 8.5(b)) and A3 (Fig. 8.5(c)), respectively. The
resultant of the surface forces in the x1-direction is

σ11 þ ∂σ11
∂x1

δx1 � σ11

� �
A1 þ σ21 þ ∂σ21

∂x2
δx2 � σ21

� �
A2

þ σ31 þ ∂σ31
∂x3

δx3 � σ31

� �
A3

¼ ∂σ11
∂x1

δx1 δx2 δx3ð Þ þ ∂σ21
∂x2

δx2 δx3 δx1ð Þ þ ∂σ31
∂x3

δx3 δx1 δx2ð Þ

¼ ∂σ11
∂x1

þ ∂σ21
∂x2

þ ∂σ31
∂x3

� �
δV (8:12)

The equation of motion in the x1-direction as a result of the inertial, body, and
surface forces is

ma1 ¼ mF1 þ ∂σ11
∂x1

þ ∂σ21
∂x2

þ ∂σ31
∂x3

� �
δV (8:13)

ρa1 ¼ ρF1 þ ∂σ11
∂x1

þ ∂σ21
∂x2

þ ∂σ31
∂x3

� �
(8:14)

Similar expressions are obtained for the net forces along the x2- and x3-axes.
Using the summation convention (where the repeated index implies the sum for
k = 1, 2, and 3), we get the tensor equation

ρan ¼ ρFn þ ∂σkn
∂xk

(8:15)

232 Foundations of seismology



If the body force per unit mass Fn can be neglected, we can write the accel-
eration as in (8.11), and this equation reduces to the homogeneous equation of
motion:

ρ
∂2un
∂t2

¼ ∂σkn
∂xk

(8:16)

8.3 Strain

Let the vector x define a point P in an arbitrary body and let Q be another point
of the body at an infinitesimal distance y from P, as in Fig. 8.6. In a general
displacement of the body the point P is displaced to a new position P1 by the
vector u, and Q is displaced to Q1 by the vector v. If the difference between the
displacements is du, then

v ¼ uþ du ¼ uþ ∂u
∂x1

y1 þ ∂u
∂x2

y2 þ ∂u
∂x3

y3 (8:17)

Here y1, y2, and y3 are the components of y in the directions of the coordinates
x1, x2, and x3, respectively. In tensor notation

vk ¼ uk þ duk ¼ uk þ ∂uk
∂xn

yn (8:18)

The relationship is not changed if we subtract the term 1
2
∂un=∂xk, and then add

it back again, giving

P1

Q1

P
Q

u

v = u + duu

d u

y

x

O

Fig. 8.6. Illustration of a general displacement of points in a medium. The point P
is displaced to a new position P1 by the vector u and Q is displaced to Q1 by the
vector v.
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vk ¼ uk þ 1

2

∂uk
∂xn

� ∂un
∂xk

� �
yn þ 1

2

∂uk
∂xn

þ ∂un
∂xk

� �
yn (8:19)

vk ¼ uk þ φknyn þ εknyn (8:20)

The first term on the right-hand side of this equation represents a rigid-body
translation of the entire body by the vector u. This takes place without internal
deformation of the body.
The second term on the right contains the tensor φkn, whose elements are

φkn ¼
1

2

∂uk
∂xn

� ∂un
∂xk

� �
(8:21)

Comparison with (1.27) and Box 1.1 shows that φkn are the components of a
rotation about u = 0, i.e., the point P. The elements φkk = 0 and φkn = –φnk; the
tensor is antisymmetric and its diagonal elements are all zero:

φkn ¼
0 φ12 φ13

�φ12 0 φ23
�φ13 �φ23 0

2
4

3
5 (8:22)

The product of this tensor with the relative position vector yn gives, in matrix
form,

φknyn ¼
0 φ12 φ13

�φ12 0 φ23
�φ13 �φ23 0

2
4

3
5 y1

y2
y3

2
4

3
5 ¼

φ12y2 þ φ13y3
�φ12y1 þ φ23y3
�φ13y1 � φ23y2

2
4

3
5 (8:23)

The column matrix on the right-hand side of this equation has the same
components as the vector

e1 e2 e3
�φ23 φ13 �φ12
y1 y2 y3

������
������ ¼ j� y (8:24)

Here e1, e2, and e3 are unit vectors for the x1-, x2-, and x3-axes, respectively. The
vector φ represents a rotation, while y denotes the position of an arbitrary point
Q of the body relative to the point P, so φ × y describes an infinitesimal rigid-
body rotation of the body about an axis through P. The direction of the rotation
axis is the vector φ with components (−φ23, φ13, −φ12). Following (8.21), this
can also be written

j ¼ ∂u3
∂x2

� ∂u2
∂x3

� �
e1 þ ∂u1

∂x3
� ∂u3
∂x1

� �
e2 þ ∂u2

∂x1
� ∂u1
∂x2

� �
e3 (8:25)
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j ¼
e1 e2 e3

∂=∂x1 ∂=∂x2 ∂=∂x3
u1 u2 u3

�������
������� ¼ r� u (8:26)

The rigid-body rotation is a displacement of the entire body without deforma-
tion. Neither the translation u nor the rotation φ of the rigid body takes part in
the propagation of seismic waves.
The quantity εkn in (8.20) is the strain tensor. It describes a deformation in

which different parts of the body are displaced relative to each other. As long
as these displacements are small, the deformation is elastic and the strains can
be described by a (3 × 3) strain matrix, whose general term is defined by
(8.19):

εkn ¼ 1

2

∂uk
∂xn

þ ∂un
∂xk

� �
(8:27)

It is evident from this definition that interchanging the indices does not change
the general term; i.e., the strain matrix is symmetric (εkn = εnk). The diagonal
terms of the strain matrix (i.e., εkk) describe normal strains, which correspond to
changes in elongation of the body; the non-diagonal terms describe shear
strains, which arise from angular distortion of the body.

8.3.1 Normal strain

Consider two points of a body that lie close to each other at the positions x1 and
(x1 + δx1), respectively (Fig. 8.7(a)). If the body is stretched in the direction of
the x1-axis (Fig. 8.7(b)), the points are displaced by the small amounts u1 and
(u1 + δu1), respectively. Using a MacLaurin or Taylor series, we can write

u1 þ δu1ð Þ ¼ u1 þ ∂u1
∂x1

δx1 þ 1

2

∂2u1
∂x21

δx1ð Þ2 þ � � � (8:28)

x1 x1 + δx1

x1+ u1

u1 + δu1

(x1 + δx1) 

+ (u1 + δu1)

u1

(a)

(b)

Fig. 8.7. Definition of normal strain for extension in the x1-direction.
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If the displacements are infinitesimally small, we can truncate the power series
at first order, getting

δu1 ¼ ∂u1
∂x1

δx1 (8:29)

The original separation of the two points was δx1; after extension their separation
is (δx1 + δu1). The normal strain parallel to the x1-axis is the fractional change in
length resulting from an infinitesimal displacement parallel to the x1-axis and is
denoted ε11; thus,

ε11 ¼ lim
δx1!0

δx1 þ δu1ð Þ � δx1
δx1

¼ ∂u1
∂x1

(8:30)

In a similar way, normal strains are defined for the x2- and x3-directions. If a
point at xk is displaced by an infinitesimal amount to xk + uk, then there arise
normal strains εkk, corresponding to

εkk ¼ ∂uk
∂xk

(8:31)

The normal strains are not independent of each other in an elastic body.
Consider the change in shape of the bar in Fig. 8.8. When it is stretched parallel
to the x1-axis, it becomes thinner parallel to the x2-axis and parallel to the x3-
axis. The transverse strains ε22 and ε33 are of opposite sign to the extension ε11,
but are proportional to it; so they can be expressed as

ε22
ε11

¼ ε33
ε11

¼ �ν (8:32)

The constant of proportionality ν is Poisson’s ratio. The value of ν is constrained
to lie between 0 (no lateral contraction) and a maximum value of 0.5 for an
incompressible fluid. In the Earth’s interior, ν has a value around 0.24–0.27. A
body that has ν = 0.25 is called an ideal Poisson body.
The normal strains result in a change of volume. The volume of the rectan-

gular box in Fig. 8.5 is V = δx1 δx2 δx3. As a result of infinitesimal displacements

x1+δx1

α F

x1(a)

β F

(b)

x2 x2 δx2

Fig. 8.8. Illustration of the lateral contraction and the change in the angles between
the diagonals of a rectangular cross-section as a result of longitudinal extension.
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δu1, δu2, and δu3 the edges increase to δx1 + δu1, δx2 + δu2, and δx3 + δu3,
respectively. The fractional change in volume is

δV
V

¼ ðδx1 þ δu1Þðδx2 þ δu2Þðδx3 þ δu3Þ � δx1 δx2 δx3
δx1 δx2 δx3

¼ δx1 þ δu1
δx1

� �
δx2 þ δu2

δx2

� �
δx3 þ δu3

δx3

� �
� 1 (8:33)

The limit of the fractional change in volume, for small V, is defined as the
dilatation, θ. As in (8.30) the limiting values of δu1/δx1, δu2/δx2, and δu3/δx3 are
the longitudinal strains ε11, ε22, and ε33, respectively. Thus

θ ¼ lim
V!0

δV
V

¼ 1þ ε11ð Þ 1þ ε22ð Þ 1þ ε33ð Þ � 1 (8:34)

This expression for θ contains second- and third-order products of the strains
that can be neglected, thus

θ ¼ ε11 þ ε22 þ ε33 ¼ ∂u1
∂x1

þ ∂u2
∂x2

þ ∂u3
∂x3

(8:35)

Taking u as the displacement vector, the dilatation θ is equivalent to

θ ¼ r · u (8:36)

Using tensor notation, and the summation convention implied by a repeated
index,

θ ¼ εkk ¼ ∂uk
∂xk

(8:37)

8.3.2 Shear strain

The stress components (σ12, σ23, σ31) act obliquely on the surface of the
rectangular reference box (Fig. 8.4) and produce shear strains, which are
manifested as changes in the angular relationships between parts of a body.
These can also result from normal stresses. For example, the angles α and β
between the internal diagonals of a rectangular cross-section (Fig. 8.8), before
and after extension, respectively, are unequal; i.e., a longitudinal extension
gives rise to shear strain as well as normal strain.
Consider the two-dimensional distortion of a rectangle A0B0C0D0 by shear

stresses in the x1–x2 plane (Fig. 8.9). Point A0 is displaced parallel to the x1-axis
by an amount u1 and parallel to the x2-axis by an amount u2. The shear strain
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causes point D0, at a vertical distance δx2 above A0, to be displaced by an
amount (∂u1/∂x2)δx2 parallel to the x1-axis. This rotates side AD clockwise
through a small angle �2. For infinitesimal displacements

�2 ¼ tan�2 ¼ ð∂u1=∂x2Þδx2
δx2

¼ ∂u1
∂x2

(8:38)

Similarly, point B0, which is initially at a horizontal distance δx from A0, is
displaced by the amount (∂u2/∂x1)δx1 parallel to the x2-axis, causing AB to
rotate counterclockwise through a small angle �1 given by

�1 ¼ tan�1 ¼ ð∂u2=∂x1Þδx1
δx1

¼ ∂u2
∂x1

(8:39)

The shear-strain component ε12 is defined in (8.27):

ε12 ¼ 1

2

∂u2
∂x1

þ ∂u1
∂x2

� �
¼ 1

2
�1 þ �2ð Þ (8:40)

Transposition of the indices 1 and 2 yields the shear-strain component ε21,
which is identical to ε12. The total distortion in the x1–x2 plane is

�1 þ �2 ¼ ε12 þ ε21 ¼ 2ε12 ¼ 2ε21 (8:41)

δx1

A0

x2-axis

x1-axis

δx2

A 

C 

D 

B 
φ2

(u2 1)δx1

(u1 x2)δx2

D0

φ1

C0

B0

u1

u2

u1

u2

/

/x

Fig. 8.9. Displacements accompanying two-dimensional shear strain in the x1–x2
plane.
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The same argument leads to the definition of strain components ε23 (=ε32) and
ε31 (=ε13) for angular distortions in the x2–x3 and x3–x1 planes, respectively. The
shear strains are therefore

ε12 ¼ ε21 ¼ 1

2

∂u2
∂x1

þ ∂u1
∂x2

� �

ε23 ¼ ε32 ¼ 1

2

∂u3
∂x2

þ ∂u2
∂x3

� �

ε31 ¼ ε13 ¼ 1

2

∂u1
∂x3

þ ∂u3
∂x1

� � (8:42)

They are expressed in tensor form by

εkn ¼ εnk ¼ 1

2

∂un
∂xk

þ ∂uk
∂xn

� �
(8:43)

The longitudinal and shear strains together form the symmetric strain matrix

εkn ¼
ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

0
@

1
A (8:44)

The elements of the matrix represent the strain tensor εkn (k = 1, 2, 3; n = 1, 2, 3),
which, because of its symmetry, has six independent elements.

8.4 Perfectly elastic stress–strain relationships

Hooke’s law describes perfectly elastic deformation, which occurs by means of
infinitesimal strains. The components of strain are then linear functions of the
components of stress. The linear dependence allows the definition of elastic
moduli, each of which is a constant of proportionality between stress and strain.
Young’s modulus, the shear modulus, and the bulk modulus relate the different
elements of the stress and strain tensors for appropriate types of deformation.

Young’s modulus
Each normal stress σkk is proportional to the corresponding normal strain εkk.
Thus,

σkk ¼ Eεkk (8:45)

The constant of proportionality, E, is Young’s modulus. The lateral contraction that
accompanies longitudinal extension is described by Poisson’s ratio, ν (see (8.32)).
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Shear modulus (or rigidity modulus)
The shear strain εkn (i.e., the total angular distortion) in a plane is proportional to
the shear stress in the plane, σkn. Equation (8.41) defines the shear strain, so for
k ≠ n we have the relationship

σkn ¼ 2μεkn (8:46)

The constant of proportionality, μ, is the rigidity (or shear) modulus.

Bulk modulus (or incompressibility)
The bulk modulus, K, is a measure of the change of pressure needed to cause a
change of volume. A body under hydrostatic pressure p (defined as acting
inwards, equivalent to a negative normal stress) experiences a change of
volume. The fractional change in volume is the dilatation, θ, which is related
to the principal strains as in (8.34)–(8.37). Under hydrostatic conditions there
are no shear stresses (σkn = 0) and the normal stresses are equal (σkk = –p). The
dilatation is proportional to the pressure and the constant of proportionality isK.
Thus, we have the simple relationships

p ¼ �Kθ ¼ �K
∂uk
∂xk

¼ �K r · u (8:47)

8.4.1 The Lamé constants

A change of length in the x1-direction consists of the extension due to σ11 and
contributions from the lateral contractions in the x2- and x3-directions that are
due to σ22 and σ33. The normal strain equals σ11/E and, using (8.32), the lateral
contractions contribute –νσ22/E and –νσ33/E, respectively, to the longitudinal
strain. Thus, for the x1-direction

ε11 ¼ σ11
E

� ν
σ22
E

� ν
σ33
E

(8:48)

Similar equations are obtained for the x2- and x3-directions. On multiplying
each equation throughout by E, we get the set of equations

Eε11 ¼ σ11 � νσ22 � νσ33
Eε22 ¼ σ22 � νσ33 � νσ11
Eε33 ¼ σ33 � νσ11 � νσ22

(8:49)

Adding these equations gives

E ε11 þ ε22 þ ε33ð Þ ¼ σ11 þ σ22 þ σ33ð Þ 1� 2νð Þ (8:50)

Eθ ¼ σ11 þ σ22 þ σ33ð Þ 1� 2νð Þ (8:51)
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This equation can be rewritten for σ11:

σ11 ¼ E

1� 2ν
θ � σ22 þ σ33ð Þ (8:52)

We can obtain another expression for the sum (σ22 + σ33) from the first line of
(8.49):

σ22 þ σ33ð Þ ¼ �Eε11 � σ11
ν

(8:53)

Substituting this expression for (σ22 + σ33) into (8.52) gives

σ11 ¼ E

1� 2ν
θ þ Eε11 � σ11

ν
(8:54)

νσ11 ¼ Eν
1� 2ν

θ þ Eε11 � σ11 (8:55)

σ11 ¼ Eν
1� 2νð Þ 1þ νð Þ θ þ

E

1þ ν
ε11 (8:56)

The coefficients of θ and ε11 define the Lamé constants λ and μ, respectively:

λ ¼ Eν
1� 2νð Þ 1þ νð Þ (8:57)

2μ ¼ E

1þ ν
(8:58)

The relationship between normal stress and normal strain in terms of the Lamé
constants is

σ11 ¼ λθ þ 2με11 (8:59)

A similar result would be obtained by using any line in (8.49), so in general the
normal stresses and strains are related by

σkk ¼ λθ þ 2μεkk (8:60)

The Lamé constant μ is equivalent to the shear modulus. This can be shown by
establishing independently the relationship among Young’s modulus, the shear
modulus, and Poisson’s ratio (Box. 8.1), which leads to the same equation as
that in (8.58). The shear modulus is defined in (8.46) as the ratio of the shear
stress σkn to the shear strain εkn. Using the Kronecker-delta symbol, we can
therefore write the more general relationship

σkn ¼ λθδkn þ 2μεkn (8:61)
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Box 8.1. Relationship of the shear modulus, Young’s modulus,
and Poisson’s ratio

Consider a body with a square cross-section subject to normal stresses in
the x1–x2 plane only (i.e., σ33 = 0), as in Fig. B8.1.1(a). Let the area of
each side normal to the figure be A. Let p be the average of the normal
stresses σ11 and σ22, and let σ be the stress difference between p and each
normal stress. Therefore

σ ¼ σ11 � p ¼ p� σ22 (1)

The outward stress difference σ along the x1-axis causes extension, whereas
the inward stress difference –σ along the x2-axis causes contraction
(Fig. B8.1.1(b)). The change of shape of the cross-section results in angular
distortions internally. Thus the normal stresses give rise to both normal
strains and shear strains.

σ11

σ22 − σ
(a) (b)

x1

x2

σ

Fig. B8.1.1. (a) Normal stresses σ11 and σ22 in the x1–x2 plane. (b) Deviatoric
stresses ± σ, equal to the difference between the normal stresses and their mean
value.

2s

s

− ϕ

s(1 + ε11)

−
4

ϕ
2

s(1 ε22)

(a) (b)

(σA)

(σA) D

B C

x1

x2

π
2
π

π

Fig. B8.1.2. (a) Undeformed square cross-section showing inward and
outward forces (σA) due to deviatoric stresses. (b) Side lengths, normal
strains, and changes to the angles between intersecting diagonals as a result
of deviatoric stresses.
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The outward force in the x1-direction is (σA), which has a component
(σA)/√2 along the body diagonal (Fig. B8.1.2(a)). Likewise, the inward force
in the x2-direction has a component (σA)/√2 in the same direction. The
combined force parallel to the diagonal is √2(σA). The area of a side normal
to the cross-section isA, so the area of a normal planar section that includes the
diagonal is √2A. The shear stress along the diagonal is therefore equal to σ.

The diagonals are initially at right angles to each other, but after
deformation their mutual orientation changes by an angle φ (Fig B8.1.2(b)),
which, as defined in Section 8.3.2, is the shear strain in the x1–x2 plane.
Consider the angles and side lengths in the triangle BCD. If the original side
length of the square cross-section is s (Fig. B8.1.2(a)), the side along the
x-axis extends to s(1 + ε11) while the side normal to this contracts to
s(1 + ε22). The tangent of the angle BCD is DB/BC; thus,

tan

�
π
4
� φ

2

�
¼ s 1þ ε22ð Þ=2

s 1þ ε11ð Þ=2 ¼ 1þ ε22
1þ ε11

(2)

The trigonometric formula for the tangent of the difference of two angles
gives

tan
π
4
� φ

2

� �
¼ tan π=4� tan φ=2

1þ tan π=4 tan φ=2
¼ 1� tan φ=2

1þ tan φ=2
(3)

On equating the two expressions, we have

1þ ε22
1þ ε11

¼ 1� tan φ=2
1þ tan φ=2

(4)

From (8.46), with σ33 = 0 and replacing the normal stresses by the deforming
stress differences, we can write expressions for ε11 and ε22,

ε11 ¼ σ11
E

� ν
σ22
E

¼ σ
E
� ν

�σð Þ
E

¼ σ
E

1þ νð Þ (5)

ε22 ¼ σ22
E

� ν
σ11
E

¼ �σð Þ
E

� ν
σ
E
¼ � σ

E
1þ νð Þ (6)

We now insert these expressions into (4). Note that the angle φ is very small,
so we can replace the tangent of the angle by the angle itself,

1� σ=E 1þ νð Þ
1þ σ=E 1þ νð Þ ¼

1� φ=2
1þ φ=2

(7)
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8.5 The seismic wave equation

In order to describe the propagation of a seismic wave in the Earth, some
simplifying assumptions must be made. First, the heterogeneity of the medium
is neglected. We assume that the medium is uniform and isotropic. This allows
us to use the homogeneous equation of motion derived in (8.16) to describe
particle displacements. Secondly, the medium is assumed to behave as a
perfectly elastic substance; only infinitesimal displacements of the particles of
the medium are considered. The relationship between stress and strain is
governed by (8.61). The equation of motion becomes

ρ
∂2un
∂t2

¼ ∂
∂xk

λθδkn þ 2μεknð Þ (8:62)

Next we assume that the Lamé parameters λ and μ do not vary with position, and
therefore can be treated as constants. This implies in effect that there are no
velocity gradients in the medium. On writing θ = εnn and observing the
Kronecker delta, we have

ρ
∂2un
∂t2

¼ λ
∂εnn
∂xn

þ 2μ
∂εkn
∂xk

(8:63)

Now we can insert the definitions of εnn from (8.37) and εkn from (8.43),

ρ
∂2un
∂t2

¼ λ
∂
∂xn

∂uk
∂xk

� �
þ μ

∂
∂xk

∂un
∂xk

þ ∂uk
∂xn

� �
(8:64)

φ
2
¼ σ

E
1þ νð Þ (8)

The shear modulus μ is the ratio of the shear stress to the shear strain; in this
case, the ratio of the deforming stress σ to the angular distortion φ:

μ ¼ σ

φ
(9)

From (8) we therefore have the following relationship among the shear
modulus μ, Young’s modulus E, and Poisson’s ratio ν:

μ ¼ E

2 1þ νð Þ (10)
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ρ
∂2un
∂t2

¼ λ
∂
∂xn

∂uk
∂xk

þ μ
∂2un
∂x2k

þ μ
∂
∂xk

∂uk
∂xn

(8:65)

Note that the order of differentiation in the last term can be interchanged without
altering the meaning:

∂
∂xk

∂uk
∂xn

¼ ∂2uk
∂xk ∂xn

¼ ∂
∂xn

∂uk
∂xk

(8:66)

After gathering terms and simplifying, we have

ρ
∂2un
∂t2

¼ λþ μð Þ ∂
∂xk

∂uk
∂xn

� �
þ μ

∂2un
∂x2k

(8:67)

In symbolic form this equation is

ρ
∂2u
∂t2

¼ λþ μð Þr r · uð Þ þ μ r2u (8:68)

Now we recall the vector identity in (1.34) to obtain an expression for ∇2u:

r2u ¼ r r · uð Þ � r � r� uð Þ (8:69)

The homogeneous equation of motion becomes

ρ
∂2u
∂t2

¼ λþ μð Þr r · uð Þ þ μ r r · uð Þ � r � r� uð Þð Þ (8:70)

ρ
∂2u
∂t2

¼ λþ 2μð Þr r · uð Þ � μ r� r� uð Þð Þ (8:71)

This is the starting point for the treatment of elastic waves in an isotropic
homogeneous medium.
Minerals are individually anisotropic, their properties being controlled by

their crystal structure. However, in a large enough assemblage, random ordering
of the crystals makes a material macroscopically isotropic and justifies the
assumption of this condition for the Earth’s interior. The assumption of homo-
geneity is unrealistic. For example, the density and elastic parameters that
control the passage of seismic disturbances change with depth and may also
vary laterally at a given depth. However, a heterogeneous medium can be
modeled acceptably by dividing it into smaller elements (e.g., parallel horizon-
tal layers, or small blocks) and assuming homogeneous conditions in each
element. Real conditions can then be approximated by judicious choice of the
thickness, density, and elastic parameters of each element.
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The assumption that seismic signals propagate by elastic displacements of the
medium is true only at some distance from the source. In an earthquake or
explosion the medium immediately surrounding the source is destroyed, par-
ticle displacements are large and permanent, and the deformation is anelastic.
However, the elastic conditions underlying (8.71) are applicable for the passage
of a seismic disturbance at a distance from its source.
In order to proceed further with the equations of motion for seismic body

waves we take separately the divergence and curl of both sides of (8.71). This
leads to the description of primary and secondary seismic waves.

8.5.1 Primary waves (P-waves)

First we take the divergence of both sides of (8.71):

ρ
∂2 r · uð Þ

∂t2
¼ λþ 2μð Þr ·r r·uð Þ � μ r ·r� r� uð Þð Þ (8:72)

The vector identity (1.33) states that the divergence of the curl of any vector a is
zero, i.e.,∇ · (∇ × a) = 0. Thus the second term on the right is zero, and we get

ρ
∂2 r · uð Þ

∂t2
¼ λþ 2μð Þr2 r · uð Þ (8:73)

The dilatation θ, defined as the fractional change in volume, was shown in
(8.36) to equal the divergence of the displacement vector u; thus,

ρ
∂2θ
∂t2

¼ λþ 2μð Þr2θ (8:74)

∂2θ
∂t2

¼ α2 r2θ (8:75)

where

α2 ¼ λþ 2μ
ρ

(8:76)

Onexaminingbothsidesof(8.75) it isevident thatαhas thedimensionsofavelocity.
It is the velocity with which a change in volume (dilatation) propagates through
the medium. The disturbance propagates as a succession of compressions and
dilatations with velocity α. The corresponding seismic wave is the primary wave,
or P-wave, so called because it is the first arrival on the record of a seismic event.
The bulk modulus, Young’s modulus, and Poisson’s ratio can each be

expressed solely in terms of the Lamé constants (Box 8.2). The relationship
between the bulk modulus and the Lamé constants allows us to write (8.76) as
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Box 8.2. Elastic parameters and the Lamé constants

1. The bulk modulus, K

The bulk modulus describes volumetric shape changes of a material under
the effects of the normal stresses σ11, σ22, and σ33. Hooke’s law for each
normal stress gives the equations

σ11 ¼ λθ þ 2με11
σ22 ¼ λθ þ 2με22
σ33 ¼ λθ þ 2με33

(1)

Adding these equations together gives

σ11 þ σ22 þ σ33 ¼ 3λθ þ 2μ ε11 þ ε22 þ ε33ð Þ (2)

The dilatation θ is defined as

θ ¼ ε11 þ ε22 þ ε33 (3)

For hydrostatic conditions σ11 = σ22 = σ33 = –p. Substituting into (2) and re-
arranging gives

�3p ¼ 3λθ þ 2μθ (4)

The definition of the bulk modulus is K = –p/θ. Therefore,

K ¼ λþ 2

3
μ (5)

2. Young’s modulus, E

When a uniaxial normal stress is applied to a material, there results a
longitudinal extension or shortening that is proportional to the stress. The
constant of proportionality is Young’s modulus. Suppose that the applied
stress is along the x1-axis, so that σyy = σzz = 0. Hooke’s law applied to each
axis gives

σ11 ¼ λθ þ 2με11
0 ¼ λθ þ 2με22
0 ¼ λθ þ 2με33

(6)

Adding both sides of these equations gives
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σ11 ¼ 3λθ þ 2μðε11 þ ε22 þ ε33Þ ¼ 3λθ þ 2μθ (7)

θ ¼ σ11
ð3λþ 2μÞ (8)

Inserting this into the first line of (6) gives

σ11 ¼ λ
σ11

3λþ 2μ
þ 2με11 (9)

After gathering and rearranging terms,

σ11 1� λ
3λþ 2μ

� �
¼ 2με11 (10)

σ11 ¼ μ
3λþ 2μ
λþ μ

� �
ε11 (11)

The definition of Young’s modulus is E = σ11/ε11, so

E ¼ μ
3λþ 2μ
λþ μ

� �
(12)

3. Poisson’s ratio, ν

The definitions of the Lamé constants in (8.57) and (8.58) give, respectively,

λ ¼ Eν
1� 2νð Þ 1þ νð Þ ¼

E

1þ νð Þ
ν

1� 2νð Þ (13)

2μ ¼ E

1þ ν
(14)

On combining these equations we obtain

λ ¼ 2μ
ν

1� 2ν
(15)

In terms of the Lamé constants, Poisson’s ratio ν is given by

ν ¼ λ
2 λþ μð Þ (16)

248 Foundations of seismology



α2 ¼ 1

ρ
λþ 2

3
μþ 4

3
μ

� �
¼ 1

ρ
Kþ 4

3
μ

� �
(8:77)

The velocity of the P-wave depends both on the bulk modulus (or incompres-
sibility) and on the shear modulus. Thus a P-wave can propagate through a fluid
phase in which the shear modulus μ is zero.

The propagation of a one-dimensional compression is illustrated in Fig. 8.10(a),
which shows an undeformed volume at time t0, the compressed volume at an
earlier time t0−Δt, and the dilated volume at a later time t0 +Δt. Changes of the
angles between the diagonals of the original square demonstrate that the deforma-
tion in the compressional wave also has a shearing aspect.

8.5.2 Secondary waves (S-waves)

Next, we proceed to take the curl of both sides of (8.71):

ρ
∂2 r� uð Þ

∂t2
¼ λþ 2μð Þ r �r r · uð Þð Þ � μ r�r� r� uð Þð Þ (8:78)

Again we use a vector identity to simplify the equation. The identity in (1.32)
states that the curl of the gradient of any scalar function f is zero, i.e.,∇ ×∇f = 0.
Thus the first term on the right is zero. The remaining equation is

ρ
∂2 r� uð Þ

∂t2
¼ �μ r�r� r� uð Þð Þ (8:79)

Now we again use the vector identity (1.34), obtaining

t = t0t = t0  = t0 + t

P-wave

(a)

(b)

S-wave

t t

Fig. 8.10. Schematic illustration of (a) changes of volume and the angles between
intersecting diagonals during passage of a P-wave, and (b) the change of shape due
to shear during passage of an S-wave.

8.5 The seismic wave equation 249



ρ
∂2 r� uð Þ

∂t2
¼ �μr r · r� uð Þð Þ þ μ r2 r� uð Þ (8:80)

The divergence of the curl of a vector is zero, therefore

ρ
∂2 r� uð Þ

∂t2
¼ μ r2 r� uð Þ (8:81)

∂2 r� uð Þ
∂t2

¼ β2 r2 r� uð Þ (8:82)

where

β2 ¼ μ
ρ

(8:83)

The components of ∇ × u are in the plane normal to the displacement u. The
disturbance propagates through the medium as a succession of shear displace-
ments and travels with velocity β. Because it depends on the shear modulus,
which is zero in liquids and gases, a shear wave can propagate only in solid
materials.
Comparison of (8.77) and (8.83) yields the seismic parameter Φ, defined as

Φ ¼ α2 � 4

3
β2 ¼ K

ρ
(8:84)

This parameter is important for determining the variation of density as well as
the adiabatic temperature gradient inside the Earth, which can be computed
because the P-wave and S-wave velocities are well known as functions of depth.
The S-wave velocity β is less than the P-wave velocity α. As a result the

seismic shear wave (or S-wave) is recorded at a seismic station later than the
P-wave, so it is also called the secondary wave. During the propagation of a one-
dimensional shear deformation (Fig. 8.10(b)), the shape of an originally square
cross-section at time t0 is distorted to a parallelogram at times t0 −Δt and t0 +Δt.
The area of the parallelogram is, however, the same as that of the original
square. In three dimensions the shear wave propagates without change in
volume.

8.5.3 Displacement potentials

A theorem established by Helmholtz shows that a vector field such as the
displacement vector u can be expressed in terms of both a scalar potential φ
and a vector potential ψ, provided that the scalar field is irrotational (∇ × φ = 0)
and the vector field is divergence-free (∇ ·ψ = 0). Thus
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u ¼ rφþr� y (8:85)

An irrotational displacement field is one that has no shear components, whereas
a divergence-free displacement takes place without change of volume.
Consequently, in a seismic disturbance the potentials φ and ψ correspond to
the displacements in P- and S-waves, respectively, and are obtained by solving
the corresponding wave equations.

P-waves
On taking the divergence of u and noting that ∇ · (∇ × ψ) = 0, we have

r · u ¼ r2φ (8:86)

Substituting into (8.73) with α as the P-wave velocity gives

∂2 r2φ
� �
∂t2

¼ α2 r2 r2φ
� �

(8:87)

r2 ∂2φ
∂t2

� α2 r2φ

	 

¼ 0 (8:88)

This equation is always true if the expression in square brackets is zero. The
defining equation for the scalar potential φ of the P-wave displacement is
therefore

∂2φ
∂t2

� α2 r2φ ¼ 0 (8:89)

S-waves
Next, taking the curl of u, we have

r� u ¼ r�rφð Þ þ r �r� yð Þ (8:90)

Using the identities in (1.32) and (1.34), we get

r� u ¼ r r ·yð Þ � r2y (8:91)

On applying the condition that the vector potential be divergence-free (∇ ·ψ = 0),
this becomes

r� u ¼ �r2y (8:92)

Substituting into (8.82) with β as the S-wave velocity gives
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∂2 r2y
� �
∂t2

¼ β2 r2 r2y
� �

(8:93)

r2 ∂2ψ
∂t2

� β2 r2y
	 


¼ 0 (8:94)

Here again the equation is true if the expression in square brackets is zero. This
leads to a defining equation for the vector potential ψ of the S-wave
displacement:

∂2y
∂t2

� β2 r2y ¼ 0 (8:95)

8.6 Solutions of the wave equation

The wavefront of a seismic wave is defined as a surface in which all particles
vibrate in phase with each other. Close to a point source in a homogeneous
medium, the wavefronts form spheres around the source, and the wave is called
a spherical wave. With increasing distance from the source the curvature of the
spherical wavefront decreases and eventually becomes flat enough to be
regarded as a plane. The normal to the wavefront is the direction of propagation
of the wave, called the seismic ray path. Far from its source a seismic wave is
called a plane wave and it may be described using orthogonal Cartesian
coordinates.

8.6.1 One-dimensional solution for plane P-waves

For a plane P-wave propagating in the x1-direction the x2- and x3-axes are
perpendicular to each other in the plane of the wavefront. There is no change
in the x2- and x3-directions, so derivatives with respect to these coordinates are
zero. Equation (8.89) can then be written

1

α2
∂2φ
∂t2

¼ ∂2φ

∂x21
(8:96)

In this equation φ is a function of both time and position. Invoking the method
of separation of variables, we can write

φ x1; tð Þ ¼ X x1ð ÞT tð Þ (8:97)

Upon inserting this into the equation and dividing both sides by φ we get
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1

α2T
∂2T
∂t2

¼ 1

X

∂2X

∂x21
¼ �k2α (8:98)

Each side is a function of only one variable, so each side must equal the same
constant, which we write as −kα

2. The negative sign is chosen so as to deliver
periodic solutions. We get the equations

1

α2T
∂2T
∂t2

¼ �k2α

1

X

∂2X

∂x21
¼ �k2α

(8:99)

Rearranging the equations gives

∂2T
∂t2

þ k2αα
2T ¼ 0

∂2X

∂x21
þ k2αX ¼ 0

(8:100)

These are simple harmonic motions. If we defineω = kαα, the separate solutions
for the dependence on time and position are

T ¼ T1 exp iωtð Þ þ T2 exp �iωtð Þ
X ¼ X1 exp ikαx1ð Þ þ X2 exp �ikαx1ð Þ (8:101)

kα is called the wave-number and ω the angular frequency of the P-wave. The
general solution for a P-wave traveling along the x1-axis is obtained by combin-
ing the partial solutions:

φ x1; tð Þ ¼ A exp i ωtþ kαx1ð Þ½ � þ B exp �i ωtþ kαx1ð Þ½ �
þ C exp i ωt� kαx1ð Þ½ � þD exp �i ωt� kαx1ð Þ½ � (8:102)

The solution contains four arbitrary constants (A = T1X1, B = T2X2, C = T1X2,
D = T2X1), whose values in a given situation are determined by the boundary
conditions. If we consider only the real parts of the solutions (with new
constants A1 = A+B, A2 = C+D), we obtain

φ x1; tð Þ ¼ A1 cos ωtþ kαx1ð Þ þ A2 cos ωt� kαx1ð Þ (8:103)

The two parts of the solution have phases (ωt + kαx1) and (ωt – kαx1), respec-
tively. The velocity α with which a constant phase travels is called the phase
velocity. The propagation of a constant phase of the first solution is governed by
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the condition that (ωt + kαx1) is constant. On differentiating with respect to time,
with ω and kα held constant (and therefore also α, because α = ω/kα), we get

dx1
dt

¼ � ω
kα

¼ �α (8:104)

The negative sign indicates that this phase is a P-wave propagating with velocity
α in the negative x1-direction. The second part of the solution can be treated
in the same way. It is seen to describe a P-wave propagating with velocity α in
the positive x1-direction. The velocity α is known as the phase velocity of the
wave.

8.6.2 One-dimensional solution for plane S-waves

Using (8.95), the equation for the vector potential of an S-wave traveling in the
direction of the x1-axis can be written for each component ψn as

1

β2
∂2ψn

∂t2
¼ ∂2ψn

∂x21
(8:105)

This wave equation is solved as for P-waves, yielding solutions akin to (8.103).
For S-waves propagating with velocity β, the wave-number is kβ and the
components of the vector potential are

ψn x1; tð Þ ¼ Bn1 cos ωtþ kβx1
� �þ Bn2 cos ωt� kβx1

� �
(8:106)

The solutions describe shear waves that travel in the negative and positive x1-
directions with wave-number kβ and phase velocity β = ω/kβ.

8.7 Three-dimensional propagation of plane
P- and S-waves

The assumption that the plane wave is traveling along the x1-axis is too restrictive.
It is common usage in seismology (and other geophysical disciplines) to define
Cartesian coordinates so that the vertical direction is the x3-axis and the horizontal
surface is the plane defined by the x1- and x2-axes. Box 8.3 shows how the one-
dimensional solutions can be extended to three dimensions. This is applicable to
both P-waves and S-waves. The solutions of the wave equation depend on the
velocity of the wave, which determines the wave-number. For P-waves we have
|kα| = ω/α, and for S-waves |kβ| = ω/β.
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Box 8.3. Three-dimensional solution of the wave equation

Let e1, e2, and e3 be unit vectors corresponding to a set of Cartesian
coordinates x1, x2, and x3. The P-wave equation then becomes

1

α2
∂2φ
∂t2

¼ ∂2φ

∂x21
þ ∂2φ

∂x22
þ ∂2φ

∂x23
(1)

and the solution by the method of separation of variables involves three
spatial components,

φ x1; x2; x3; tð Þ ¼ X1 x1ð ÞX2 x2ð ÞX3 x3ð ÞT tð Þ (2)

Inserting the solution and dividing throughout by φ, as for one-dimensional
propagation, gives

1

α2T
∂2T
∂t2

¼ 1

X1

∂2X1

∂x21
þ 1

X2

∂2X2

∂x22
þ 1

X3

∂2X3

∂x23
¼ �k2 (3)

The constant −k2 is equal to both the time-dependent and the spatially
dependent parts of the solution. Continuing as for the one-dimensional case,
by successively separating parts that depend on different coordinates on
opposite sides of the equality sign, we get for the time-dependent variation

1

α2T
∂2T
∂t2

¼ �k2 (4)

This is a simple harmonic motion with angular frequency ω = kα. The
solution is

T ¼ T0 exp �iωtð Þ (5)

The spatial variations are

1

X1

∂2X1

∂x21
¼ �k2 � 1

X2

∂2X2

∂x22
þ 1

X3

∂2X3

∂x23

� �
¼ �k21 (6)

1

X2

∂2X2

∂x2
2

¼ � k2 � k21
� �� 1

X3

∂2X3

∂x23
¼ �k22 (7)

1

X3

∂2X3

∂x23
¼ � k2 � k21 � k22

� � ¼ �k23 (8)
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8.7.1 P-wave propagation

The scalar potential of P-waves propagating in the direction of the wave-
number vector kα is

φ x; tð Þ ¼ φ0 exp i ωt� kα · xð Þ½ � (8:107)

The P-wave displacement uP is the gradient of φ, and has components

uP ¼ rφ ¼ e1
∂φ
∂x1

þ e2
∂φ
∂x2

þ e3
∂φ
∂x3

(8:108)

This can be written more succinctly using tensor notation:

uP ¼ en
∂
∂xn

φ0 exp i ωt� kαkxkð Þ½ �ð Þ ¼ �iφ0 enkαnð Þexp i ωt� kαkxkð Þ½ �
(8:109)

uP ¼ �iφ0kα exp i ωt� kα ·xð Þ½ � (8:110)

Now suppose that the P-wave is propagating in a vertical plane and define the
x1-axis to coincide with the horizontal projection of the direction of propaga-
tion. The motions in the P-wave are confined to the x1−x3 vertical plane, so there

Positive and negative values of k1, k2, k3, and ω satisfy these equations. We
choose a particular solution that corresponds to a wave traveling in the
direction of the positive reference axes:

φ x1; x2; x3; tð Þ ¼ φ0 exp �ik1x1ð Þexp �ik2x2ð Þexp �ik3x3ð Þexp iωtð Þ
¼ φ0 exp i ωt� k1x1 � k2x2 � k3x3ð Þ½ � (9)

Note that k1x1 + k2x2 + k3x3= k · x, where x is a position vector defined as

x ¼ x1e1 þ x2e2 þ x3e3 (10)

and k is the wave-number vector, defined as

k ¼ k1e1 þ k2e2 þ k3e3 (11)

whose magnitude is given by k2 = k1
2 + k2

2 + k3
2. The particular solution of the

wave equation is therefore

φ x; tð Þ ¼ φ0 exp i ωt� k ·xð Þ½ � (12)
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is no displacement in the horizontal x2-direction and differentiation with respect
to x2 gives zero. The P-wave-number is in this case

kα ¼ kα1e1 þ kα3e3 (8:111)

and (8.110) becomes

uP ¼ � kα1e1 þ kα3e3ð Þiφ0 exp i ωt� kα1x1 � kα3x3ð Þ½ � (8:112)

The direction of this displacement is the same as that of the ray path or wave-
number vector; i.e., the P-wave propagates as an alternation of compressions
and rarefactions along the direction of propagation.

8.7.2 S-wave propagation

The vector potential ψ of S-waves propagating in the direction kβ has
components

ψn x; tð Þ ¼ ψ0
n exp i ωt� kβ ·x

� �� �
(8:113)

where the S-wave-number is the vector

kβ ¼ kβ1e1 þ kβ3e3 (8:114)

The S-wave displacement uS is the curl of ψ, and has components

uS ¼ r� ψ ¼ ∂ψ3

∂x2
� ∂ψ2

∂x3

� �
e1 þ ∂ψ1

∂x3
� ∂ψ3

∂x1

� �
e2 þ ∂ψ2

∂x1
� ∂ψ1

∂x2

� �
e3

(8:115)

If we again consider propagation in the x1−x3 vertical plane so that differ-
entiation with respect to x2 gives zero, this equation reduces to

uS ¼ � ∂ψ2

∂x3

� �
e1 þ ∂ψ1

∂x3
� ∂ψ3

∂x1

� �
e2 þ ∂ψ2

∂x1

� �
e3 (8:116)

This can be rearranged as

uS ¼ � ∂ψ2

∂x3
e1 þ ∂ψ2

∂x1
e3

� �
þ ∂ψ1

∂x3
� ∂ψ3

∂x1

� �
e2 (8:117)

The second bracketed term on the right describes displacements in the
direction of the x2-axis,

uSH ¼ ∂ψ1

∂x3
� ∂ψ3

∂x1

� �
e2 (8:118)
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uSH ¼ i ψ0
3kβ1 � ψ0

1kβ3
� �

exp i ωt� kβ ·x
� �� �

e2 (8:119)

The displacements are by definition in the horizontal plane and hence are always
normal to the direction of propagation. The horizontal component of a bodily
shear wave is known as the SH wave.
The first bracketed term on the right of (8.117) describes a shear wave

confined to the vertical x1−x3 plane and known as the SV wave. The ψ2

component of the vector potential in (8.113) is

ψ2 ¼ ψ0
2 exp i ωt� kβ1x1 � kβ3x3

� �� �
(8:120)

The SV displacement is therefore

uSV ¼ � ∂ψ2

∂x3
e1 þ ∂ψ2

∂x1
e3

� �
¼ kβ3e1 � kβ1e3

� �
iψ0

2 exp i ωt� kβ1x1 � kβ3x3
� �� �

(8:121)

The scalar product of the amplitude of the SV displacement vector uSV and the
wave-number kβ is

kβ3e1 � kβ1e3
� �

· kβ1e1 þ kβ3e3
� � ¼ 0 (8:122)

This confirms that the SV displacements, like the SH displacements, are normal
to the direction of propagation of the S-wave.
These results show that the displacements in the wavefront of a shear wave

can be resolved into two orthogonal motions: the SH-component is horizontal
and the SV-component is in the vertical plane containing the ray path.
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Appendix A

Magnetic poles, the dipole field,
and current loops

A1. The concept of magnetic poles and Gauss’s law

Coulomb carried out experiments with long magnetized needles and showed
that their ends exerted forces of attraction and repulsion on the ends of other
magnetized needles, similar to the forces between electrical charges. If freely
suspended, a magnet aligns in the Earth’s ownmagnetic field so that one end is a
north-seeking pole (unfortunately shortened to north pole) and the other a south-
seeking pole. Magnetism originates in electric currents, but in some contexts the
concept of fictive magnetic poles can be useful. The force between the ends, or
poles, of two magnets is proportional to the product of the pole strengths and
inversely proportional to the square of the distance r between them. Between
two poles of strength p1 and p2 the force F is

F ¼ μ0
4π

p1p2
r2

er (A1)

where μ0 is the magnetic field constant, or permeability of free space; it is
defined to be exactly 4π × 10−7 N A−2. The resemblance to Coulomb’s law for
electrical forces allows us to develop expressions for the magnetic potential and
flux. The magnetic field may be defined as the force that acts on a unit magnetic
pole. With p1 = p and p2 = 1, the magnetic field B of a pole p at distance r is

B ¼ μ0p
4πr2

er (A2)

where er is the radial direction. The magnetic potential of a single pole at
distance r is therefore

W ¼
Z1
r

B · er dr ¼ μ0p
4πr

(A3)

The fluxΦm of the magnetic fieldB through a surface S surrounding the pole p is
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Φm ¼
Z
S

B · n dS (A4)

where n is the normal to the surface. Upon inserting the magnetic field B of the
pole from (A2) and defining θ as the angle between n and the radial direction er,
the magnetic flux through a surface surrounding the pole p is

Φm ¼
Z
S

μ0p
4πr2

cos θ dS (A5)

Now we make use of the relationship between the solid angle dΩ subtended
at distance r from an inclined surface element dS (Box 1.3), and obtain

Φm ¼
Z4π

Ω¼0

μ0p
4π

dΩ ¼μ0p (A6)

The total pole strength p enclosed by the surface S is therefore given by

p ¼ 1

μ0
Φm ¼ 1

μ0

Z
S

B · n dS (A7)

Because every magnet has two poles of equal and opposite strength, the sum of
all the poles in a volume is zero. The total magnetic flux through any closed
surface is therefore also zero. On applying the divergence theorem, we have

Φm ¼
Z
S

B · n dS ¼
Z
V

r ·B dV ¼ 0 (A8)

For this to be true for an arbitrary volume

r ·B ¼ 0 (A9)

This result implies that magnetic monopoles cannot exist. It is known asGauss’s
law after Carl Friedrich Gauss (1777–1855), who formalized it. The basic
magnetic field is that of a dipole.

A2. The magnetic dipole

Two magnetic poles of equal strength but opposite sign, +p and −p, are a
distance d apart (Fig. A1). The geometry has rotational symmetry about the
line AB joining the poles, the magnetic axis. The radius of length r from the
point M midway between the poles to the point P, where the magnetic potential
is to be determined, makes an angle θwith the magnetic axis. Let the distance of
P from the positive pole be r(+) and the distance from the negative pole be r(−).
Following (A3), the potential of the positive pole at P is
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WðþÞ ¼ μ0
4π

p

rðþÞ (A10)

On applying the reciprocal-distance definition of the Legendre polynomials
(Section 1.12, Fig. 1.11) to the triangle AMP, this potential expands to

WðþÞ ¼ μ0
4π

p

r
1þ

X1
n¼1

d

2r

� �n

Pnðcos θÞ
 !

(A11)

Similarly, for the negative pole, the relations of the sides in the triangle BMP
give

Wð�Þ ¼ � μ0
4π

p

rð�Þ ¼ � μ0
4π

p

r
1þ

X1
n¼1

d

2r

� �n

Pn cosðπ � θÞð Þ
 !

(A12)

The combined potential of both magnetic poles at the point P is

W ¼ μ0
4π

p

r

X1
n¼1

d

2r

� �n

Pn cos θð Þ � Pn � cos θð Þ½ �
( )

(A13)

From Rodrigues’ formula (Section 1.14) we find that

Pnð�xÞ ¼ 1

2nn!
�1ð Þn d

n

dxn
x2 � 1
� �n¼ �1ð ÞnPnðxÞ (A14)

The potential of the magnetic pole-pair is thus

W ¼ μ0
4π

p

r

X1
n¼1

d

2r

� �n

Pn cos θð Þ � �1ð ÞnPn cos θð Þð Þ (A15)

Each successive term is smaller than the previous term by the ratio d/(2r). The
first terms are

d/2

d/2

+p

p

θ

r (+)

r

Bθ

Br

BI

 − θ

P

r ( )
M

A

B

π

Fig. A1. The geometry for calculation of the magnetic potential and the radial and
azimuthal fields of a pair of opposite and equal magnetic poles. In the limit, as the
separation of the poles tends to zero, the potential and fields are those of a magnetic
dipole.
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W ¼ μ0
4π

pd

r2
P1 cos θð Þ þ μ0

4π
pd

r2
d

2r

� �2

P3 cos θð Þ þ � � � (A16)

A dipole is the constellation when the two poles are infinitesimally close to each
other, so that d� r. For infinitesimal d/rwe can ignore terms of higher than first
order, so the magnetic potential of the dipole is given by the first term in the
equation, which we can write

W ¼ μ0
4π

m cos θ
r2

(A17)

The quantity m = pd is called the magnetic moment of the dipole, for the
following reason. A dipole of length d, whose axis makes an angle θ with a
uniform magnetic field B, experiences a force +pB on one pole and an opposite
force –pB on the other pole. The perpendicular distance between the lines of
action of these forces is d sin θ, so the field exerts a torque τ of magnitude
pdB sin θ in the direction normal to both the field and the dipole.

τ ¼ pdB sin θ ¼ mB sin θ (A18)

m� B (A19)τ =

The magnetic momentm of the dipole is a vector oriented along the dipole axis
from the negative to the positive pole.

A3. The Lorentz force

When an electrical charge q moves with velocity v through a magnetic field B,
there arises a force F that is normal both to the field and to the direction of
motion (Fig. A2(a)). This is the Lorentz force, which serves to define the unit of
magnetic field,

q

B

v

F = q (v   B)

I

d l

dF = I (d l   B)

B
(a) (b)

Fig. A2. (a) The Lorentz force F on a charged particle moving with velocity v in a
magnetic field B acts normal to both the velocity and the field, resulting in a curved
trajectory (dashed line). (b) The Biot–Savart law gives the increment of force dF
experienced by a short conductor of length d l carrying a current I in a magnetic field
B. After Lowrie (2007).
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F ¼ q v� Bð Þ (A20)

With force measured in newtons (N), charge in coulombs (C), velocity in meters
per second (m s−1), and electric current in amperes (A = C s−1), the unit of
magnetic field is the tesla, which has the dimensions N A−1 m−1.
Imagine the moving charge to be confined to move along a conductor of

length dl and cross-section A (Fig. A2(b)). Let the number of charges per unit
volume be N. The total charge inside the element of length dl is then NAq dl and
the Lorentz force acting on the element d l is

dF ¼ NAqdl v� Bð Þ (A21)

The current v and the element dl of the conductor have the same direction, so we
can write

dF ¼ NAqv d l� Bð Þ (A22)

The electric current I along the conductor is the total charge that crosses a
surface A per second; it is equal to NAqv. The force experienced by the element
d l of a conductor carrying a current I in a magnetic field B is therefore

dF ¼ I d l� Bð Þ (A23)

A4. Torque on a current loop in a magnetic field

Using (A23), we can compute the force acting on each side of a small rectan-
gular loop PQRS, which carries an electric current I in a magnetic field B
(Fig. A3(a)). Let the lengths of the sides of the loop be a and b, respectively,
and let the x-axis be parallel to the sides of length a. The areaA of the loop is equal
to ab; n is the direction normal to the plane of the loop. The magnetic field B acts

b
b sinθ

F = IaB

F = IaB
θx

b

a

n

P

Q

R

S

B

θ

θ
Fx

FxF = IaB

F = IaB

(a) (b)
B B

Fig. A3. (a) Forces on the sides a and b of a rectangular coil whose plane is
inclined at angle θ to a magnetic field B. (b) Cross-section showing how the equal
and opposite, but not collinear, forces produce a torque on the coil. After Lowrie
(2007).
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normal to the x-axis, making an angle θ with the direction n. A force Fx equal to
IbB cos θ acts on the side PQ in the direction of +x, and an equal and opposite
force Fx acts on the side RS in the direction of –x; these forces are collinear and
cancel each other out. Forces equal to IaB act in opposite directions on the sides
QR and SP and the perpendicular distance between their lines of action is b sin θ
(Fig. A3(b)), so the magnitude of the torque τ experienced by the current loop is

τ ¼ IaBb sin θ ¼ IAB sin θ ¼ mB sin θ (A24)

m� B (A25)τ =

The quantity m = IAn is a vector normal to the plane of the current loop.
Comparison with (A19) shows that it corresponds to the magnetic moment of
the current loop. At distances much greater than the dimensions of the loop, the
magnetic field is that of a dipole at the center of the loop. Consequently,
magnetic behavior is more correctly explained by replacing fictive magnetic
dipoles by current loops. This is true even at atomic dimensions; circulating
(and spinning) electrical charges impart magnetic moments to atoms. The
definition ofm in terms of a current-carrying loop shows that magnetic moment
has the dimensions of current times area, or ampere meter2 (A m2).
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Appendix B

Maxwell’s equations of electromagnetism

In the early nineteenth century, experimental observations of electrical and
magnetic behavior led to the establishment of fundamental physical laws
governing electricity and magnetism. In 1873 the Scottish scientist James
Clerk Maxwell synthesized all known empirical laws of electricity and magnet-
ism into a set of equations that describe electromagnetic phenomena. They
embody in succinct form the empirical laws of Coulomb, Ampère, Gauss, and
Faraday.

1. Coulomb’s law

Charles Augustin de Coulomb (1736–1806) discovered experimentally that the
force F between two electrical charges Q1 and Q2 is proportional to the product
of the charges and inversely proportional to the square of the distance r between
them. Let er be the unit vector from Q1 to Q2. In the international system (SI) of
units Coulomb’s law is

F ¼ Q1Q2

4πε0r2
er (B1)

In this equation ε0 is the electric field constant, or the permittivity of free
space; it is equal to 8.854 187 817 × 10–12 C2 N–1 m–2. If both charges are
positive or negative, the force between them is repulsive; if the charges have
opposite sign, the force is attractive.
The electric field E is defined as the force that acts on a unit positive electrical

charge. If we letQ1 =Q andQ2 = 1, the electric field of the chargeQ at distance r is

E ¼ Q

4πε0r2
er (B2)

If the charge Q is positive, the field acts outwards, in the direction of increasing
r. The electric potential at distance r is
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U ¼
Z1
r

E · er dr ¼ Q

4πε0r
(B3)

The fluxΦ of the electric fieldE through a surface S surrounding the chargeQ is

Φ ¼
Z
S

E · n dS ¼
Z
S

Q

4πε0r2
er · nð ÞdS (B4)

where n is the unit vector normal to the surface element dS. If θ is the angle
between n and the radial direction er, the scalar product of the unit vectors
equals cos θ, therefore

Φ ¼
Z
S

Q

4πε0r2
cos θ dS (B5)

We can use the definition of a solid angle (Box 1.3) to change the surface
integral to an integral over a solid angle around the charge Q:

Φ ¼
Z
S

Q

4πε0

cos θ
r2

dS ¼
Z4π
0

Q

4πε0
dΩ ¼Q

ε0
(B6)

Q ¼ ε0Φ ¼ ε0

Z
S

E · n dS (B7)

If the electrical charge Q is distributed throughout a volume V with charge
density ρ,

Q ¼
Z
V

ρ dV (B8)

We can apply Gauss’s divergence theorem to the right-hand side of (B7), which
becomes

Z
V

ρ dV ¼ ε0

Z
S

E · n dS ¼ ε0

Z
V

r ·E dV (B9)

Z
V

ρ� ε0 r ·Eð ÞdV ¼ 0 (B10)

The volume V is arbitrary, so the integrand must always be zero. This gives
Coulomb’s law for the field of free electrical charges with density distribution ρ:

r ·E ¼ ρ
ε0

(B11)
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1.1. The effect of bound charges

In some materials, called dielectrics, electrical charges are not free, but are
bound to atoms in fixed locations. An applied electric field can cause the bound
charges to shift position (e.g., from one side of an atom to the other), with
positive and negative charges displaced in opposite directions. This results in an
electric polarization P. A charge QD accumulates on an arbitrary surface S
within a homogeneous dielectric material, equivalent to

QD ¼
Z
S

P · n dS (B12)

The total charge QT carried by a polarizable material is the sum of the free
charge Q and the bound surface charge QD:

QT ¼ QþQD (B13)Z
V

ρT dV ¼ ε0

Z
S

E · n dSþ
Z
S

P · n dS (B14)

Gauss’s theorem allows us to convert the surface integrals into volume integrals:

Z
V

ρT dV ¼ ε0

Z
V

r ·E dVþ
Z
V

r ·P dV (B15)

It follows that

r · ε0Eþ Pð Þ ¼ ρT (B16)

The electric displacement vector D is defined by

D ¼ ε0Eþ P (B17)

Coulomb’s law for a material that can be polarized electrically is therefore

r ·D ¼ ρT (B18)

In a homogeneous dielectric material the electric polarization P is propor-
tional to the electric fieldE. In SI usage the proportionality constant is written as
the product of the permittivity ε0 and the electric susceptibility χ. Thus

P ¼ χε0E (B19)

D ¼ ε0Eþ χε0E (B20)

D ¼ 1þ χð Þε0E ¼ εε0E (B21)

The dimensionless quantity ε is the relative permittivity, or dielectric constant,
of the material. In a material that cannot be polarized ε = 1 and
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D ¼ ε0E (B22)

In this case, if the density of free charges is ρ,

r ·D ¼ ρ (B23)

2. Ampère’s law

Ampère’s law describes magnetic fields produced by electric currents.
Experiments begun in 1820 by André-Marie Ampère (1775–1836) and Hans
Christian Ørsted (1777–1851) showed that an electric current produces a
magnetic field. Ampère’s experiments on a long, straight, electrical conductor
showed that the magnetic field is in the plane normal to the conductor, and the
field direction obeys a right-hand rule with respect to the current (i.e., the
directions of current and field are indicated by the thumb and fingers, respec-
tively). For example, the field lines around a long straight conductor are
concentric circles (Fig. B1(a)). The strength of the magnetic field outside the
conductor is proportional to the current I in the conductor and inversely propor-
tional to the distance r from the conductor:

B / I

r
(B24)

In general, if dl is an element of the closed path L around a conductor carrying a
current I in a magnetic field B, Ampère’s law isI

L

B · d l ¼ μ0I (B25)

The magnetic field constant μ0 ensures compatibility between the units of
electric current and magnetic field. The integration can also be applied to a

B

J
S

d l

(b)
B(r)

I

r

(a)

L

Fig. B1. (a) The lines of magnetic fieldB around a long straight conductor carrying
an electric current I are concentric circles. (b) For a path inside an electrical
conductor only the fraction of the current enclosed by the path causes the
magnetic field B along the path.
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path L inside an electrical conductor, at right angles to the flow of current
(Fig. B1(b)). In this case, not all the current is enclosed by the loop, and only the
fraction of the current passing through the loop causes the magnetic field B. If J
is the electric current density (i.e., the current per unit cross-sectional area
normal to the flow), the amount of current enclosed by the loop is

I ¼
Z
S

J · n dS (B26)

Equating this with (B25) givesI
L

B · d l ¼ μ0

Z
S

J · n dS (B27)

We now use Stokes’ theorem to convert the left-hand side into a surface integral:Z
S

r� B · n dS ¼ μ0

Z
S

J · n dS (B28)

This must be true for any surface intersecting the current, thus

r� B ¼ μ0J (B29)

This is Ampère’s law for the magnetic field produced by an electric current in a
conductor.
The current density J is proportional to the electric field E. This follows from

Ohm’s law, which relates the current (I) and voltage (V) to the resistance (R) of a
circuit:

V ¼ IR (B30)

The electric field E is the voltage per unit distance along a circuit. In a straight
conductor of length L and cross-sectional area A the voltage V equals EL and
the current I equals JA. The resistance R of a conductor is proportional to its
length L and inversely proportional to its cross-sectional area A. The constant of
proportionality is the resistivity; its inverse is the conductivity, σ. Consequently
R = (1/σ)L/A and substitution into Ohm’s law gives

ELð Þ ¼ JAð Þ L

σA

� �
(B31)

After simplifying, we get Ohm’s law in vector form:

J ¼ σE (B32)

By combining this with (B29), we get an alternative form of Ampère’s law:

r� B ¼ μ0σE (B33)
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This law applies to the magnetic effect produced by a current of free electrical
charges. However, bound electrical charges can also result in an electric current
and produce a magnetic field.

2.1. The effect of displacement currents

In a dielectric material, the electrical charges are bound to atoms, but a time-
dependent change in their positions is equivalent to a displacement current ID.
The total electric current IT is the sum of the current I passing through the
material and the displacement current ID. Differentiating (B13) gives

∂
∂t
QT ¼ ∂

∂t
Qþ ∂

∂t
QD (B34)

Using (B26) and writing the volume density of the bound charges as ρD,Z
S

JT · n dS ¼
Z
S

J · n dSþ ∂
∂t

Z
V

ρD dV (B35)

Applying Gauss’s theorem to the first two terms and using the result of (B18)
gives Z

V

r · JTð ÞdV ¼
Z
V

r ·Jð ÞdV þ ∂
∂t

Z
V

r ·Dð ÞdV (B36)

The total current density, combining the free charges and bound charges, is

JT ¼ Jþ ∂D
∂t

(B37)

Using the total current density in Ampère’s equation, we get

r� B ¼ μ0Jþ μ0
∂D
∂t

(B38)

Finally, using Ohm’s law (B32) and the relation between the electric displace-
ment vector and the electric field (B22), Ampère’s law for a non-polarizable
medium is

r� B ¼ μ0σEþ μ0ε0
∂E
∂t

(B39)

3. Gauss’s law for magnetism

Early experimenters concluded that, unlike electrical charges, magnetic monop-
oles did not exist. Division of a magnet into smaller pieces always left a number
of magnets with two poles. All magnetic fields originate from electric currents,
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whether at macroscopic or at microscopic (atomic) level. Ampère’s investiga-
tions were extended by his contemporaries, Jean-Baptiste Biot (1774–1862)
and Félix Savart (1791–1841). Their empirical studies of the forces between
straight conductors carrying electric currents showed that the magnetic field dB
at a distance r from a short conductor of length dl carrying a current I is given by

dB ¼ μ0
4πr2

I d l� erð Þ (B40)

The unit vector (direction) er is from the current element to the point of
observation (Fig. B2). The total field of a current circuit at the point of
observation P is found by integrating (B40) around the circuit, which necessa-
rily depends on the geometry of the circuit.
It follows that the magnetic field is divergence-free. Taking the divergence of

(B40) gives

r · dB ¼ μ0I
4π

r ·
d l� er

r2

� �
(B41)

The length of the current element dl is constant with respect to the differ-
entiation. The order of the differentiation can be changed, changing sign
accordingly, which gives

r · dB ¼ � μ0I
4π

d l · r� er
r2

� �
(B42)

The function of r to be differentiated is recognizable as

er
r2

¼ �r 1

r

� �
(B43)

Substitution into (B42) leads to the curl of a gradient, which is always zero (see
(1.32)):

r · dB ¼ � μ0I
4π

d l · r�r 1

r

� �� �
¼ 0 (B44)

If this is true for every contribution dB to the field, it must be true for the entire
field. This yields Gauss’s law for magnetism:

I
d l

dB

er

r

Fig. B2. At distance r in a direction er from a short conductor of length d l carrying
a current I the magnetic field dB is normal to both d l and er.

Appendix B 271



r ·B ¼ 0

Let V be an arbitrary volume enclosed by a surface S in a magnetic field B. The
net flux of the magnetic field through the surface is obtained using Gauss’s
divergence theorem (Section 1.6):Z

S

B · nð ÞdS ¼
Z
V

r ·Bð ÞdV ¼ 0 (B45)

The net flux of the magnetic field through the surface is always zero; the number
of field lines entering the surface is the same as the number leaving the surface.
Hence magnetic field lines always form complete loops; they do not begin or
end on “charges” as the electric field does. This implies that magnetic monop-
oles do not exist. The elementary magnetic field is that of a dipole.

3.1. The magnetic field inside a magnetizable material

Just as bound charges affect the electric field inside a dielectric, the magnetic
field inside a magnetically polarizable material is modified by the internal
electric currents in the material. The atoms in crystalline materials occupy
fixed positions in a regular lattice structure and their atomic magnetic moments
can be partially aligned by a magnetic field. The net magnetic moment per
unit volume of the material is its magnetization, M. Consider a small volume
element with sides Δx, Δy, and Δz at the point (x, y, z) in a magnetizable
material (Fig. B3). A current I1 flows around the small loop with sides Δy and
Δz, causing a magnetization component Mx in the x-direction. The magnetic
moment of a current loop is the product of its area and the current in the loop
(Appendix A4):

mx ¼ Mx DV ¼ Mx DxDyDz ¼ I1 DyDz (B46)

I1 ¼ Mx Δx (B47)

The magnetization is not necessarily uniform, so in the adjacent loop in the
y-direction it may equal (Mx + ΔMx) with a circulation current I2, where

I2 ¼ Mx þ DMxð ÞDx ¼ Mx þ ∂Mx

∂y
Dy

� �
Dx (B48)

The net current at the interface between the loops is in the z-direction. Its
magnitude is the difference between I1 and I2:

Iz ¼ I1 � I2 ¼ � ∂Mx

∂y
DyDx (B49)
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If J is the current density in the material, the z-component of current must equal
JzΔxΔy. The x-component of magnetization thus makes a contribution to the
current density in the z-direction equal to

Jz ¼ � ∂Mx

∂y
(B50)

A similar argument can be applied to the current loops in the x–z plane, which
carry currents I3 and I4, respectively, causing magnetization componentsMy and
(My + ΔMy). Taking into account the sense of the currents around the small
loops, the net current in the z-direction from these loops is

Iz ¼ I4 � I3 ¼ ∂My

∂x
DzDx (B51)

The corresponding contribution to the current density in the z-direction is

Jz ¼ ∂My

∂x
(B52)

The net z-component of the current density is found by combining (B50) and
(B52):

Jz ¼ ∂My

∂x
� ∂Mx

∂y
¼ r�Mð Þz (B53)

By treating the current circulation in other pairs of the reference planes, the
other components of J can be obtained. The current density Jm associated with
the magnetization M is therefore

Jm ¼ r�M (B54)

I1
I2 I3

I4

x y

z

Mx

Mx + Mx

x
y

z

Fig. B3. Production of magnetization components Mx and Mx + ΔMx in the
x-direction from currents I1 and I2 in adjacent small loops in the y–z plane within
a magnetizable material.
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Inside a magnetizable material we must modify Ampère’s law (B29) by adding
the extra current density associated with the magnetization. We then get

r� B ¼ μ0 Jþ Jmð Þ ¼ μ0 Jþr�Mð Þ (B55)

On rearranging, we have

r� B

μ0
�M

� �
¼ J (B56)

Let an auxiliary vector H be defined as

H ¼ B

μ0
�M (B57)

B ¼ μ0 HþMð Þ (B58)

H has the same dimensions (A m–1) as magnetization. Historically it has been
called the magnetizing field, despite having the wrong dimensions. Inside an
isotropic, non-ferromagnetic material the magnetizationM is proportional toH:

M ¼ χH (B59)

The constant of proportionality is the magnetic susceptibility, χ, which is a
dimensionless property of the material. The relationship between B andH is thus

B ¼ μ0H 1þ χð Þ ¼ μμ0H (B60)

The quantity μ = 1 + χ is the magnetic permeability of the material. In free space
and in materials that cannot acquire a magnetization the susceptibility is zero
and the permeability μ = 1, so

B ¼ μ0H (B61)

4. Faraday’s law

In 1831 an English scientist, Michael Faraday (1791–1867), demonstrated that
a change in the magnetic flux Φm through a coil induced in the coil an electric
voltage V proportional to the rate of change of the flux. The direction of the
induced voltage was shown by Heinrich Lenz (1804–1865) to oppose the
change in flux through the coil. Thus

V ¼ � ∂
∂t
Φm (B62)

The flux of the magnetic field through a coil with surface area S is

Φm ¼
Z
S

B · n dS (B63)
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If E is the electric field induced in the coil, and d l is an element of the wire in the
coil, the voltage induced in a path of length L (e.g., a circumference of the coil) is

V ¼
Z
L

E · d l (B64)

With the aid of Stokes’ theorem the linear integral around the closed path L can
be converted into a surface integral over the area S enclosed by L:

V ¼
Z
S

r� E · n dS (B65)

Combining (B62), (B63), and (B65) givesZ
S

r� E · n dS ¼ � ∂
∂t

Z
S

B · n dS (B66)

It follows that

r� E ¼ � ∂B
∂t

(B67)

This is Faraday’s law describing the generation of an electric field from a
changing magnetic field.
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acceleration, 18
centrifugal, 88, 91, 117, 119, 140
Coriolis, 140, 141
Eötvös, 141
gravitational, 23, 59, 66, 68
tide-raising, 117, 119, 122

adiabatic, 178
Ampère’s law, 200, 268–270, 273
angular momentum, 142, 159
conservation of, 61
Earth–Moon system, 132
lunar, 154

barycenter, 116, 119–121, 131
binomial coefficient, 30
binomial series, 30–31, 35
Biot–Savart law, 271
bulk modulus, 180, 182, 240, 246, 247

Chandler wobble, 137, 157–167
equations of motion, 161, 163
Love’s number k, 167
period, 167

circulation, 20, 23
hydrothermal, 196
see also curl

Clairaut’s formula, 102
Clausius–Clapeyron equation, 176
co-latitude, 1, 49, 83, 109, 199, 208
complex number, 2, 53, 150, 187
complex plane, 2
conservation of energy, 62, 171
continuity condition, 20
cooling model

half-space, 190–195
oceanic lithosphere, 196

core thermal properties, 177
Coriolis acceleration, 141, 142
Coulomb’s law, 218, 265–268
curl, 6, 7, 17
curl theorem, see Stokes’ theorem

deformation, 228, 246
elastic, 163, 227
tidal, 121, 124

dielectric constant, 267
diffusion equation, 185
diffusivity
magnetic, 219
thermal, 185, 188

dilatation, 237, 240, 246
dipole, 205, 206, 210, 260–262
eccentric, 209–213
field, 199, 204
moment, 199, 206, 207, 208, 262

direction cosines, 9, 10, 15, 78
, 83, 164

Dirichlet conditions, 52
displacement
current, 200, 218, 270
electric vector, 267, 270
infinitesimal, 138, 227, 244
P-wave, 256
S-wave, 257
tidal, 122, 124, 127, 129

divergence, 6, 17
theorem, 18–20, 25, 223, 266

dynamic ellipticity, 96, 152
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Earth–Moon system, 116, 119, 134
dimensions, 123
increase in separation, 135
synchronous rotation, 133

ecliptic plane, 61, 95, 137, 146, 152, 154
eigenvalue, 13
eigenvector, 13
ellipse, 64, 89
ellipsoid types, 75
ellipticity, see flattening
enthalpy, 172, 174
entropy, 172, 178
Eötvös gravity correction, 141
equations of motion
Chandler wobble, 162
Euler nutation, 156
homogeneous seismic, 233, 244
precession, 150

equipotential surface, 86, 92, 101, 124
error function, 194, 195

Faraday’s law, 274–275
field, 18
conservative, 18, 23
geomagnetic, see geomagnetic field
magnetic, 262
magnetizing, 274

field constant
electric, 265
magnetic, 199

flattening, 31, 74, 76, 86, 90, 93
flux, 19
frozen-in, 225
gravitational, 25
heat, see heat flow
magnetic, 200, 223, 260

Fourier
integral, 54, 56, 57
series, 52, 55
transform, 52–58, 191

frozen-flux theorem, 222–225

Gauss
coefficients, 202, 203, 204, 207
law of magnetism, 200, 218, 260, 270–274
theorem, see divergence theorem

geodetic parameters, 77
geoid, 106
height of undulation, see Stokes’ formula

geomagnetic field, 203
dipole component, see dipole

elements, 202
models of origin, 217–222
non-dipole, 204, 214
poles, 208
potential, 200, 201
power spectrum, 215
quadrupole component, 210
source depths, 216

geopotential, 86, 88–94, 97, 98, 125
Gibbs energy, 173, 175
gravity

anomaly of geoid undulation, 107
anomaly of lunar tide, 125, 128
equatorial value, 106
normal, 101, 104
radial and polar components, 96–100

Grüneisen parameter, 180, 182

heat
conduction equation, 183–185, 186, 190
flow, 183, 196
transport in the Earth, 170

Helmholtz energy, 173, 175
Hooke’s law, 227–228, 239

inertia tensor, 159
internal energy, 172, 174
International Geomagnetic Reference Field,

204, 208, 212

J2 (dynamic form factor), 84, 90–94

Kepler’s laws, 60–66
Kronecker delta, 15, 241

Lamé constants, 240, 241, 246, 247
Laplace’s equation

geomagnetic field, 200
gravitational potential, 66
spherical polar coordinates, 69–74

latitude, 100, 102–104
Legendre differential equation

associated, 46, 74
ordinary, 34–37

Legendre polynomials, 32–34, 37, 98, 110
associated, 43–48, 51, 211
generating function, 34, 35, 39
normalization, 39–41, 47
orthogonality, 37–39, 46
reciprocal-distance formula, 34, 77, 111,

119, 261
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Leibniz’s rule, 32, 41
Levi-Civita permutation tensor, 14
librations, 131
line of equinoxes, 143, 146, 152
Lorentz force, 220, 262
Love’s numbers, 124–128, 130, 165, 167, 168

m (centrifugal acceleration ratio), 92, 93
MacCullagh’s formula, 74–81, 82, 85, 147, 166
MacLaurin series, 29, 40, 235
magnetic moment, 199, 262
magnetic pole, 208, 259
magnetic Reynolds number, 221
magnetization, 272
magnetohydrodynamic equation, 221
MAGSAT, 215
Maxwell
equations of electromagnetism, 218, 261, 265
thermodynamic relations, 173, 174

Milankovitch cycles, 137
moment of inertia, 62, 79, 80, 81, 152, 158
uniform sphere, 96, 132, 154

normal gravity formula, 106
nutation, 137
Euler (free), 155, 157
forced, 148, 153, 155
in longitude and obliquity, 152

obliquity of rotation axis, 137
Ohm’s law, 220

paleomagnetic equation, 199
permeability, 200, 274
phonons, 179
Poisson body, 236
Poisson’s equation, 23–26, 67
Poisson’s ratio, 236, 239, 244, 248
potential, 18
centrifugal, 91, 163
Chandler wobble, 164
gravitational, 59, 66–68, 76, 84
lunar tidal, 116, 119, 122
magnetic, 259, 262
tidal gravity anomaly, 126
vector, 219

power series, 3, 28–31
power spectrum of geomagnetic field, 214–216
precession, 137, 142–155
equations of motion, 150, 152
lunar orbit, 155

solar-induced, 148, 153
Preliminary Reference Earth Model, 130,

181, 227
products of inertia, 80, 82, 158, 162, 163, 166

quadric surface, 11
quadrupole, 208

reciprocal-distance formula, 34, 35, 77, 111,
117, 119, 261

Rodrigues’ formula, 41–43, 46, 261, 265
rotation
coordinate axes, 15–16
fluctuations of, 137
rigid-body, 119, 234
synchronous, 134
see also curl

rotation matrix, 8–12
rotational symmetry, 71, 73, 76, 116, 119, 260

scalar product, 4, 5, 11
Schmidt polynomials, 48, 201
secular variations, 213
seismic parameter, 250
seismic wave, 244
displacement potentials, 250–252
propagation, 254–258
P-waves, 246, 252–254, 256
SH and SV waves, 258
S-waves, 250, 254, 257
wavefront, 252

semi-latus rectum, 64, 66
separation of variables, 69, 186, 190, 252, 255
shear modulus, 240, 244
Shida’s number, 129, 130
solar heat penetration, 185–189
solid angle, 23, 24, 260, 266
specific heat, 178, 180, 184
spherical harmonic functions, 49–51, 108, 201
normalization, 50
zonal, sectorial, and tesseral, 51

spheroid, 74, 76, 86
polar equation, 88, 89
reference figure for Earth, 81, 86, 90, 96

steradian, 25
Stokes’ formula for geoid height, 108–114
Stokes’ theorem, 20–23, 225, 269, 275
strain, 228, 233–235
normal, 235–239
shear, 239

stress, 227, 228–232
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stress–strain relationships, 239–241
surface area element, 24, 50
susceptibility
electric, 267
magnetic, 274

Taylor series, 21, 30
temperature
adiabatic gradient, 170, 172, 179, 180, 250
melting-point gradient, 176, 179

tensor, 14–15
inertia, 159
strain, 235, 239
stress, 230

thermal expansion coefficient, 178, 180
thermodynamic potentials, 172
tides
bodily, 125
deceleration of rotation, 131–135
deflection of vertical, 130
inequality, 119, 120, 121
lunar versus solar, 123
origin of, 116–119
potential of, 116, 119–121, 126

torque
frictional, 131

gravitational, 95, 137
magnetic, 198, 262, 264
solar, 142, 146, 147

trajectory types, 64
transformation

coordinate systems, 146
matrix, 12, 16

transpose of a matrix, 9

unit sphere, 25, 50

vector, 4
differential operator, 5, 16
identities, 5, 8
irrotational, 7, 23
product, 4, 5
solenoidal, 20

wave equation, 244–254
solution, 253, 255

wave-number, 253, 254, 256,
257, 258

Young’s modulus, 239, 242, 248

zonal approximation, 109
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