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to the philosophy of space and time in the context of these new phys-
ical theories.

From Space and Time to Spacetime

The Origins of the Special Theory of Relativity

We have seen that whereas Newton posited “space itself” as the ref-
erence object relative to which accelerations generated observable in-
ertial forces, uniform motion with respect to space itself was deemed
to have no observable consequences. This followed from Galileg’s fa-
mous phseryation that in an enclosed laboratory, one could not tell which
state_of uniform_mofion_the laboratory was in by pérforming any me-
chanical experiment. But it remained conceivable ‘that'ssmeother; non-
mechanical, phenomena would depend upon the uniform motion of
the apparatus with respect to space itself in some way. This motion
would then reveal itself in an observational consequence.

In the nineteenth century, hope for this came out of the reduction
of light to electromagnetic radiation. According to J. C. Maxwell’s the-
ory of electricity and magnetism, electromagnetic waves, of which light
waves are a species, are predicted to have a definite velocity with re-
spect to an observer. This velocity should be the same in all directions
and independent of the velocity of the source of the light with respect
to the observer. An observer at rest in a tank of water will determine
a speed of sound in the water that is the same in each direction. This
speed of sound will be completely independent of the motion of the
source of the sound in the water. Once the water wave is generated,
its speed depends only on the properties of the water in which the
wave is traveling. So it should be for light, with the medium of trans-
mission of light (the stuff that is for light as water is for the sound)

called the “‘aether.”
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An observer who himself moves through the water in the tank will
not see the speed of sound the same in all directions, as he will be
catching up to the sound in one direction and running away from it in
the opposite direction. So an observer in motion with respect to the
aether should be able to detect this motion, even if it is uniform, un-
accelerated motion, by measuring the velocity of light in all directions.
If we assume that an observer at rest in the aether will be at rest in
one of the inertial frames of mechanics in which no mechanical, inertial
forces are generated, it becomes plausible to identify the aether with
Newton’s space itself. The assumption was always made in the nine-
teenth century, and in a reinterpreted version, it remains correct in rel-
ativity theory. We could then use experiments with light to determine
our uniform motion with respect to space itself. ‘

An ingenious series of experiments was designed to detect which
state of uniform motion was the state at rest in the aether or in space
itself. These worked by sending light out from a point along different
paths and then bringing the light back to its point of origin. The light
should take different amounts of time to traverse the different paths,
depending on the length of the paths and on the state of motion of the
apparatus in the aether. Changing the orientation of the apparatus, or
letting the motion of the earth do that for us as the earth rotated on
its axis and traveled in its orbit around the sun, would change the rel-
ative times taken by the light to travel the different paths. Such a change
in times could be detected at the origin of the light by an observer,
who would see a shift in the position of the interference lines, alter-
nating lines of light and darkness that are generated when the two
returning beams of light meet and have regions of varying intensity
add or subtract from one another. (See Figure 2.1.)

When the experiments were performed, much to the astonishment
of those performing them, no detectable difference in travel times for
the light could be discerned. Tt was as if the light traveled with the
same fixed speed, the speed predicted for light by the theory in the
rest frame in the aether, in every laboratory frame that was in uniform
motion. (These “null results” don’t hold, incidentally, when the ap-
paratus is in nonuniform motion. Rotation can be detected, for exam-
ple, by a ring laser gyro, which detects the change in speed of light in
opposite directions around a circular path as the laboratory rotates.)
Now it might seem that this surprising null result might be due to some
peculiarity of light or electromagnetism. If one thinks about why the
speed of the signal should vary when the laboratory in motion with
respect to the medium of transmission of the signal, however, one quickly
sees that a very fundamental intuition about motion is being challenged
here. That intuition is that, for example, if we run after a moving thing,
it will be moving more slowly with respect to us than it will be to some-
one who didn’t join in the chase.

One could try to explain away the surprising results in a number of
ways. One suggestion was that the earth in its motion dragged the local
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Figure 2.1 The Michelson-Morley experiment. A beam of light is split into two
beams at the half-silvered mirror B. One beam goes to mirror C and is reflected,
the other to mirror D. If the apparatus is moving through the aether, the medium
of transmission of light hypothesized by the older wave theory, in the direction
shown by arrow v, the light should take longer to travel path BCB of length ! than
it does to travel path BDB, also of length /. If the apparatus is then rotated 90 de-
grees, the difference in time along the paths is reversed. But no such change is
detected when the experiment is carried out. This remains true even if the path
length BC is made different from length BD. In general no round-trip experiment
reveals motion through the aether of the laboratory.

aether with it, so that the portion of aether near the earth was always
at rest with respect to the earth and the apparatus. Such a claim would,
however, result in conflict with well-established astronomical obser-
vations.

A series of compensatory theories were invented to explain the un-
expected null results. If we assume that the apparatus shrinks in its
length in its direction of motion with respect to the aether, and further
assume that all physical processes measured by apparatus clocks slow
down when these clocks are put in motion with respect to the aether,
one could then explain away as appearance the seeming sameness of
speed of light in all directions. Although the light actually was moving
at different speeds with respect to the apparatus in different directions,
the observational consequences expected from this were exactly can-
celed out by the changes induced (by the motion of the apparatus through
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the aether) on the components of the apparatus that one used to de-
termine speeds—lengths and time intervals as measured by rods and
clocks. The net result would be, then, once more to make uniform mo-
tion with respect to space undetectable by any experimental means!

It was Einstein’s brilliant suggestion to take the appearance that light
has the same velocity in all directions in every uniformly moving state
of motion as indicative of reality. Why not posit, he argued, that what
appears to be the case from the round-trip experiments really is the
case? For each uniformly moving observer, light in vacuum travels at
the speed predicted by the theory of electromagnetism in every direc-
tion. It is important to note just how radical a proposal this is. If a light
beam is moving away from an observer in a given direction at speed
¢, and a second observer is traveling in the direction of the propagated
light with, say, speed v, with respect to the first observer, we take it
to be the case that the light is traveling with speed ¢, and not with
speed ¢ — v as intuition tells us, with respect to the second observer
as well.

How could this be? The core of Einstein’s argument is an insightful
critique of the notion of simultaneity for events at a distance from one
another. What does it mean for two happenings at a spatial distance
from each other to occur at the same time? In pre-Einsteinian thought,
we just assume that if two events occur at the same time for one ob-
server, they will occur at the same time for all observers. It is a chal-
lenge to this last notion that provides the main difference between space
and time as earlier understood and spacetime as understood in Ein-
stein’s so-called special theory of relativity.

Einstein argues that if we are to determine the speed of light in a
given direction, we might think to get around the null results of the
round-trip experiments by directly measuring the speed of light from
one point, A, to another, B. But we could only do this if we could
determine the distance between the points and the time taken by the
light to get from A to B, speed being the distance divided by the time.
But to get the time interval between emission and reception of a light
signal requires that we be able to synchronize clocks at the two points
so that they read “zero” at the same moment. How could this syn-
chronization be done?

If we could transport a clock instantaneously from A to B, we could
establish synchronization by synchronizing two clocks at A and in-
stantly shifting one to B. But, Einstein assumes, objects cannot be
transported from one place to another in no time at all. He assumes,
in fact, that the speed of light in a vacuum is a limiting speed faster
than which nothing can travel. Well then, why not synchronize two
clocks at A, move one at some speed or other to B, and assume that
when a clock at A reads value n and the clock at B reads n the two
events are simultaneous?

At this point we must remember the point of trying to establish si-
multaneity for distant events. We wanted to do this so that we could
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determine the speed of light from A to B. And we wanted to do that
so that we could get around the problem of the round-trip experiments’
giving null results, a phenomenon explained by combining the idea
that the light had different speeds in the different directions with the
compensatory claims about how rods shrink and clocks slow down when
moving with respect to the aether. Remember that the point of the round-
trip experiments in the first place was to determine in which state of
motion the speed of light was really the same in all directions in order
to determine which state of motion really was at rest in the aether or
in space itself.

But if the compensatory theory is correct, clocks transported from A
to B won’t, in general, be synchronized at B even if they were at A.
For when in motion from A to B, they will, in general, be traveling at
different speeds with respect to the aether and, hence, suffering dif-
ferent amounts of “slowing down.”” Clearly, the right clock to use to
determine synchronization of clocks at A and B will be one moved very
slowly with respect to the aether and hence suffering minimal distor-
tion as it is moved. But to know which clock that is, we would have
to know which state of motion was the rest state in the aether, which
is what we were trying to determine in the first place!

Suppose we knew which state of motion was at rest in the aether.
Because light, relative to the aether, travels with the same speed in all
directions, an easy way to synchronize clocks at A and B would be to
send a light signal from A that was reflected at B and returned to A.
As the light took the same time to get from A to B and from B to A,
the event at A simultaneous with the reflection at B could be taken to
be the event at A midway in time between the emission and reception
of the light signal at A as determined by a clock at rest at A. But, says
Einstein, as far as the round-trip experiments go, it is as if light had
this same speed in all directions no matter what is the uniform state
of motion of the observer. Assume light really does travel at the same
speed relative to any observer in uniform motion. Then each such ob-
server can use the reflected-light method to determine which events
take place at the same time as which other events.

It is easy to see that taking this as our definition of simultaneity for
distant events will result in observers’ disagreeing about which pairs of
events take place at the same time, as can be seen from Figure 2.2 and
its explanation. Well, which observer is right in his attributions of si-
multaneity? According to the aether theory, only the observer at rest
in the aether. The others are being deceived by their taking light to
travel at the same speed in all directions relative to their laboratories,
when it really does not. According to Einstein, all the observers are
correct in their attributions of simultaneity. It is just that there is no
such thing as “occurring at the same time,” only “occurring at the same
time relative to a particular state of uniform motion.”” We can reconcile
the null results of the round-trip experiments with the Galilean as--
sumption that all uniformly moving observers see the same physical
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Figure 2.2 The Einstein simultaneity definition and the relativity of simultaneity.
OS represents the events in the life history of one observer, an observer who stays
at a constant x position as time, t, goes on. OS' the life history of another observer
moving (relative to OS) to the left. Because ¢’ is halfway in time from O to 7, the
events of emitting and receiving a light beam reflected at evente, 5, taking the speed
of light to be the same toward and back from e, takes ¢’ to be simultaneous with e.
§', reasoning similarly, takes ¢’ to be simultaneous with e because it is halfway in
time from O to r’. Yet because a causal signal can leave ¢’ and arrive at ¢, both §
and 5’ agree that ¢’ and ¢' cannot be simultaneous. In relativity, events are or are
not simultaneous only relative to a chosen “inertial frame of motion” like that of §
or that of §'.

phenomena by simply dropping the intuitive notion that there is an
absolute, nonrelative notion of “occurring at the same time.””

We can mitigate some of the strangeness of this conclusion if we look
at the concept of “being in the same place.” Imagine two observers in
motion with respect to one another. The first observer is hit on the
head at two different times. Did the blows occur “at the same place”?
“Yes,” says the struck observer, “they both occurred in the place where
the top of my head was located.” “No,” says the other observer, ““one
occurred near to me and the other far away.” Which claim is correct?
Unless one believes in Newton’s “space itself,” relative to which one
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and only one of the observers can really be at rest, why not say that
“at the same place” is just a relative notion? Two events can be at the
same place relative to one observer and at different places relative to
another in motion with respect to the first. And, if Einstein is correct,
it is just the same with “at the same time.”

To get the full picture of space and time proposed by Einstein re-
quires one further assumption. It involves the claim that all places and
directions in space and time are alike but goes beyond this in making
an assumption that amounts to a posit that the spatiotemporal structure
of the world is ““flat.” We will examine this notion of “flatness” in more
detail in “Gravity and the Curvature of Spacetime.” The assumption
needed is the linearity of the relations of spatial and temporal sepa-
rations for one observer with respect to those of another observer. With
this additional posit, a structure of space and time is constructed in
which observers in motion with respect to each other will attribute quite
different spatial separations of events from each other and will also
attribute quite different temporal separations between the events. The
spatial and temporal separations attributed to a pair of events by one
observer can, however, be calculated from those attributed to the pair
by another observer moving with respect to the first, by means of the
so-called Lorentz transformations, formulas originally derived in the
context of the earlier compensatory theories.

Although the spatial and temporal distances between two events will
vary from observer to observer, it is important to note that a conse-
quence of the basic postulates of the theory is that another quantity,
the so-called square of the interval between the events, will have an
invariant value: It will be the same for all uniformly moving observers.
It can be calculated from the time separation between the events in one
observer’s frame, f, and the spatial separation in that same reference
frame, x, and the velocity of light, ¢, by means of the formula: I* = x?
— c’f". Whereas ¢ and x will vary from observer to observer, I* will
remain the same for all of them. A crucial step in this proof relies on
the fact that all observers are attributing to light the same invariant
speed, c.

Minkowski Spacetime

All the consequences of Einstein’s theory for a new conceptualization
of space and time can be summarized in the notion of Minkowski
spacetime, the arena of all physical processes in the theory of special
relativity. The basic idea here is to start with point-event locations, as
the fundamental constituents out of which spacetime is built. One can
think of these as the possible locations of happenings that are instan-
taneous and unextended spatially. These point-events take the place of
the spatial points and moments of time of the prerelativistic theory. It
is the basic structures imposed on the set of these spacetime points,
the events or event locations, that constitute the framework of the new
picture of space and time. (See Figure 2.3.)
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Figure 2.3 Some elements of Minkowski spacetime. The line ¢ represents an in-
ertial observer with ¢ an event in that observer’s life. The line x represents the events
simultaneous with o for the observer. A and B represent light signals coming from
the past to o and leaving o into the future. The events in regions I and II are so far
from o in space and close to it in time that a signal would have to travel faster than
light to connect such an event to event o. It is generally assumed that there are no
such signals. The events in regions III and IV are events connectable to event o by
causal signals traveling at less than the speed of light.

Pairs of these event locations have a definite interval between them,
invariant and absolute in the structure. For a given observer in a par-
ticular state of uniform motion, a definite spatial separation and a def-
inite time interval between the events can be derived, but the values
of these are relative to the particular observer’s state of motion.

Two events whose interval separation has value zero are such that
a light signal in vacuum emitted at one place-time could arrive at the
other place-time. Notice that “interval” is unlike spatial distance in that
distinct events can have zero-interval separation. Such events are said
to have null or lightlike separation. Events whose interval squared is
negative are close enough together in space and far enough apart in
time so that signals propagating slower than light can get from one to
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the other. They are said to have timelike separation. Event pairs whose
interval squared is positive are too far apart in space and too close to-
gether in time for any signal traveling at the speed of light or less to
connect them. If we assume that light is the limiting fastest signal, the
events are unconnectable by any causal process whatever and are said
to have spacelike separation. If we pick one event as origin, the class
of events null separated from it divides the spacetime into interior and
exterior regions of events timelike and events spacelike separated from
the origin event. This separating class of events lightlike separated from
the origin event consists of a future and past component. Together these
are called the “light cones” of the origin event. (Actually they are cones
only in a spacetime of two rather than the actual three spatial dimen-
sions.)

In the usual flat space of Euclidean geometry, straight lines exist.
Minkowski spacetime also has straight-line paths. If the intervals be-
tween the points on the geodesic path are spacelike, the path repre-
sents a straight spatial line. The latter is a straight line in the space at
a time generated from the spacetime by picking some uniformly mov-
ing observer and taking as space at a time for him a collection of events
all of which are simultaneous in his reference frame. Straight lines whose
events have null separation represent the paths of light rays traveling
in a vacuum. Timelike straight lines represent the path through space
in time of some particle in uniform motion.

On a diagram we could represent some observer at rest in a frame
of uniform motion by a vertical straight line. Any other uniformly mov-
ing observer who coincides with our first observer at the origin event
would be represented by a straight line at an angle to the vertical. It is
important to recognize that which line is vertical carries no physical
significance. Only if we had a Newtonian notion of who is really at rest
in space itself would there be some real significance to representing one
observer as always at the same place and the other uniformly moving
observers as changing places over time. But Minkowski spacetime has
no such notion of which uniformly moving observer has zero real ve-
locity, for all uniform velocities are physically on a par in this spacetime
picture.

Having chosen some uniformly moving observer, we can also rep-
resent on the diagram by a straight line all of those events simultaneous
to the origin event relative to that observer’s state of motion. Diagram-
matically, this straight line really represents “space at a time’ for the
observer, which is, of course, three dimensional. But we must suppress
two spatial dimensions to get the diagram on a plane; therefore, a whole
infinite, flat, Euclidean three-dimensional “space at a time” is repre-
sented by a line. For the observer in motion with respect to our first
observer, a different straight line will represent all the events simul-
taneous to the origin event relative to this new observer’s state of mo-
tion. A different line is needed because for the two observers different
events are classed as simultaneous to the origin event, and what counts
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as space at the time of the origin event depends on an observer's state
of motion. It can easily be shown that the simultaneity line (space at a
time) for the second observer represented in the diagram would have
to be tilted with respect to the first observer's simultaneity line.

We noted that in the compensatory theories originally designed to
explain the null results of the round-trip experiments, it was posited
that objects in motion with respect to the aether shrank in their lengths,
and that clocks in motion with respect to the aether slowed down. In
Minkowski spacetime, there is, of course, no aether. Yet length con-
traction and time dilation do occur. Let a meter-long stick be at rest in
a uniform motion reference frame. That meter stick will be declared to
have a length less than one meter in any other uniformly moving frame,
Let a clock be at rest in one uniformly moving frame. That clock will
be declared to be “running slow,” i.e., taking more than one second
to tick off one second on its face, by an observer in any other uniformly
moving frame.

What is striking is that this contraction of length and dilation of time
is perfectly symmetrical. Meter sticks at rest in your reference frame
are taken as shortened by me (the two of us in relative motion), but
meter sticks in my frame are taken as shortened by you. And the slow-
ing down of clocks is equally symmetrical. Despite the appearance of
inconsistency here, there is none, for length and time interval are now
relative to an observer, and the assertions made are perfectly consis-
tent. Direct evidence of the real existence of these phenomena is avail-
able, for example, in the life span of unstable particles—inexplicably
overlong in prerelativistic terms—created in the upper atmosphere and
observed on the surface of the earth. Only the relative slowing down
of their decay process, because of their high velocity relative to us, can
account for the phenomenon. ,

This consequence of relativity gives rise to a wide variety of para-
doxes, apparent contradictions that really aren’t contradictions, some
of which can be found in any standard text on relativity. For example,
a man carrying a pole runs into one end of a barn and out the other.
When the pole is at rest with respect to the barn, it has the same length
as the barn. Because the pole in motion is shorter than the barn, some-
one can close both doors on the runner while he and the pole are in
the barn. But to the runner the barn is shorter than the pole, so this
is clearly impossible. The key is to think about the time order in which
processes occur from the differing perspectives of the runner and of
the observer at rest on the barn. For the man at rest on the barn, both
doors are shut while the runner is in the barn with the pole. The runner
sees the farther door open and his pole protrude from the barn before
the nearer door is ever closed behind him.

The spacetime of special relativity, Minkowski spacetime, requires
us to make another distinction about time that doesn’t occur in the
prerelativistic theory. We have noted that any observer will attribute a
certain time interval between two events, and that this interval will
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vary from observer to observer. This is called the coordinate time in-
terval between the events relative to the observer in question. Another
notion of time arises when we consider someone who moves from one
event (one place at a time) to some other event (a different place at a
different time) along some spacetime path, through a succession of places-
at-a-time. Let this agent carry a clock with him set at zero at the first
event. This clock will read a definite value at the final event. Surely all
observers will agree on what that value is because the coincidence of
the clock’s reading that value with the final event will be agreed upon
by all, as these are events at the same place and there is no relativity
of simultaneity in that case. This time is called the proper time between
the two events.

But the elapsed proper time between two events will vary depending
upon the spacetime path by which the clock is carried from one event
to the other. This phenomenon is without precedent in prerelativistic
physics. In fact, it can easily be shown that the time elapsed on a clock
carried from one event to another will be maximal if the path followed
from the first event to the second is one of unaccelerated, uniform mo-
tion. This is the source of the famous twin paradox, according to which
if one twin remains in a frame of uniform motion while the other takes
a course through space and time that involves accelerated motion but
that brings him back into coincidence with his stay-at-home twin, the
adventurous twin will be younger—will have shown, for example, less
biological aging—than his twin when the two meet once again. Evi-
dence that this consequence of relativity is real comes from unstable
particles sent around the circular paths of accelerators. Fewer of them
decay than their compatriot particles in a group remaining at rest in
the laboratory between the first moment when they coincide and the
second moment at which they coincide. As usual there is no contra-
diction in the theory here, just phenomena we hadn’t expected, a result
of the surprising nature of spacetime. (See Figure 2.4.)

We noted that Newtonian mechanics conformed to Galileo’s prin-
ciple that all physical phenomena would appear the same to any ob-
server in a state of uniform motion, although the fact that one’s labo-
ratory was in accelerated motion would reveal itself in observable
consequences. The old theory of mechanics, when put in the new, re-
lativistic spacetime, no longer would satisfy that principle. Hence, a
new mechanics was developed by Einstein that reconciles the Galilean
relativity of mechanical phenomena with the new spacetime picture.
The source of this theory is simple. The older mechanics obeyed such
principles as the conservation of energy, the conservation of momen-
tum, and the conservation of angular momentum. These are now re-
alized to be the consequences of fundamental symmetries of the space-
time structure (in particular, the fact that all spacetime points are
structurally alike, as are all spacetime directions). These symmetries ob-
tain in the new spacetime as well, so we may hold to the old conser-
vation rules and derive the new mechanics from them. In the new me-
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Figure 2.4 The twin paradox. S is an observer who remains inertial and carries a
clock from event o to event o'. The time elapsed on the clock is represented by the
left-hand clock faces. S', originally at rest with respect to 5, accelerates off to the
right, travels to the right at a uniform speed, reverses direction of relative motion,
returns to 5's location and again accelerates so as to come to rest relative to § at
the location o’. The elapsed time on a clock carried by 5'is represented by the right-
hand clock faces. Special relativity predicts that less time will have elapsed on the
clock carried by S’ along the accelerated path from o to o’ than will have elapsed
on 5’s clock.

chanics is found the famous consequence of relativity, for example, of
the equivalence of mass and energy, i.e., that the more kinetic energy
an object possesses, the greater will be its resistance to further accel-
eration by a force.

We also noted that Finstein assumed that the speed of light in a
vacuum was a maximal speed of propagation of any signal whatever.
Such a posit fits in nicely with the new spacetime picture.

We can, for example, find pairs of events, A and B, and observers
O1 and O2, such that A is before B relative to O1 and B is before A
relative to O2. But these will always be events that have spacelike sep-

S
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a S b

Figure 2.5 The relativity of time order of events in special relativity. Q is an in-
ertial observer. O’ is another inertial observer moving to the right relative to Q. The
line S is the class of events O takes as simultaneous with event 2. The line §' is the
class of events O’ takes as simultaneous with a. For O event ¢ is after event b and
hence after event 2. But for O, event ¢ is before event ¥’ and hence before event a.
Such a reversal of time order can occur only for events, like event # and event ¢,
that are not causally connectable to one another,

aration. This means, assuming the limiting velocity of light, that events
will have different order in time relative to two observers only if the
events are not connectable by any causal signal whatever. Events that
are connectable by a causal signal, traveling at or at less than the speed
of light, will appear in the same time order to all observers, although
the amount of time between them will vary from observer to observer,
(See Figure 2.5.)

It has been pointed out that one need not hold to the posit of the
limiting velocity of light in order to have a consistent theory in which
spacetime is Minkowski spacetime, the spacetime of special relativity,
If one simply insists that conditions of the worid are such that causal
paradoxes are avoided, one can tolerate “tachyons,” causal signals at
higher than light speeds. The consistency constraint is needed because
positing tachyons in Minkowski spacetime would allow for closed causal
loops, in which one event causes itself. If initial conditions could be
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freely chosen, a paradoxical situation could be generated (I shoot my-
self before pulling the trigger that launches the bullet). No such above-
luminal speeds have ever been detected, however, and the standard
versions of special relativity adopt the posit of light as maximal causal
signal along with the structure of Minkowski spacetime with its in-
variant speed of light for all inertial observers.

Nothing in the spacetime of special relativity, as we have noted, plays
the full role of Newton’s space. For Newton, space itself provided a
genuine standard of what it is for an object to be really at rest, even if
no empirical consequences arose from uniform motion with respect to
space itself. In Minkowski spacetime, nothing provides a standard of
when two events that are not simultaneous with each other are “at the
same place.” It is therefore meaningless to ask whether an object re-
mains at one and the same place through time, although it is perfectly
meaningful to ask whether an object’s relative position, that is, position
with respect to some other material objects taken as a frame of refer-
ence, remains unchanged over time. But the distinction between being
genuinely in uniform motion or not does remain in this spacetime.
Whether the path of some material particle through the spacetime, the
timelike path that represents the succession of place-times the object
occupies, is a straight line or not, that is, whether it is one of the -
melike paths that is a geodesic of the spacetime, is a perfectly mean-
ingful question.

The distinction, then, between an object’s being in uniform motion
or being in accelerated motion—represented by a curved timelike path
in the spacetime diagram—remains absolute in the sense that this dis-
tinction has nothing to do' with the motion of the object in question
relative to other material objects. Instead, this distinction is determined
by an object’s motion relative to the structures of the spacetime itself.
In Newtonian physics, genuinely accelerated motion revealed itself by
the presence (in the accelerated laboratory) of inertial forces, acting on
objects and generated, allegedly, by the acceleration of the objects rel-
ative to space itself. In special relativity, real acceleration shows up in
this way and in other ways as well. We noted, for example, that it was
only when one of the round-trip experiments was performed with light
in a laboratory in uniform motion that the null results were obtained.
In an accelerated apparatus the light will take times around the paths
that reveal the existence of the absolute acceleration of the experimental
device. Although there is no such thing, then, as “being in the same
place” in any sense other than relative to some material standard, there
is, in special relativity, as much real significance to “being in uniform
motion” in an absolute sense as there is in the Newtonian theory.

Neo-Newtonian Spacetime

Once the Minkowski spacetime of special relativity had been con-
structed, it was noted that one could go back and construct a spacetime
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appropriate for the earlier Newtonian theory, a spacetime that had some
advantages over the notion of space itself traditionally postulated in
Newtonian physics. The main insights come from the realization that
taking event locations as primitive and then constructing the spacetime
by imposing structure on the set of event locations is the best system-
atic route for constructing a spacetime appropriate for what are taken
to be the observable quantities posited by any given theory.

In Newtonian physics, the notion of simultaneity for distant events
is presupposed as an absolute notion. 5o to construct our new space-
time for Newtonian physics, we impose on the collection of event lo-
cations a definite time interval between any pair of events. When this
interval is zero, the events are simultaneous. In the Minkowski space-
time of special relativity, spaces are collections of events simultaneous
relative to a given observer. It is assumed that these “relative” spaces
have the ordinary three-dimensional structure described by Euclid’s ge-
ometry. In the revised Newtonian spacetime, with its absolute notion
of simultaneity, we can, again, take spaces to be collections of simul-
taneous events. Thus each event will be in one and only one space,
and space is, again, assumed to be three-dimensional Euclidean space.

In the Newtonian context, as in special relativity, what counts as a
path of uniform motion of an object is a well-defined notion. So we
impose on this new Newtonian spacetime a demand similar to the one
imposed on Minkowski spacetime: There must be a definite notion of
straight-line paths representing the possible paths of motion through
space in time of freely and uniformly moving particles. Now Newton
assumed that there was such a thing as one event’s being “in the same
place” as some other nonsimultaneous event. If we impose that struc-
ture, a definite notion of same place for nonsimultaneous events, on
the spacetime we are constructing, we build up Newton’s absolute space
picture of space and time. But this would give us features of the world
without empirical consequences, such as the magnitude of the uniform
speed of an object with respect to “’space itself.” If we leave that “same
place at different times” structure out, however, we obtain a new
spacetime, sometimes called Galilean spacetime, sometimes called neo-
Newtonian spacetime. In this spacetime, absolute uniform motion is
well defined, but absolute sameness of place through time is not.

In this new spacetime picture, absolute accelerations exist and have
observable consequences, but there is no such thing as the absolute
velocity of an object. This is just what we want. The physicists’ need
for a new approach to space and time in order to confront the startling
and puzzling results of the optical round-trip experiments led to deep
insights into what the components were of the picture of space and
time that we held intuitively and that, in a refined version, under-
pinned the physical picture of the world of Newtonian science. By con-
fronting the new experimental facts and constructing the conceptual
apparatus to do justice to them, physicists came up with new ways of
looking at possible theories to account for the older posited observa-
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tional facts. As we shall see, the existence of these new structures for
describing and explaining the spatiotemporal features of the world had
an important effect on our philosophical understanding of the nature
of space and time and of our access to knowledge about their nature
as well. But before taking up those issues, we will look at a second
revolutionary change in our views about the nature of space and time,
once again generated out of the fertile scientific imagination of Einstein.

Gravity and the Curvature of Spacetime

Gravity and Relativily

In his greatest work, the Principia, Newton proposed a theory that would,
among other things, explain the motion of the planets around the sun
in the elliptical orbits that had been so carefully described by J. Kepler.
The theory accounting for this motion has two components. One is
Newton’s theory of dynamics, his general theory relating motions to
the forces acting upon the objects in motion. Based on a background
assumption of absolute space and a definite absolute rate of time, the
theory incorporates Galileo’s principle that objects not acted upon by
any forces remain in a constant state of uniform motion. It then posits
that change of motion (acceleration) will be proportional to the forces
acting upon a body and inversely proportional to the intrinsic propen-
sity of a body to resist changes of motion, its so-called inertial mass,

The other component of Newton’s theory concerns the force re-
sponsible for the observed motions of astronomical bodies (and for many
other phenomena, such as the way in which bodies fall toward the
surface of the earth and the tides). Once again building upon Galileo’s
important observation that, air resistance to the side, all objects suffer
a uniform acceleration toward the earth when they are in free-fall near
the earth’s surface, Newton posits a general force of gravity acting be-
tween all material objects. Gravity is always an attractive force. The
magnitude of the force exerted between the bodies is taken to be pro-
portional to the inertial mass of each body and inversely proportional
to the square of the distance between them. Newton’s Third Law of
Motion asserts that the force exerted by the first body on the second
will be matched by a force of equal strength—but oppositely directed—
exerted by the second body on the first.

The facts that the force increases in proportion to the inertial mass,
but that the resistance of the body to acceleration is also proportional
to the inertial mass, immediately produce Galileo’s result that all bodies
accelerate equally when subjected to the gravitational force exerted by
some fixed body if the test objects are at the same location relative to
the object exerting the gravitational force. Newton demonstrated that
the combination of the laws of dynamics and the law of gravitational
force that he postulates will lead to Kepler’'s laws of planetary motion
or, rather, to a slightly corrected version of them.
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It should be no surprise, then, that Einstein, having demonstrated
the necessity for a new dynamical system and having constructed one
consistent with the new spacetime of special relativity, takes up the
problem of the construction of a new theory of gravity. This theory,
which is clearly needed, must be consistent with the new spacetime
ideas. Newton’s theory, for example, takes the gravitational interaction
between bodies to be instantaneous, but relativity takes all signals to
propagate at a speed less than or equal to that of light. Quite a variety
of alternatives to the Newtonian theory can be constructed that are
compatible with the new relativistic spacetime. Indeed, a continuing
program in experimental physics amounts to testing these alternatives
against one another, looking for possible observations to rule out some
of the possibilities. But the novel gravitational theory that has stood up
best against experiment, and the one of greatest theoretical elegance,
is Einstein’s own. This is called the general theory of relativity. It is
also the theory that posits to the world a nature that is of great interest
to philosophers. I will spend the rest of this section sketching some of
the ideas that led Einstein to this novel theory of gravity, which, as we
shall see, constitutes a novel theory of the structure of spacetime itself.
I shall outline some of the basic components of the theory and explore
a few of its consequences that are of importance for the philosopher.

Einstein begins with Galileo’s observation that the acceleration in-
duced in an object by gravity is independent of the object’s size and
of what it is made of. Gravity is unlike any other force in having this
universal effect. Consider the case in which the object is forced into
acceleration by a distant enough gravitating object so that the gravi-
tational field is effectively constant within the laboratory. Einstein ob-
serves that a small test object in a laboratory would accelerate relative
to that laboratory in just the same manner as it would if no force were
acting on the test object but, instead, the laboratory itself were being
uniformly accelerated in the opposite direction to that of the particle’s
acceleration. In the latter case, any test object of any mass or compo-
sition would appear to accelerate uniformly with respect to the labo-
ratory. It is the universality of gravity that allows us to replace the grav-
itational force by a reference frame acceleration.

Perhaps, Einstein suggests, all the effects of gravity could be dupli-
cated by such a laboratory acceleration. This leads to the hypothesis
that gravity will have effects on things other than particulate matter. If
we shine a light beam across a laboratory in accelerated motion we
expect the beam to follow a path that is not a straight line relative to
the laboratory. Shouldn’t gravity, then, deflect beams of light that pass
near a gravitating body?

Perhaps more surprising is the conclusion that we ought to expect
gravity to have an effect on measurements of time and space intervals,
as revealed by idealized clocks and measuring rods. The argument in
tavor of the temporal effect is the easier one to construct and follow.
Imagine an accelerated laboratory with a clock at its upper end and an
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identical clock at its lower end. Signals are sent from the lower clock
to the upper and the rate of emission of the signals, as determined by
the lower clock, and of their reception, as determined by the upper,
are compared. By the time a signal released from the bottom has gotten
to the top, the top clock is in motion with respect to the uniformly
moving reference frame in which the bottom clock was at rest when
the signal was released. Arguing either from the time-dilation effect of
special relativity or from the so-called Doppler effect, which, even pre-
relativistically, shows that a signal released from a source with a given
frequency will appear to have a lower frequency when observed by
someone relative to whom the source is in motion, it becomes plausible
to claim that the lower clock will appear to be running slow as deter-
mined by the upper clock. That is, the frequency with which the signal
is received by the upper clock is lower than that with which it is emit-
ted as determined by the lower one. (See Figure 2.6.)

But now consider the laboratory not accelerated, with the apparatus
all located at rest in a gravitational field. By Einstein’s argument (often
called the Principle of Equivalence), we ought to expect that the clock
lower down in the gravitational field will appear, to the clock located
higher up, to be running slow. Notice that this has nothing to do with
the gravitational force felt by the two clocks but, rather, is determined
by how much further down the gravitational “hill’” one clock is than
the other. So we ought to expect gravity to have an effect on our mea-
surement of time intervals. Similar, but somewhat more complicated,
arguments can be given that lead us to expect gravity to affect spatial
measurements as well.

Taken together, these arguments led Einstein to the astonishing sug-
gestion that the way to deal with gravity in a relativistic context was
to treat it not as some force field acting in spacetime but, instead, as a
modification of the very geometric structure of spacetime. In the pres-
ence of gravity, he argued, spacetime is not “flat’” but is “curved.” To
know what that means, however, we must look briefly at the history
of geometry as treated by the mathematicians.

Non-Euclidean Geometry

Standard geometry as formalized by Euclid derived all the geometric
truths from a small set of allegedly self-evident, basic postulates. Al-
though Euclid’s axiomatization of geometry is not, actually, complete
(i.e., sufficient in itself to allow all the derivations to be carried out
without presupposing other underlying and hidden premises), it can
be so completed. For a long period of time, puzzlement existed about
Euclid’s so-called Parallel Postulate. It is equivalent to the claim that
through a point not on a line, one and only one line can be drawn that
is in the common plane of given line and point and that will not in-
tersect the given line in either direction no matter how far the lines are
extended. It seemed to the geometers that this postulate lacked the self-
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Figure 2.6 The gravitational red shift. (a) represents an accelerated laboratory with
a clock on the floor and one attached to the ceiling. Because a signal emitted from
the floor clock is received at the ceiling clock when the laboratory is moving with
a velocity relative to the frame of motion in which the signal was emitted (because
of the acceleration of the laboratory), the floor clock will be recorded as “running
slow” by the ceiling clock in much the manner a whistle moving away from an
observer is heard by that observer with a lower pitch than it would be if the whistle
were stationary with respect to the observer. General relativity posits that a similar
result will be obtained in a laboratory not accelerated but fixed in a gravitational
field—as in (b). A clock lower down in the gravitational field will be recorded as
“running slow” by a clock higher up in the ‘gravitational potential. This is called

the gravitational red shift. It indicates one way in which gravity can be taken to
affect the metric structure of spacetime.

evidence of the other, simpler hypotheses (such as “Equals added to
equals are equal,” and “Two points determine a straight line between
them”). Could this “suspect” postulate be derived from the other pos-
tulates, making it unnecessary as an independent assumption? If one
could show that the denial of the Parallel Postulate was inconsistent
with the other postulates, one could show this derivation to hold by
the method of reductio ad absurdum. But could this be shown?
Denying the Parallel Postulate can go in two directions. The pos-
tulate says that one and only one parallel line through the point exists,
and to deny that, one could affirm that no such parallel line existed or
that more than one did. In 1733 G. Saccheri showed that the No Par-
allels Postulate was, in fact, inconsistent with the remaining axioms, at
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least if these were understood in their usual way. He was unable to
show that the Many Parallels denial was so inconsistent. By the nine-
teenth century, J. Bolyai, N. I. Lobachevsky, and K. F. Gauss had re-
alized that one could construct consistent geometries that adopted Bu-
clid’s postulates but that had a Many Parallels Postulate in place of
Euclid’s Parallel Postulate. B. Riemann then showed that if the other
axioms were slightly reinterpreted, a new geometry with a No Parallels
Postulate replacing Euclid’s Parallel Postulate could be constructed that
was also logically consistent. The reinterpretations needed are that “Two
points determine a straight line,” must be read so that sometimes more
than one straight line contained a given pair of points and ““A line may
be extended arbitrarily in both directions,” must be read to assert that
a line wouldn’t meet an end point if extended but not to imply that a
fully extended line had infinite length.

Later it was realized that when these new non-Euclidean geometries
were taken to be two-dimensional, plane, geometries, they could be
understood in a Euclidean fashion as the geometry of shortest distance
curves (geodesics) on curved two-dimensional surfaces. In particular,
Riemannian axiomatic geometry was just the geometry of figures con-
structed by arcs of great circles on the surface of a sphere. But what
could the logically consistent three-dimensional non-Euclidean geom-
etries be taken to be about, or were they, even if logically consistent,
absurd for other reasons?

Gauss carried geometry further by developing a general theory of
arbitrarily curved two-dimensional surfaces. These are characterized by
a number—known as the Gaussian curvature—at each point. How this
curvature varies with distance as measured along curves drawn in the
surface determines the shape of the curved surface. Gauss thought of
these curved surfaces as embedded in ordinary Euclidean three-dimen-
sional space. An important result of his work, however, was that one
could characterize some of the aspects of curvature (“intrinsic’”’ curva-
ture) by means of quantities that could be determined by an imagined
two-dimensional creature confined to the curved surface and not even
aware that the embedding three-dimensional space existed. From this
new perspective, it turned out that the geometries described by the
older axiom systems could be understood as special cases. Euclidean
two-dimensional geometry, the geometry of the plane, is the geometry
of the surface whose Gaussian curvature is everywhere zero. Rieman-
nian geometry, the geometry of the two-dimensional surfaces of spheres,
is just the geometry of a surface whose Gaussian curvature is constant
and positive. Lobachevsky-Bolyai geometry is the geometry of a two-
dimensional surface whose Gaussian curvature is the same at each point
and negative. Negative curvature characterizes a point like that in the
center of a mountain pass at which the surface curves “in opposite
directions” along different paths through it.

Riemann then went on and generalized Gauss’s theory of curved
surfaces to spaces of any dimension whatever. Whereas Gauss presup-
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posed that the surfaces in question were embedded in a flat Euclidean
space, Riemann made no such assumption. After all, it was a result of
Gauss’s work that some aspects of curvature would be available to a
two-dimensional creature ignorant of the embedding space. General
Riemannian geometry deals with these aspects of curvature, the intrin-
sic aspects. (This general Riemannian geometry of curved n-dimen-
sional spaces is not to be confused with the earlier axiomatic Rieman-
nian geometry.) The basic assumption of this geometry is that the curved
n-dimensional space is approximable in small enough regions by a Eu-
clidean, flat, n-dimensional space. For curved surfaces in flat three-di-
mensional space, these approximating surfaces can be represented as
planes tangent to the curved surface at a point; the planes are also lo-
cated in the embedding three-dimensional space. For a general Rie-
mannian curved n-dimensional space, these “tangent planes’ are pos-
ited to exist only in the sense that as far as intrinsic #-dimensional features
go, the n-dimensional curved space can be approximated at a point by
a flat, n-dimensional Euclidean space.

What are some aspects of curved spaces? How, for example, could
a three-dimensional creature living in a curved three-dimensional space
tind out that the: space was, in fact, curved? Intrinsic curvature reveals
itself in distance measurements. An n-dimensional creature can make
enough distance measurements between points to assure itself that there
was no way these points could be located in a flat n-dimensional space
and have the minimal distances between them along curves that the
creature’s points do. For example, a check of shortest airline distances
between cities on the Earth could tell us that the Earth had not a plane
surface but, instead, a surface approximating that of a sphere. In a curved
n-dimensional space, shortest-distance curves, called the geodesics of
the space, fail to be the straight lines that they would be were the space
flat. These lines are also the lines of “least curvature’”” in the space.
Intuitively, this means that the lines, although they cannot be straight,
given the curvature of the space, deviate from straightness no more
than they are forced to by the curvature of the space itself.

Curvature can reveal itself in other ways as well. For example, if we
take a directed line (a vector) and move it around a closed curve in a
flat space, all the while keeping it as parallel to itself as possible as we
move it, when we return to the point of origin, the vector will point
in the same direction at that point as when we began. But in a curved
space, such parallel transport of a vector around a closed loop will, in
general, change the direction of the vector so that it will peint in a
direction at the end of the transport that is different from its original
direction when the journey started.

A flat three-dimensional space is of infinite extent and has infinite
volume. A Euclidean plane is of infinite extent and has infinite area.
But the intrinsically curved surface of a sphere, although it has no
boundaries, has a finite area. A two-dimensional creature living on a
spherical surface could paint the surface. It would never encounter a
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boundary to the surface. But after a finite time the job would be done,
with the whole surface painted. Similarly, a three-dimensional creature
living in the three-dimensional curved space that is analogous to the
spherical surface, living in a so-called three-sphere, could fill the region
with foamed plastic. Although never encountering a boundary wall to
the space, it would, in a finite time, finish the job, with all the volume
of the three-dimensional space filled by a finite amount of plastic foam.

It seems clear, then, that the notion of a curved n-dimensional space,
including a curved three-dimensional space, is not only logically con-
sistent but manifestly nonabsurd. As long as we are sticking to intrinsic
features of curvature, we are not making the assumption that the space
is sitting in some higher-dimensional, flat embedding space. And the
features of curvature intrinsic to the space are manifestly ascertainable
by straightforward techniques to a creature living in the space. Could
it not be the case, then, that the actual three-dimensional space of our
world was curved and not the flat space characterized by the basic pos-
tulates of three-dimensional Euclidean geometry? Such speculations
naturally accompanied the discovery of the new geomelries.

Using Non-Euclidean Geometries in Physics

There was some speculation in the nineteenth century about the pos-
sible reality of curved space. W. Clifford, for example, suggested that
it was conceivable that matter was actually little regions of highly curved
space in a three-dimensional space that was flat in the large. It was
clear that a large-scale curvature of space could be detected only on the
largest, astronomical, scales, for generations of experience had shown
us how well Euclidean flat three-dimensional geometry worked in our
descriptions of the world. Certainly it worked well for measurements
of the ordinary sort and even in the description of such things as the
structure of the solar system.

It was only with Einstein’s new relativistic theory of gravity, how-
ever, the general theory of relativity, that curved geometry became an
essential part of a plausible physical theory. We have seen that one
could argue with plausibility that gravity would affect all objects dy-
namically in the same way, independently of their size and constitu-
tion. Thus a material object, which would, in the absence of gravity or
other forces, follow a path of uniform direction and speed would, in
the presence of gravity, follow a different path. But the change in this
path would depend only upon the gravitational field and the initial
place and velocity of the object. It wouldn’t depend on the mass of the
object or the material out of which the object was made. It is this in-
dependence of the effect of gravity on the object’s size and structure
that makes a “geometrization” of the gravitational field possible.

When combined with the arguments in favor of a gravitational effect
on metric features of the world as determined by rods and clocks, the
idea of treating gravity as curvature becomes plausible. But it is not, at
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least fundamentaﬂy, curved space that Einstein posits but, instead, curved
spacetime. In the Minkowski spacetime of special relativity, free par-
ticles traveled timelike straight lines, the timelike geodesics of the
spacetime. Now, Einstein suggests, we are to think of particles that are
acted upon only by gravity as “free’” particles, traveling, not timelike
straight lines, but the curved timelike geodesics of a spacetime that is
curved. A fundamental result of Riemann’s geometry is that through
a point in a given direction there passes a single geodesic path. In Rie-
mannian spaces, the geodesics are both the paths of minimum curva-
ture and of (locally) shortest distance. With the new metric of space-
time, it is best to think of the “least curvature” definition of geodesics
as the fundamental one. In spacetime, if one specifies a direction at a
point one will simultaneously specify a spatial direction and a speed in
each direction. So the timelike geodesic through a point in a given di-
rection will correspond to specifying the initial place and the initial ve-
locity of a particle. The path specified by the geodesic will then be unique.
And this is just what we want for gravity because, given an initial place
and velocity, the path of any particle in a gravitational field is the same.
Light, which in special relativity follows the straight-line null geodesics
of Minkowski spacetime, is now taken to follow null geodesics in the
curved spacetime, geodesics that will, in general, not be straight lines.
(See Figure 2.7.)

One could determine the curvature of a spacetime by following out
the paths of the “free’” particles and light rays, that is, the particles and
light rays acting only under the influence of gravitation, now taken to
be simply the curvature of the spacetime. But one could also, at least
in principle, determine the curvature structure by making enough mea-
surements of spatial and temporal separations of events and combining
these measurements into the interval separation, which is the metric
for spacetime. General relativity posits that the spacetime so deter-
mined will agree with that determined by following out the geodesic
motions of particles and light rays, the clocks and rods being used to
make the temporal and spatial measurements also being affected by the
gravitational field, in the sense that they properly measure these metric
qualities in the curved spacetime.

Traditional gravitational theory had two parts: One specified the ac-
tion of gravity on test objects; the other specified the kind of gravita-
tional field that would be generated by a source of gravity. In the older
theory, gravity was a force that accelerated all material objects at a place
in the gravitational field to the same degree. In the newer theory, grav-
ity is the structure of curved spacetime. It affects particles and light rays
in that they now travel curved timelike and null geodesics in the space-
time, and it affects idealized temporal and spatial measuring instru-
ments.

What about the second aspect of the theory, that which specified
what kind of gravitational field would be generated by a source of grav-
ity? In the older theory, any massive object generates a gravitational
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(a) (b)

Figure 2.7 Molion in a gravitational field as following curved geodesics. Tn (@)
spacetime is viewed as “‘flat.”” The straight line ¢ represents the path a “free” particle
would travel through the spacetime and the straight line ] the path of a ““free” light
ray. Under the influence of a force like gravity, the particle and light ray will travel
curved paths such as ' and I'. But these are viewed as deviating from the straightest
paths in the spacetime. In (b) the straight paths have vanished. Instead the space-
fime is viewed as “curved” in the presence of gravity, with +' and I, the paths of
“free” particles and light rays (that is, particles and light rays acted upon by no
nongravitational force), now considered geodesics, or straightest possible paths in
the curved spacetime,

field. In the new relativistic theory, gravity is associated with the mass-
energy of the material world. The field equations of general relativity
have on their left-hand side a mathematical expression characterizing
the curvature of spacetime. On their right-hand side they have an
expression characterizing how mass-energy is distributed in spacetime,
the so-called stress-energy tensor. It is this equation that relates gravity,
now curved spacetime, to its sources in nongravitational mass-energy.
(The “nongravitational” is important because the gravitational field it-
self, curved spacetime, also possesses mass-energy.) It would be a mis-
take to think of the matter as “causing” the gravitational field in any
simplistic sense, because to know the right-hand side of the equation,
which describes how mass-energy is distributed in spacetime, requires
positing a spacetime structure. The equation tells us whether a given
spacetime is compatible with a posited mass-energy distribution in that
spacetime. Only when the equation is satisfied by both the posited
spacetime structure and the posited distribution of mass-energy in that
structure is the world posited a possible world in the new theory.

It is interesting that given the field equation, the dynamical law of
gravity—that pointlike material particles when “free” travel timelike
geodesics—follows. Unlike the Newtonian theory, the dynamical law
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of gravity need not be posited as an independent law but is itself de-
rivable from the basic field equation.

If we accept this new curved spacetime theory of gravity, we then
confront the task of trying, as inhabitants of the world, to determine
its actual spacetime structure. The theory tells us that the geometry of
spacetime must be correlated with the distribution of matter and energy
in that spacetime. And the spacetime structure in question reveals itself
in terms of the curved geodesic paths of unimpeded light rays and “free’”
particles and by means of spatial and temporal intervals measured by
ideal measuring rods (or tapes in a curved world) and clocks. Naturally,
if spacetime shows curvature, it will be on astronomical scales, for we
have a vast empirical experience to assure us that in local small-scale
measurements, Minkowskian flat geometry works adequately.

Some effects of this newly understood “gravity as spacetime cur-
vature” do show up in the scale of the solar system. The planets are
taken to be traveling geodesics in the spacetime curved by the presence
of the massive sun. This introduces slight changes from the Keplerian
motion of the planets explicable by the Newtonian theory. We know
that the spacetime curvature even of the solar system is small. The paths
of the planets in spacetime deviate little from straight-line geodesics
(not to be confused with the spatial, obviously curved, ellipses they
travel). But the effect of the curvature is to superimpose on the familiar
elliptical paths of the planets small additional effects, such as a motion
(relative to an inertial frame fixed in the sun) of the nearest point of
approach of the planet to the sun in its orbit, a motion detectable in
the case of the planet Mercury.

Other metric effects of gravity can also be observed on a fairly small
scale, in particular, the slowed rate of one clock relative to another if
the former clock is lower down in a gravitational potential than the
latter. But it is on the grand cosmological scale than the theory gives
rise to its most interesting new predictions and to the possibility for
the most fascinating appearances of observational consequences of
spacetime curvature. Here one deals with highly idealized model uni-
verses, for which theoretical conclusions can be drawn. The hope is,
of course, that at least some of these idealized pictures of the world on
the cosmological scale will be close enough to reality to provide insight
into the world we discover in our astronomical observations into deep
space. For example, it is usually assumed that the matter of the uni-
verse can be considered as distributed uniformly and that the distri-
bution is the same in all directions in space in the cosmological world.
This assumption is now under intensive observational scrutiny.

A wide variety of possible spacetime worlds has been explored by
the theorists. In many of these, the continuity structure of the world
differs from that of the worlds of Newtonian or special relativistic phys-
ics. In some worlds, for example, there can be closed timelike paths,
collections of events such that when an observer follows them from
later to later event, he eventually returns to his initial event. Other



wu opace, lime, and Motion

the twisted Mobius band, we can eventually bring it back to Q so that it coincides
with B’. This reveals the nonorientable nature of the surface. In spacetime, a non-
orientability can be spatial, temporal, or spatiotemporal.

spacetimes, although not that causally pathological, can be close to hay-
ing such closed, causal paths embedded in them. Other peculiar space-
times have a nonorientability built into them. They are twisted like the
familiar Mobius band, a twisted two-dimensional surface embedded in
three-space. (See Figure 2.8.)

In such a nonorientable spacetime world, it may be impossible to
make a global distinction between right-handed and left-handed ob-
jects, a right-handed object being transformable into a left-handed one
at the same place by a voyage around the spacetime. Or there may be
a lack of time orientability, which makes it impossible to say globally
what is the “past” and what is the “future’” direction of time at a poin-
event.

In some spacetimes, it is possible for observers to have Spacetime
split into Spaces-at-a-time. That means that in these worlds, for an ob-
server in a particular state of motion, the spacetime can be sliced into
three-dimensional spaces of events that all can be assigned a specific
time in a time order that can hold globally. For other spacetimes, such
a splitting of spacetime into “simultaneity slices”” of three-spaces-at-a-
time is impossible. When such a cutting up of spacetime into spaces-
at-a-time is possible, the spaces can themselves be curved three-di-
mensional spaces of the sort studied by Riemann in his generalization
of Gauss’s geometry of curved surfaces. One such universe, the Ein-
stein model, has time going on forever in past and future. To an ob-
server at each time the spatial world exists as a closed, three-dimen-
sional sphere of constant, finite size. The Robertson-Walker universes
have spaces-at-a-time of constant curvature, but the curvature may be
positive, zero, or negative. The size parameter of these spaces can change
with time, leading them to be plausible models of Big Bang universes
that have, as, on the basis of the observational data, our universe seems
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to have, a singular point at which all the matter of the world is com-
pressed to one spatial point.

Moreover, spacetime curvature helps to explain the possible data of
experience in another area: the description of the singularities gener-
ated by the collapsing matter of massive stars. These are the famous
black holes, regions of spacetime so curved up by the presence of highly
dense matter that light cannot escape to the outside spacetime from the
inner spacetime region immediately surrounding the point of singular
collapse .of the star. Models of such locally highly curved regions of
Spacetime corresponding to electrically charged and/or rotating col-
lapsed stars, as well as the original kind studied, provide fascinating
case studies of the peculiar effects gravity as spacetime curvature can
have. Although the evidence from observation js still inconclusive, it
seems that some of the generators of highly energetic radiation in the
cosmos, for example, quasars and the centers of so-called active pal-
axies, may very well be such black holes.

Curved Spacetime and Newtonian Gravity

When we discussed the move from space and time to spacetime when
the foundations of the special theory of relativity were formulated, we
noted that after Minkowski spacetime had been constructed as the
spacetime appropriate to special relativity, scientists realized that one
could use the spacetime notion to construct a spacetime in some ways
mmore appropriate to the physics of Newton than was his own absolute
space and time. This was the Galilean or neo-Newtonian spacetime. In
light of the curved spacetime account of gravity, the general theory of
relativity, it became clear that one could redescribe gravity even in the
prerelativistic picture by means of a curved Spacetime as well. In this
prerelativistic picture, gravity doesn’t have the effects on distance and
time measurements it has in the relativistic version, nor is any account
taken of the effect of gravity on light. Instead, it is the familiar dynam-
ical effects of gravity that are transformed into curvature of spacetime.

In this picture, time is just as it was for Newton. There is a definite,
absolute time interval between any two events. Events that are all sj-
multaneous form spaces-at-a-time. These are, as they were for Newton,
flat, three-dimensional Euclidean spaces. As in the neo-Newtonian
spacetime, there is no nonrelative notion of two nonsimultaneous events
being at the same place; therefore this spacetime lacks Newton’s ab-
solute notion of sameness of place through time and absolute velocity.
But just as in the neo-Newtonian view there were timelike geodesics
corresponding to possible paths of freely moving particles, so are there
timelike geodesics in this new spacetime picture. However, whereas
the timelike geodesics of the neo-Newtonian picture were the straight-
line paths of uniformly moving particles (particles not acted upon by
forces and, following the law of inertia, keeping their velocities con-
stant), now, the timelike geodesics are curved lines. They are now taken
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to be the paths of particles “free”” in the new sense made familiar from
Einstein’s theory of gravity, that is, acted upon by no forces other than
gravity.

Once again, gravitational force is eliminated from the theory in favor
of gravity as the curvature of timelike geodesics, so that particles feel
the effect of gravity not by being deflected from their geodesic motion
by the force of the gravitating object but, instead, by following the “free”
geodesic paths in the spacetime, paths now curved as a result of the
presence of the gravitating object, which serves as a “‘source” of space-
time curvature. Just as in Einstein’s theory, it is only the uniform effect
of gravity on a test object, the fact that all objects affected by gravity
suffer the same modification in their motion independently of their mass
or constitution, that allows for this “geometrization” of the gravita-
tional force. This curved spacetime of Newtonian gravity is not, like
Minkowski spacetime or the curved spacetime of the general theory of
relativity, Riemannian (or, rather, pseudo-Riemannian) spacetime, be-
cause unlike the spacetimes of special or general relativity, it has no
spacetime metric structure. There is a definite time interval between
any two events. For simultaneous events, there is a definite spatial sep-
aration between any two events. In this sense, this spacetime has a
metric of time and one of space. But there is, in contrast to the rela-
tivistic case, no spacetime interval between a pair of events. Curvature
shows up only as the nonstraightness of the timelike geodesics, not in
any metric feature of the spacetime.

Summary

So the development of the elegant theories of Einstein, which attempt
to do justice to the surprising observational facts about the behavior of
light, free particles, and measuring rods and clocks, provides us with
two revolutions in our views of space and time. First, space and time
are replaced by the unified notion of spacetime, relative to which spa-
tial and temporal aspects of the world become derivative. Second, the
notion of curvature is invoked to find a natural place for the effects of
gravity in such a spacetime picture of the world.

Surely such revolutions in our scientific perspective on what space
and time are actually like should result in a profound rethinking of the
typically philosophical questions about space and time. How should we
view the status of our claims to knowledge about the structure of space
and time in this new context in which, for the first time, a variety of
possible and distinct proposals about the structure of space and time
are available for our scientific inspection? And what effect should such
novel structures of space and time have on our views about the meta-
physical nature of space and time? In particular, what effect should
these revolutionary scientific views have on the traditional debate be-
tween substantivalists and relationists? It is to those philosophical ques-
tions that we now turn. -
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of the world sometimes tried to challenge the veyry logical consistency
of the non-Euclidean geometries. That tack soon failed, as relative-con-
sistency proofs for the axiomatic non-Euclidean geometries were soon
produced. These proofs showed that we could be assured by pure logic
that if the non-Euclidean geometries were inconsistent, then so was
Euclidean geometry. Therefore, the non-Euclidean geometries were at
least as logically respectable as the Euclidean. Kantians could continue
to argue on other grounds that Euclidean geometry was the certain ge-
ometry of the world, holding as they did that there was a kind of ne-
cessity to the truth of Euclidean geometry that went beyond the ne-




