
Molecular virology - Laboratory exercises -

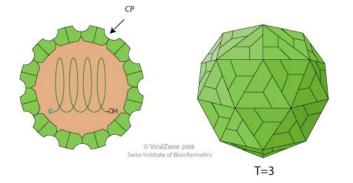
VIRAL NUCLEIC ACIDS (NA) ISOLATION

Sandra Kolundžija, Ph.D. Asst. Prof. Silvija Černi, Ph. D. Lucija Nuskern Karaica, Ph. D. Prof. Dijana Škorić, Ph. D.

VIRUSES – intracellular pathogens

Isolation of viral RNAs from plant tissue:

- Total RNAs (plant RNA + viral RNA; fraction of viral RNAs is small relative to plant RNAs)
- viral dsRNAs (replicative form)
- → Isolation of genomic viral RNAs from previously partially purified viral particles (increasing the fraction of viral RNAs in sample, i.e. separating it from plant RNAs)



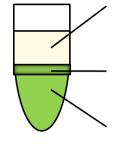
VIRAL NUCLEIC ACIDS ISOLATION (RNA):

Tobacco mosaic virus (TMV)

<u>ssRNA(+) genome</u>, 6.3 - 6.5 kbanisometric virus5 % NA in the virus particle

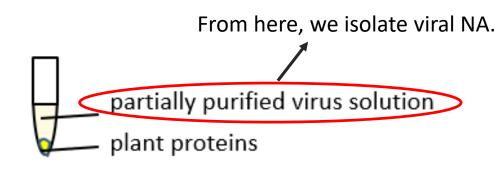
Turnip yellow mosaic virus (TYMV)

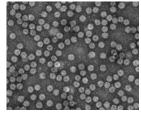
<u>ssRNA(+) genom</u>e, 6.3 kbisometric virus28 % NA in the virus particle


PURIFICATION OF VIRUS PARTICLES

HOMOGENISATION OF INFECTED TISSUE (+ ribonuclease inhibition)

ORGANIC SOLVENT ADDITION

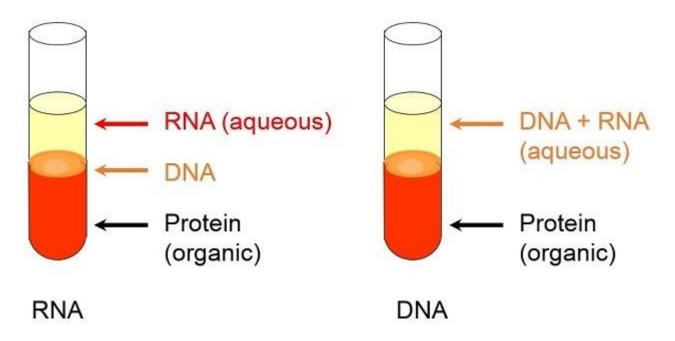

water phase (virus particles, leftover plant proteins, leftover ribosomes, low-molecular components)


clot/interphase (rough cellular debris, denatured proteins and nucleoproteins on surface)

organic solvent phase (pigments, membranous structures)

CLARIFICATION

ULTRACENTRIFUGATION or alternative PHYSICO CHEMICAL procedure (addition of ammonium sulphate + low speed centrifugation)

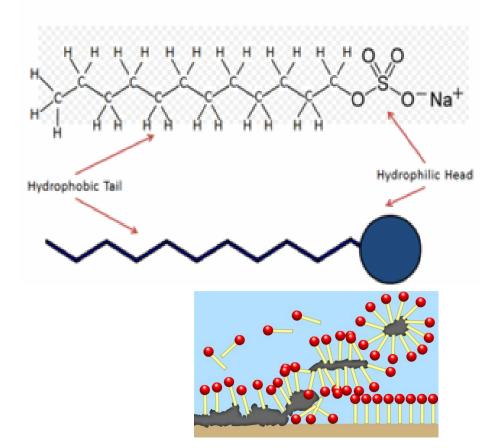


 $\underline{\text{TMV}}$ E=3 A_{260}/A_{280} =1.19 $\underline{\text{TYMV}}$ E=9,6 A_{260}/A_{280} =1.51

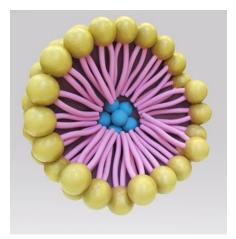
Traditional Phenol Extraction

Phenol, pH 4

Phenol, pH 8



Disadvantages: Phenol – toxic, carcinogenic


 \rightarrow Alternative methods

PERCHLORATE METHOD OF NA ISOLATION – specific steps

- **1.** SDS (Sodium dodecyl sulphate) anionic detergent
 - amphiphilic molecule it disrupts interactions between non-polar amino acids (AA) in proteins – protein denaturation (enhanced by heating)

NaC12H25SO4 = Sodium dodecyl sulfate

Globular proteins + detergent molecules = micellae (good solubility, clear solution)

PERCHLORATE METHOD OF NA ISOLATION – specific steps

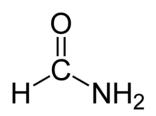
2. Sodium perchlorate (NaClO₄) – hygroscopic

- It extracts water from hydration shell of micellae turbidity ("flocks") \rightarrow
- \rightarrow Proteins separate from aqueous phase containing NA
- "Flocks" are lighter than the aqueous phase they float

- 3. Separation of aqueous phase with NA centrifuge
- 4. NA precipitation with **EtOH** (3 volumes for RNA, 2 volumes for DNA)

PERCHLORATE METHOD OF VIRAL NUCLEIC ACIDS (RNA) ISOLATION – protocol

+	0.8 mL partially purified virus 0.2 mL SDS (25%)			
heat for	⁻ 3 min at 60°C	denaturation of capside proteins		
+	3 mL NaClO₄ (8 M)			
vortex f	or 1 min	separation of proteins and NA (turbidity)		


- centrifuge for 10 min at 6000 rpm (4 °C)
- separate aqueous phase containing RNA (<u>at the bottom</u> of the tube), add 3V of cold
 EtOH and incubate for 20 min at -20 °C
 nucleic acids precipitation
- centrifuge for 20 min at 11000 rpm (4 °C)
- dry the precipitate and dissolve it in 25 μL **TE-buffer** (pH 7.5)

TE buffer

- 10 mM Tris + 1mM EDTA
- pH 7.5 for RNA, pH 8 for DNA
- nuclease inactivation protects
 NA from degradation

PARTIAL DENATURATION OF NA (preparation for electrophoresis)

•Formamide

- Disrupts hydrogen bonds between base pairs → stabilisation of ssRNAs in electrophoretic gel
- Affects Tm (higher order structures dissociate at lower temp.)
- NA in semi-denatured state: better electrophoretic properties, stability, retains infectivity (possibility of downstream biological experiments)

PARTIAL DENATURATION OF NA – protocol

10 μL nucleic acid isolate

+ 40 μL formamide

heat for 2 min at 85 °C

add 10 μ L coloured electrophoresis sample buffer (SB)

ELECTROPHORESIS OF NUCLEIC ACIDS – protocol

Agarose gel preparation:

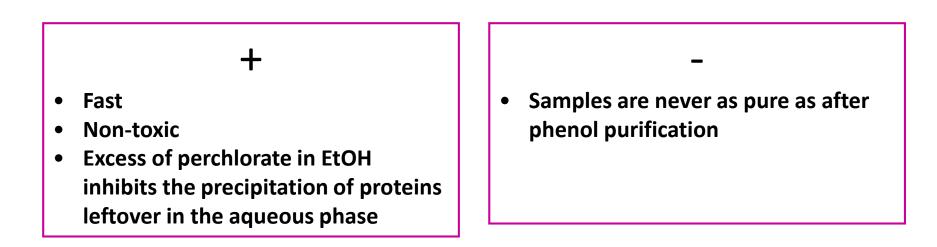
0.5% agarose	1% agarose	1.2% agarose
150 mg agarose	300 mg agarose	360 mg agarose
30 mL 1xTBE	30 mL 1x TBE	30 mL 1x TBE

Agarose = agar purified from agaropectin (charged groups disrupt electrophoresis – electro-osmosis)

Electrophoresis:

90 V, 40 min

Xylene cyanol FF TAE: 4160bp TBE: 3030bp


Bromophenol blue TAE: 370bp TBE: 220bp

Electrophoresis of tracking dye in 6xGel Loading Dye, SDS +

Composition and role of SB (sample buffer, gel loading buffer, loading ", dye")

- dyes (xylene cyanol, bromphenol blue) \rightarrow sample visibility (loading, run tracking)
- sample density increase (sucrose, glycerol, ficoll)
- water

ADVANTAGES AND DISADVANTAGES OF THE PERCHLORATE METHOD

ALTERNATE METHODS FOR NA ISOLATION

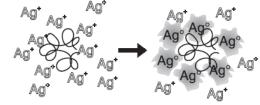
- Phenol method "classical method";
 - phenol toxic, mutagen, harmful for environment;
 - method: slower, "finer" results
- "Flash heating"
 - opening of virus particle by heating (physical method)
 - several cycles of heating for 1 min at 95°C
 - risk of NA denaturation

SILVER STAINING

 Very sensitive method, developed for PAGE (Ag⁺ does not bind strongly to polyacrylamide gels, but it does bind to agarose)

1. Fixation:

- Formaldehyde (reducing agent) increase of contrast due to blocking of charged groups of agarose
- Simultaneous NA fixation (to unable diffusion) and complete denaturation


2. Washing:

- Rinsing of buffer, ions, denaturing agent
- Formaldehyde should be COMPLETELY rinsed off! (to avoid unspecific Ag⁺ reduction in staining)

3. Silver impregnation:

AgNO₃ – binds to gel and NA

(rinsing removes AgNO₃ unspecifically bound to gel)

Impregnation with silver ion Reduction of silver ion to metallic silver

4. Developing:

Developing solution – Ag⁺ reduction to Ag forms a precipitate (formaldehyde = reducing agent, sodium carbonate increases pH)

SILVER STAINING – protocol

Solution A (FIXATION + REDUCTION)

110 mL water

+ 14 mL formaldehyde

incubate gel for 20 min; 3 x 10 min rinsing with water

Solution **B** (SILVER IMPREGNATION)

250 mg AgNO₃

+ 125 mL water

incubate gel for 10 min in dark, 3 x short rinse with water (15")

Solution C (DEVELOPING SOLUTION)

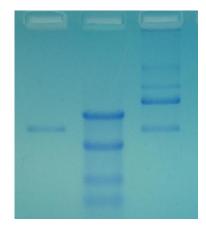
6,867 g $Na_2CO_3 \times 10 H_20$ 70 µL formaldehyde

+ 125 mL water

incubate gel until bands become visible

Solution **D** (FIXATIVE)

 $0,5 \text{ mL HNO}_3$

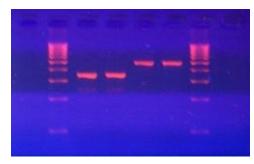

+ 125 mL water

incubate gel for several min

Store the gels in water in dark!

NA STAINING WITH NON-FLUORESCENT DYES

- Methylene blue
- Toluidine blue

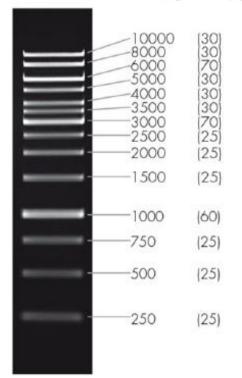

NA STAINING WITH FLUORESCENT DYES

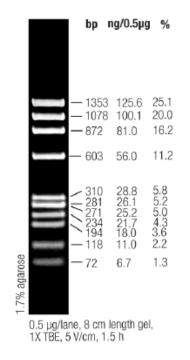
• Ethidium bromide (EtBr)

max A (EtBr) = 360 nm

max A (NA) = 260 nm – nucleotides excited by UV-light transfer energy to EtBr

- Acridine orange differentiates DNA (green) and RNA (red)
- Commercially available fluorescent dyes (Sybr Green, Sybr Safe, GelRed, Gel Green, Stain G...)




MARKERS

1 kb DNA Ladder, 250 - 10,000 bp

0.25 - 10.0 kb (ng/0.5 µg)

ΦX174 DNA/BsuRI (HaeIII) Marker, 9, ready-to-use

1.0 % Agarose

RESULTS – GROUP 1

Electrophoresis: 1.2% gel, 1xTBE

40 min, 100 V

- a) Silver staining
- b) Ethidium bromide staining

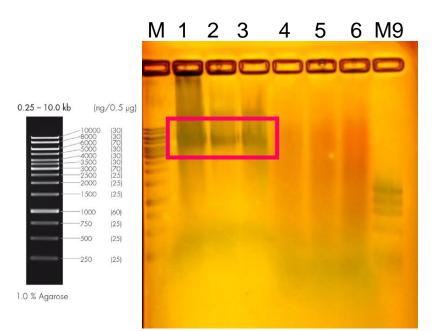
Total RNA concentration after NA isolation:

	Group 1	
TMV	390,1 μg/mL	
TYMV	1273,6 µg/mL	
Load : TMV ~ 1.5 - 2 µg per well TYMV ~ 5.2 - 6.5 µg per well		

a)

M TMV TYMV

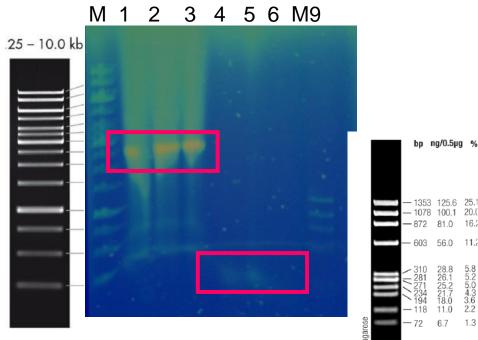
			М	TMV	TYMV	
0.25 – 10.0 kb	(ng	/0.5 µg)		Marile	Served In	
	-10000	(30)				
	-8000 -6000 -5000 -4000 -3500	(30) (30) (30) (30) (30) (70) (25)				viral genomic RNA
		(30) (70) (25) (25)				
	-1500	(25)				
	-1000	(60)				
	-750	(25)				
	-500	(25)				
	-250	(25)				decomposed RNA
1.0 % Agarose						


b)

RESULTS – GROUP 2

Total RNA concentration after NA isolation:

	Group 2
TMV	241,4 μg/mL
TYMV	217,8 μg/mL


a) 1% gel, 1xTBE, 40 min, 100 V **Silver staining**

Load: 1 – TMV - 0.5 µg 2 – TMV - 0.7 5µg $3 - TMV - 1 \mu g$ 4 – TYMV - 0.5 µg 5 – TYMV - 0.75 µg 6 – TYMV - 1 µg

b)

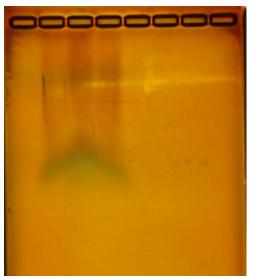
0.5% gel, 1xTBE + 1 µL Serva DNA Stain G ~1 h, 100 V

16.2

110

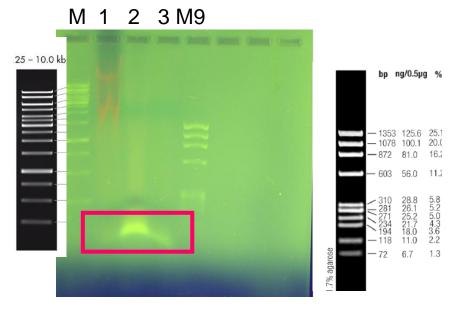
5.8 5.2 5.0 4.3 3.6 2.2

1.3


RESULTS – GROUP 3

Total RNA concentration after NA isolation:

	Group 3
TMV	426,6 μg/mL
TYMV	83,1 μg/mL


a) 1% gel, 1xTBE, 40 min, 110 V Silver staining

M 1 2 3 M9

Load: 1 – TMV - 1 µg 2 – TYMV - ? 3 – ?

b) 0.5% gel, 1xTBE + 1μL Serva DNA Stain G ~50 min, 110 V

