Nuklearna magnetska rezonancija u kalijevom tantalatu NMR u KTO

Jakov Budić

Uvod Plan za danas Kalijev tantalat Deformacije u kristalima Nuklearna magnetska rezonancija Numerika i rezultati Zaključak

Kalijev tantalat KTaO3

Kalijev tantalat struktura

- Kristalinična keramika
- Perovskit
- Visoka čistoća

Kalijev tantalat FRUKTURA I SVOJSTVA

- Kristalinična keramika
- Perovskit
- Visoka čistoća

- Tantal jezgra spina 7/2
- Supravodič II. vrste

																	18 VIII A
																	2 4,003
2												13	14	15	16	17	He
A.												III. A.	IV. A.	V. A.	VI. A.	VII. A.	hélium
9,012												5 10,81*	6 12,01*	7 14,01*	8 16,00*	9 19,00	10 20,18
e												В	C	Ν	0	F	Ne
llium												bór	szén	nitrogén	oxigén	fluor	neon
24,31*												13 26,98	14 28,09*	15 30,97	16 32,06*	17 35,45*	18 39,95
lg	3		4	5	6	7	8	9	10	11	12		Si	P	S	CI	Ar
ézium	III. E	3.	IV. B.	V. B.	VI.B.	VII. B.		VIII. B.		I. B.	II.B.	alumínium	szilícium	foszfor	kén	klór	argon
40,08	21 44	4,96	22 47,87	23 50,94	24 52,00	25 54,94	26 55,85	27 58,93	28 58,69	29 63,55	30 65,38*	31 69,72	32 72,63	33 74,92	34 78,97*	35 79,90*	36 83,80
a	S	C	Ti		Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
ium	szkand	ium	titán	vanádium	króm	mangán	vas	kobalt	nikkel	réz	cink	gallium	germánium	arzén	szelén	bróm	kripton
87,62	39 8	8,91	40 91,22	41 92,91	42 95,95*	43 [98]	44 101,1	45 102,9	46 106,4	47 107,9	48 112,4	49 114,8	50 118,7	51 121,8	52 127,6	53 126,9	54 131,3
r	Y		Zr	Nb	Мо	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
icium	ittriu	m	cirkónium	ni (Lium	molibdén	technécium	ruténium	ródium	palládium	ezüst	kadmium	indium	ón	antimon	tellúr	jód	xenon
137,3	57-71-		72 ,5	73 180,9	74 183,8	75 186,2	76 190,2	77 192,2	78 195,1	79 197,0	80 200,6	81 204,4*	82 207,2	83 209,0	84 [209]	85 [210]	86 [222]
a			l (f	Та		Re	Os	Ir	Pt	Au	Hg		Pb	Bi	Po	At	Rn
ium			haf	tantál	rám	rénium	ozmium	irídium	platina	arany	higany	tallium	ólom	bizmut	polónium	asztácium	radon
[226]	89-103		104 [267]		106 [269]	107 [270]	108 [277]	109 [278]	110 [281]	111 [282]	112 [285]	113 [286]	114 [289]	115 [290]	116 [293]	117 [294]	118 [294]
a			Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	LV	Ts	Og
ium			radzerfordium	dubnium	sziborgium	borium	hasszium	meitnerium	darmstadtium	röntgenium	kopernícium	nihonium	flerovium	moszkovium	livermorium	tennesszin	oganesszon
811]																	
1] 116]			57 138,9	58 140,1	59 140,9	60 144,2	61 [145]	62 150,4	63 152,0	64 157,3	65 158,9	66 162,5	67 164,9	68 167,3	69 168,9	70 173,0	71 175,0
00728 99977]		la	Co	Pr	Nd	Pm	Sm	Fu	Gd	Th	Dv	Ho	Fr	Tm	Yh	1
07] 6]			LC	cérium	■ ■	neodímium	prométium	szamárium		adolínium	terbium	diszprózium	holmium	erbium	túlium	itterhium	Lutácium
6] 57]			89 [227]	90 232,0	91 231,0	92 238,0	93 [237]	94 [244]	95 [243]	96 [247]	97 [247]	98 [251]	99 [252]	100 [257]	101 [258]	102 [259]	103 [266]
)7] .385]			Ac	Th	Pa		Mn	Pu	Δm	Cm	BŁ	Cf	Fs	Em	Md	No	Ir
-			aktínium	tórium		urán	nontúnium		amorícium	kűrium	borkélium	kalifornium	LJ	formium	mandalávium	nobélium	
			akunum	tonum	protaktinium	uran	neptunium	platomam	americium	Kunum	berkenum	Kamornium	ensteinium	Termum	mendelevium	nobellulin	laurencium

e

Deformacije u kristalima

Deformacije u kristalima SMICANJE

- Pomicanje slojeva
- Plastično ili elastično

Neporavnati atomi u kristalnoj rešetki

Dislokacije Mehanizam nastajanja Deformacija

- Linearni ili jednodimenzionalni defekti
- Postoje i u nedeformiranim kristalima

Preraspodjela dislokacija - dislokacijski zidovi

Polje naprezanja kvantitativni opis Makroskopskih deformacija

• Tenzor ranga 2

• Dislokacijski zid u yz ravnini

$$\varepsilon_{xx} \approx \frac{b_0}{4(1-\sigma)h} \left[2\sin\left(\frac{2\pi y}{h}\right) \left(1-2\sigma+4\pi\frac{x}{h}\right) e^{-2\pi\frac{x}{h}} + 4\pi\sigma\sin\left(\frac{\pi y}{h}\right)\frac{x}{h}e^{-\pi\frac{x}{h}} \right]$$

$$\varepsilon_{yy} \approx \frac{b_0}{4(1-\sigma)h} \left[2\sin\left(\frac{2\pi y}{h}\right) \left(1+2\sigma-4\pi\frac{x}{h}\right) e^{-2\pi\frac{x}{h}} + 4\pi\sin\left(\frac{\pi y}{h}\right)\frac{x}{h}e^{-\pi\frac{x}{h}} \right]$$

Polje naprezanja kvantitativni opis Makroskopskih deformacija

• Tenzor ranga 2

• Dislokacijski zid u yz ravnini

$$\varepsilon_{xx} \approx \frac{b_0}{4(1-\sigma)h} \left[2\sin\left(\frac{2\pi y}{h}\right) \left(1-2\sigma+4\pi\frac{x}{h}\right) \right]$$

$$\varepsilon_{yy} \approx \frac{b_0}{4(1-\sigma)h} \left[2\sin\left(\frac{2\pi y}{h}\right) \left(1+2\sigma-4\pi-\frac{x}{h}\right) \right]$$

 $\varepsilon_{xx}(x,y)$

 $\varepsilon_{yy}(x,y)$

Nuklearna magnetska rezonancija

Osnovni princip Larmorova frekvencija

Magnetski moment jezgre

 $\mu = \gamma \hbar I$

Osnovni princip LARMOROVA FREKVENCIJA

Magnetski moment Uključivanje magnetskog polja jezgre H_0 ili

 $\mu = \gamma \hbar I$

Zeemanovo cijepanje

Osnovni princip MOROVA FREKVENCIJA I.AR

Uključivanje magnetskog Magnetski moment jezgre polja ili

 $\mu = \gamma \hbar I$

Zeemanovo cijepanje

Precesija Larmorovom frekvencijom

Makroskopska magnetizacija

- Reda 10²³ nuklearnih spinova
 - mogućua proizvoljna orijentacija magnetizacije

- Vanjsko magnetsko polje
 - termalna ravnoteža

1 1 1 1 1 1 1 1 1 1 1 1

Makroskopska magnetizacija

- Reda 10²³ nuklearnih spinova
 - mogućua proizvoljna orijentacija magnetizacije

- Vanjsko magnetsko polje
 - termalna ravnoteža
 - precesija Larmorovom frekvencijom

• Moguće zakretanje za bilo koji kut (npr. 90° ili 180°)

• Moguće zakretanje za bilo koji kut (npr. 90° ili 180°)

• Elektromagnetska indukcija detekcija signala

• Moguće zakretanje za bilo koji kut (npr. 90° ili 180°)

• Elektromagnetska indukcija detekcija signala

• Vrijeme relaksacije T_1

Proces mjerenja

Ravnotežno stanje

Struktura NMR spektra HAMILTONIJAN

$\mathcal{H} = -\gamma\hbar\vec{I}\cdot\left(\hat{\mathbf{1}}+\hat{\mathbf{K}}\right)\cdot\vec{H} + \frac{e^2qQ}{4I(2I-1)}\left[3I_z^2 - I(I+1) + \frac{\eta}{2}(I_+^2 + I_-^2)\right]$

Struktura NMR spektra HAMILTONIJAN

$$\frac{e^2 q Q}{4I(2I-1)} \begin{bmatrix} 3I_z^2 - I(I+1) + \frac{\eta}{2}(I_+^2 + I_-^2) \end{bmatrix}$$
Zeeman + kvadrupol
$$\frac{\nu_L + \nu_Q}{\nu_L}$$

24

REZONANTNE FREKVENCIJE

 $\nu_{NMR} = \nu_L \pm n\nu_Q (3\cos^2\theta - 1)/2$

Struktura NMR spektra $\nu_L - 2\nu_Q$ $\nu_L - \nu_Q$ $\nu_L + \nu_Q$ $\nu_L + 2\nu_Q$ $\nu_L + 3\nu_Q$ $\nu_L - 3\nu_Q$

 ν_L

Vezanje naprezanja na magnetizam odstupanje od kocke

 $\nu_Q = A \cdot \left(\varepsilon_a - \frac{1}{2}\varepsilon_b\right)$

26

Vezanje naprezanja na magnetizam odstupanje od kocke

$$\nu_Q = A \cdot \left(\varepsilon_a - \frac{1}{2}\varepsilon_b\right)$$

konstanta proporcionalnosti

27

Rezultati NEDEFORMIRANI UZORAK

- Jasna centralna linija $\nu_L = 61,17 \text{ MHz}$

- Gotovo nema satelita
 - nema deformacija, pa nema kvadrupolnih momenata

1.0(arb. jed.) 8.0 jed. lengis 0.4 NMR 0.20.0

Rezultati NEDEFORMIRANI UZORAK

 Jasna centralna linija $\nu_L = 61,17 \text{ MHz}$

- Gotovo nema satelita
 - nema deformacija, pa nema kvadrupolnih momenata
 - neuređene dislokacije

(arb. jed.) 8.0 jed. lengis 10 dis NMR 0.20.0

Rezultati DEFORMIRANI UZO RAK

- Sateliti su razmazani i stopljeni
 - kontinuirana ovisnost kvadrupolne frekvencije o naprezanju

1.0(arb. jed.) 8.0 jed. lengis 0.4 **B**N 0.2

Nedeformirani uzorak

Deformirani uzorak

Rezultati EFORMIRANIH ĆELIJA

- Težinski omjer intenziteta $W \approx 4,99 \frac{I_{satellite}}{I_s}$ *I*_{central}
- Rezultat: W = 1,6%
- Važno za buduća istraživanja
 - druge tehnike

.0.8 .0.0 grb. Pugais 0.4 0.2 0.0

Rezultati PRILAGODBA KRI , JF.

- Numerički račun krivulje
 - Binning metoda
 - Vizualni fit

- Rezultat
 - prosječna udaljenost između zidova dislokacija oko 80 ćelija

(arb. jed.) 8.0 (arb. 6 lengis 0.4 With the second 0.0

Zaključak

Zaključak MJERENJA

- Vezanje naprezanja na magnetizam
- Pojava dislokacijskih zidova prilikom deformacije smicanjem

- Udio jediničnih ćelija pod utjecajem dislokacijskog zida
 - koristan rezultat
 - teško mjerljiv drugim tehnikama

36

Zaključak NUMERIČKI RAČUN

- Numerički račun NMR signala
 - prosječna udaljenost između dislokacijskih zidova

- problematika prilagodbe krivulje
 - potencijalno rješenje Monte Carlo metodama

37

Hvala na pažnji!

Jakov Budić

Literatura

- Boca Raton, 2018) Chap. 1–2.
- **NMR**, Molecular Physics 83, 997 (1994).
- 235311 (2018).
- 5. W. D. Callister Jr. and D. G. Rethwisch, in Fundamentals of Materials Science and Engineering: an
- 6. Theory of strain-induced magnetism in bulk STO (2023).

1. E. Fukushima and S. B. W. Roeder, in **Experimental Pulse NMR: A Nuts and Bolts Approach** (CRC Press,

2. R. E. Walstedt, in The NMR Probe of High-T. Materials and Correlated Electron Systems, Vol. 276, edited by Y. Chen, A. Fujimori, T. Muller, and W. C. Stwalley (Springer Na-ture, Berlin, 2018) Chap. 2, pp. 22–26, 2nd ed.

3. P. P. Man and P. Tougne, Exact expression for the spin 7/2 line intensities: application to solid state ⁵⁹Co

4. E. A. Chekhovich, I. M. Griffiths, M. S. Skolnick, H. Huang, S. F. C. da Silva, X. Yuan, and A. Rastelli, Cross calibration of deformation potentials and gradient-elastic tensors of GaAs using photoluminescence and nuclear magnetic resonance spectroscopy in GaAs/AlGaAs quantum dot structures, Phys. Rev. B 97,

integrated approach (John Wiley and Sons, Hoboken, 2012) Chap. 5 and 8, pp. 137–150 and 261–286, 4th ed.

