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Abstract

We introduce the generalization of global symmetries through familiar ordinary symmetries.
Higher-form symmetries are symmetries that lead to higher-form conserved currents. They
are discussed with an example of free Maxwell theory with duality. 2-group symmetries, i.e.
symmetries that allow for the mixing of background gauge fields under their respective gauge
transformations are presented. We study the simplest abelian case and show how it is derived
from ordinary product flavor symmetry by gauging.

1 Introduction

1.1 Context and Motivation

A symmetry is the property of a physical system that is preserved under some transformations.
A family of such transformations can be described using groups - Lie groups for continuous symme-
tries and finite groups for discrete symmetries. Continuous and discrete symmetries correspond to
continuous and discrete transformations, respectively. Amongst many other divisions of symmetries,
we should mention the difference between external and internal symmetries where external refers to
the symmetries of space-time, and internal symmetries correspond to the internal degrees of freedom
of the theory. However, for our further observations, it will be most important to distinguish local
from global symmetries. Global symmetries keep a property invariant for a transformation that is
applied simultaneously at all points of space-time, whereas local symmetries are features invariant
to transformations parametrized by space-time coordinates. Local symmetries are the foundation
of gauge field theories, i.e. gauge theory is presented with a Lagrangian density L invariant to a
smooth family of operations. Because gauge fields (which take values in the Lie algebra of the gauge
group) are included in the Lagrangian density L to ensure its gauge invariance, gauge theories have
additional, i.e. redundant degrees of freedom. For example, the photon has two physical polariza-
tions, but the gauge field that we use to describe it in a relativistic manner has four components.
The Standard Model, one of the most successful and accurate physical theories, is based on gauge
symmetries.
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Symmetries are of great importance in physics mostly due to Noether’s theorem (which will
be discussed later) that shows how, for every continuous global symmetry, there is a corresponding
conservation law. Throughout classical mechanics, spatial and temporal invariances were known and
used, as well as global spacetime symmetries for electrodynamics that were derived before Einstein’s
special theory of relativity. Nevertheless, the latter represents a new approach to the application of
symmetry in physics since, unlike those before him, Einstein derived the laws from the symmetries.
The significance of symmetries in physics was quickly made clear in quantum mechanics where the
application of the theory of groups and their representations played a crucial role.

The need to develop a universal tool for the application of symmetries became noticeable in
quantum field theory as the study of higher-form gauge fields became standard in mathematics and
physics. Roughly speaking, generalizing global symmetries is applying the concept to objects of
higher dimensions. Such generalized global symmetries [2] have shown to have applications within
string theory and condensed matter physics, as well as in the study of extended operators and defects
and of the anomaly structure in quantum field theory. They have been a subject of discussion in
various fields of theoretical physics recently as they provide a new and organized language to think
about symmetry principles.

1.2 Mathematical Introduction

To be able to understand the formalisms in the following sections, some definitions might come
as useful reminders.

A q-form (differential form) is a totally antisymmetric (0, q) tensor field. For a more intuitive
approach, a 0-form is a function and a 1-form is a covector. Generally, the antisymmetry of q-forms
has the following consequence: there can’t be any form of degree higher than the dimension n of
the manifold on which the form is defined. Note that an n-form is often referred to as top form, or
volume form.

Let ω be a q-form and η a p-form. The exterior product or wedge product is a construction of a
(p+ q)-tensor:

(ω ∧ η)µ1...µqν1...νp =
(q + p)!

p!q!
ω[µ1...µq

ην1...νp] (1)

via the tensor product that is antisymmetrized to ensure some properties, such as ω ∧ ω = 0 if ω is
an odd-degree form. It can also be shown that:

ω ∧ η = (−1)qpη ∧ ω . (2)

To build some intuition, we can take a look at a special case where p = q = 1, meaning we take ω
and η to both be 1-forms ω(1) and η(1). It is easy to show what their exterior product is in terms of
the tensor product ⊗:

ω(1) ∧ η(1) = ω(1) ⊗ η(1) − η(1) ⊗ ω(1) .

The exterior derivative (is a map that) in local coordinates, acts as:

dω =
1

q!

∂ωµ1...µq

∂xν
dxν ∧ dxµ1 ∧ ... ∧ dxµq , (3)

where ω is a q-form. The exterior derivative defined by (3) returns a (q + 1)-form. We can think of
the exterior derivative as an antisymmetric covariant derivative.
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It is important to note that, due to the antisymmetry, if we act on equation (3) with the exterior
derivative again, we obtain:

d (dω) = 0 ,

which is true for every q-form and often written in the following form.

d2 = 0 (4)

The exterior derivative of a wedge product for ω and η of degrees as given before, is:

d (ω ∧ η) = (dω) ∧ η + (−1)
q
ω ∧ (dη) . (5)

The Hodge dual is a map that takes a q-form ω to an (n− q)-form, denoted ∗ω as follows.

(∗ω)µ1...µn−q =
1

q!

√
|g|ϵµ1...µn−qν1...νqω

ν1...νq (6)

Note that the Hodge dual is independent of the choice of coordinates. Using the Hodge dual, we
can define an inner product of two q-forms ω and η:

⟨η, ω⟩ =
∫
M

η ∧ ∗ω , (7)

where it can be seen that the dimension of η ∧ ∗ω is equal to the dimension n of the manifold M .
To get a better picture of the Hodge star operator, we should keep in mind that it gives the part of
the manifold orthogonal to the differential form that it is acting on. A common 3D example follows:

∗dx = dy ∧ dz .

Now that all of the important definitions are given, we can revisit some familiar notions of global
symmetries.

2 Ordinary Global symmetries

2.1 Noether’s Theorem

As said before, Noether’s theorem shows that for every continuous global symmetry, there is a
corresponding conserved current jµ given with:

∂µj
µ = 0 , (8)

or more generally, using the previously introduced language:

∗d ∗ j(1) = 0 , (9)

where j(1) is a 1-form. If we act on the equation (9) with the Hodge dual once again, we get the
final expression:

d ∗ j(1) = 0 . (10)

For the observation in this section, we will use the first expression (8).
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The conserved charge is defined as

Q =

∫
j0d3x , (11)

or, once again, more generally:

Q =

∫
∗j(1) . (12)

As with the conserved current, we will use the first of the two expressions, equation (11), and show
Noether’s theorem in the language of quantum field theory.

Let’s take a look at an action S:

S =

∫
L(ψ, ∂µψ, x)d4x , (13)

and a transformation:

ψ → ψ + α∆ψ . (14)

In the equations above, ψ is a field (let’s say a fermionic field that we will later couple to the
electromagnetic background field), α is an infinitesimal parameter and all of the other notations are
standard. The Lagrangian density L also transforms as shown below.

L → L+ α∂µJ µ (15)

Note that J µ is not the conserved current. Variation of the Lagrangian density δL is, of course,
equal to the second term in (15) which gives us the following equation.

α∂µJ µ = δL

=
∂L
∂ψ

δψ +
∂L

∂(∂µψ)
δ(∂µψ)

Including δψ = α∆ψ and regrouping terms results with:

α∂µJ µ = α

[
∂L
∂ψ

− ∂µ

(
∂L

∂(∂µψ)

)]
∆ψ + α∂µ

∂L
∂(∂µψ)

∆ψ ,

where we recognize the LHS of the Euler-Lagrange equation in square brackets, meaning we can
replace it with zero. We finally get the expression:

α∂µ

(
∂L

∂(∂µψ)
∆ψ − J µ

)
= 0 . (16)

By comparison with (8), expression in the brackets in equation (16) is the conserved current jµ:

jµ =
∂L

∂(∂µψ)
∆ψ − J µ . (17)
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We will now show that the charge defined with (11) is conserved, using the equation of continuity
(8) in the third step.

dQ

dt
=

d

dt

∫
j0d3x

=

∫
∂0j

0d3x

= −
∫
∂ij

id3x

= −
∫
R3

∇ · j⃗d3x

Finally, by applying Gauss’ theorem,

dQ

dt
= 0 (18)

we obtain equation (18) which means that the charge is conserved.

2.2 Abelian Global Symmetries and the Electric Charge

To be able to understand the generalization of global symmetries, let’s first revisit a familiar global
symmetry of the Standard Model. There are multiple laws of conservation within the Standard Model
that come from global symmetries. To see how conserved charges arise, we will show the example
of the electric charge.

Let’s apply the discussion shown in section 2.1 to a free fermionic field ψ coupled to the electro-
magnetic field, as shown with action S:

S =

∫
ψ (iγµDµ −m)ψd4x , (19)

where
Dµ = ∂µ + ieAµ , (20)

with standard notation. Note that the dynamical term is not of interest here, hence we are using
A simply as a background gauge field. We will show that the Lagrangian density is invariant for a
phase transformation of ψ:

ψ → eiαψ (21)

which is characterized by U(1) group of transformations. Expanding the transformation using the
Taylor series to the first order, and comparing with (14) we get ∆ψ = iψ and ∆ψ = −iψ. One
should note that the two behave differently only with the respect to the sign. Due to the latter,
when deriving the change in the Lagrangian density:

∆L = ∆ψ (iγµDµ −m)ψ + ψ (iγµDµ −m)∆ψ (22)

the terms cancel and we get zero.

∆L = 0 (23)
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The Lagrangian density is truly invariant to such transformations. It immediately follows from (15):

J µ = 0 . (24)

Let’s calculate the conserved current by plugging what we have obtained so far in equation (17).

jµ =
∂L

∂(∂µψ)
∆ψ − J µ

= iψγµ∆ψ

Altogether, the conserved current is given with:

jµ = −ψγµψ . (25)

The result for the conserved charge depends on ψ and therefore cannot be calculated here.

2.3 Comments on Anomalies

Upon attempting to quantize a theory with a global symmetry, an anomaly can occur. For the
following sections, an understanding of anomalies in quantum field theory will be necessary. Roughly
speaking, an anomaly is a classical symmetry that does not remain when theory is quantized. Some
anomalies can be canceled by adding terms to the action. The most important to us will be ’t Hooft
anomalies which present an obstruction to gauging a global symmetry. A global symmetry with a
’t Hooft anomaly remains a symmetry in the quantum theory, but when the symmetry is coupled
to a background gauge field, the charges that were previously conserved are then not.

An anomalyA(G) is a term within the (effective 1) action that shifts the action and corresponds to
a non-conservation law. Here, we have used notation G for the background gauge fields. An anomaly
is usually summarized by a (d+2)-form gauge invariant anomaly polynomial I(d+2)(G), meaning that
the background gauge fields and their gauge transformations G are extended to d + 2 dimensions.
The relation between A(G) and I(d+2)(G), as well as the relation between the polynomials that
present a procedure for the extension of A(G) to I(d+2)(G) are given as:

A(G) = 2πi

∫
Md

I(d)(G, δG) , (26)

dI(d)(G, δG) = δI(d+1)(G) , (27)

dI(d+1)(G) = I(d+2)(G) (28)

Note that the procedure can be used in both directions.
Furthermore, a notion of Wilson loops and ’t Hooft loops will be made, so let’s take a look at

their definitions. The Wilson line U is an object that tells us how a complex vector carried by a
particle moves around the manifold with connection A (a Lie-algebra valued gauge field).

U = P exp

(
i

∫ xf

xi

A

)
1Anomalies are recognized in action S, but A(G) refers to the shift in the effective action W (G) = − logZ(G),

where Z(G) is the partition function.
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Here, P stands for the path ordering, while xi and xf are the initial and final points of the particle’s
movement, respectively. In mathematics, this notion is called holonomy. The Wilson loop W (L) is
a gauge invariant object, an observable, defined as the trace of the Wilson line on a closed path L.

W (L) = tr

[
P i

∫
L

A

]
(29)

The ’t Hooft loop H(L) is also an observable, similar to the Wilson loop, and related to it as shown
below.

H(L1)W (L2) = Zl(L1,L2)W (L2)H(L1) (30)

In the expression (30), Z stands for an element in the center of the gauge group, and l(L1, L2) is the
Gaussian linking number between the two spatial loops. Since they are observables, these objects
are of great importance, particularly in non-abelian theories (such as Yang-Mills), where electric
and magnetic fields are not observables.

3 Generalized global symmetries

To start with, a q- form global symmetry is a global symmetry for which the conserved current is a
(q+1)-form and the conserved charges are of dimension q. In this language, 0-form global symmetries
are the ordinary global symmetries that were previously described. Many of the properties of 0-
form global symmetries can be applied. These generalized global symmetries are not some exotic
generalizations in complicated theories, but rather appear naturally in gauge theories. We should
emphasize that, if there are no ’t Hooft anomalies, the theory can be gauged. To present generalized
global symmetries, we will not rely on a specific Lagrangian density but rather characterize the
charged objects as abstract operators, making the layout general.

If we introduce a U(1)
(q)
B symmetry that arises from a conserved (q+1)-form current j

(q+1)
B that

satisfies
d ∗ j(q+1)

B = 0 , (31)

the conserved charges are given with:

Q =

∫
∗j(q+1) (32)

The charged objects for these symmetries are q-dimensional. For instance, in the simplest case of
q = 1, the charged objects can be line operators, such as the Wilson and ’t Hooft lines mentioned
earlier. This justifies that these symmetries are not something strange but are essentially present in
any theory that has extended observables like Wilson loops.

The classical source for the current is an abelian (q + 1)-form gauge field B(q+1). The action
must contain the following term: ∫

B(q+1) ∧ ∗j(q+1)
B . (33)

Under U(1)
(q)
B transformation, the gauge field should transform as follows:

B(q+1) → B(q+1) + dλ
(q)
B , (34)

where λ
(q)
B is a q-form gauge parameter. The next step is to look at an example of free Maxwell

theory.
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3.1 Free Maxwell Theory

Let us consider a free U(1)
(0)
c gauge theory with gauge field c(1) and the corresponding field

strength f
(2)
c = dc(1) and two 1-form global symmetries: ”electric” U(1)

(1)
e and ”magnetic” U(1)

(1)
m

with respective background fields B
(2)
m and B

(2)
e .

U(1)(1)e × U(1)(1)m (35)

For currents defined as:

j(2)e = − 1

e2
f (2)c (36)

j(2)m = − i

2π
∗ f (2)c , (37)

we obtain corresponding conservation laws if we use source-free Maxwell equations, written below.

d ∗ f (2)c = df (2)c = 0 (38)

The source-free Maxwell equations given with (38), of course, relate to the familiar layout of

Maxwell’s equations: d∗f (2)c = 0 is associated with source-free Gauss’ law and source-free Ampère’s

law, whereas df
(2)
c = 0 corresponds to Gauss’ law for magnetism and Faraday’s law. If we apply

the exterior derivative to (36) and (37), and plug Maxwell’s equations in, it is easy to see that

currents j
(2)
e and j

(2)
m are conserved. So, we are building a theory of a dynamical gauge field c(1)

in the environment of the two background (non-dynamical) gauge fields who, due to their U(1)
(1)
e,m

symmetries undergo gauge transformations given with:

B(2)
e,m → B(2)

e,m + dΛ(1)
e,m . (39)

To be able to write the action S for this theory, i.e. to couple the dynamical field to the two
background gauge fields, two approaches can be taken: ”electric” and ”magnetic”. Surely, the two
approaches must be equivalent, meaning that they show the duality of the theory which might

be useful. First, we will take the ”electric” approach: the gauge field c(1) shifts under U(1)
(1)
e

background transformation, but remains the same under U(1)
(1)
m background transformation. Since

f
(2)
c = dc(1), the same is true for the field strength fc.

c(1) → c(1) + Λ(1)
e , f (2)c → dΛ(1)

e (40)

If we couple the gauge field c(1) to the background gauge fields, we expect the action S to have

typical terms
∫ (

B
(2)
e ∧ ∗J (2)

e +Bm ∧ ∗J (2)
m

)
, which translates to:

S
(
B(2)

e , B(2)
m , c(1)

)
=

1

2e2

∫ (
f (2)c −B(2)

e

)
∧ ∗

(
f (2)c −B(2)

e

)
+
i

2π

∫
B(2)

m ∧ f (2)c .

(41)

In the equation above, we have also used the fact that we want the theory to be invariant under

electric background transformation. The first term ensures this, since dΛe is added to both f
(2)
c and
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B
(2)
e after the background transformation. It is easy to check that, after the transformation, dΛe

derived from the transformation of f
(2)
c and dΛe obtained from the transformation of B

(2)
e , cancel

each other out, as they come with opposite signs. The first term is often referred to as kinetic,

and the second term is referred to as magnetic. As neither f
(2)
c nor B

(2)
e shift under a U(1)

(1)
m

background transformation, the first term is also invariant to magnetic background transformations.
What remains is to ensure the invariance of the second term. The second term in (41) is invariant
under magnetic background transformations, which can be easily verified using source-free Maxwell
equations (38), expression (5) and Stokes’ theorem.

∫ (
B(2)

m + dΛ(1)
m

)
∧ f (2)c =

∫
B(2)

m ∧ f (2)c +

∫
dΛ(1)

m ∧ fc

=

∫
B(2)

m ∧ f (2)c +

∫
d
(
Λ(1)
m ∧ fc

)
−
∫

Λ(1)
m ∧ d ∧ f (2)c

=

∫
B(2)

m f (2)c

However, this (magnetic) term experiences a shift under U(1)
(1)
e background transformation - let’s

once again use equation (5) and Stokes’ theorem to see exactly how.

∫
B(2)

m ∧ f (2)c →
∫
B(2)

m ∧
(
f (2)c + dΛ(1)

e

)
=

∫
B(2)

m ∧ f (2)c +

∫
B(2)

m ∧ dΛ(1)
e

=

∫
B(2)

m ∧ f (2)c −
∫

d
(
B(2)

m ∧ Λ(1)
e

)
+

∫
dΛ(1)

e ∧B(2)
m

=

∫
B(2)

m ∧ f (2)c +

∫
dΛ(1)

e ∧B(2)
m

The term given with
∫
dΛ

(1)
e ∧B(2)

m constitutes a ’t Hooft anomaly between U(1)
(1)
e and U(1)

(1)
m . As

previously announced, anomalies are usually shown using a (d + 2)-form, i.e. a 6-form polynomial
I(6). Using the procedure explained in (26)− (28), as well as, once again expression (5) and Stokes’
theorem as before, we obtain the following expression.

I(6) ⊃ 1

4π2
dB(2)

e ∧ dB(2)
m (42)

To show the ”electric-magnetic” duality of the theory, we will derive the dual ”magnetic” repre-
sentation starting from the ”electric” presentation of the theory. We should mention that ’t Hooft
anomalies are reproduced in any possible description of the theory, meaning that the magnetic for-
mulation of free Maxwell theory should reproduce the same ’t Hooft anomaly as (42). Although
gauge symmetries may differ in the dual descriptions, the global symmetries of the theory must be
the same in the dual formulations. This is an important fact to remember about any kind of duality
in physics: the global symmetries must always match, even if the gauge symmetries might not.
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The dualization is done by considering an extended theory with action S̃ that includes a Lagrange

multiplier c̃(1) which is also a 1-form gauge field associated with its own U(1)
(1)
c̃ gauge symmetry.

S̃
(
B(2)

e , B(2)
m , c(1), c̃(1)

)
= S

(
B(2)

e , B(2)
m , c(1)

)
− i

2π

∫
dc̃(1) ∧ f (2)c (43)

Note that Bianchi’s identity for f
(2)
c is still satisfied. The appropriate shift of c̃(1) under U(1)

(1)
m

background gauge transformations:

c̃(1) → c̃(1) + Λ(1)
m , (44)

ensures the invariance under background gauge transformations up to the ’t Hooft anomaly obtained

earlier. We now want to find the appropriate equation of motion for f
(2)
c for action S̃ to depend

only on B
(2)
e , B

(2)
m and the new gauge field c̃(1). In other words, we want to ”lose” the dependence

of action on c(1) and replace it with dependence on c̃(2). The equation of motion for f
(2)
c is obtained

by varying S̃ over f
(2)
c , as shown in the next equation.

δS̃ =

∫ [
1

2e2
δf (2)c ∧ ∗

(
f (2)c −B(2)

e

)
+

1

2e2

(
f (2)c −B(2)

e

)
∧ ∗δf (2)c

+
i

2π

(
B(2)

m − dc̃(1)
)
∧ δf

] (45)

Due to symmetry of ∧∗, the second term can be written as
1

2e2
δf

(2)
c ∧ ∗

(
f
(2)
c −B

(2)
e

)
, and due to

graded commutativity, the last term can be replaced with
i

2π
δf ∧

(
B

(2)
m − dc̃(1)

)
.

The latter means that δf can be extracted from all of the terms as follows:

δS̃ =

∫
δf (2)c ∧

[
1

e2
∗
(
f (2)c −B(2)

e

)
+

i

2π

(
B(2)

m − dc̃(1)
)]

, (46)

and the equation of motion for f
(2)
c is obtained when the expression in the square brackets is set to

zero.

∗
(
f (2)c −B(2)

e

)
=
ie2

2π

(
dc̃(1) −B(2)

m

)
(47)

As f
(2)
c is now easily expressed from the previous equation (47), that expression can be included in

(43). The dual presentation of the theory with action S̃, now depending only on B
(2)
e , B

(2)
m and c̃(1),

is, therefore, derived.

S̃
(
B(2)

e , B(2)
m , c̃(1)

)
=
e2

8π

∫ (
dc̃(1) −B(2)

m

)
∧ ∗

(
dc̃(1) −B(2)

m

)
− i

2π

∫
B(2)

e ∧
(
dc̃−B(2)

m

) (48)

This expression shows that the duality generates a counterterm proportional to
∫
B

(2)
e ∧B(2)

m which
will reproduce the same ’t Hooft anomaly as before with (42). The conserved currents within this
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theory are given with the following equations and related to the currents defined in the ”electric”
presentation as shown here.

J̃m
(2)

=
i

2π
∗ dc̃(1) = −J (2)

e , J̃ (2)
e = − e2

4π2
dc̃(1) = J (2)

m (49)

Holonomies of c(1) and c̃(1) around a closed 1-cycle L are Wilson loops Wm(L) and ’t Hooft loops
Hn(L), defined with (29) and (30), given as:

Wm = exp

(
im

∫
L

c(1)
)
, Hn(L) = exp

(
in

∫
L

c̃(1)
)
, (50)

where m,n ∈ Z are charges of the Wilson and ’t Hooft loops respectively. When moving from one
formulation to another, we exchange c(1) ↔ c̃(1), and so do the loops Wm(L) ↔ Hm(L).

4 2-group symmetries

A quantum field theory has a 2-group symmetry, according to [2], if it can be coupled to a 2-form
background gauge field (let’s denote it B(2)) that undergoes a 2-group shift in addition to its own

U(1)
(1)
B background gauge transformations. In other words, we are taking a look at global symmetries

where the mixing of background gauge fields under their respective gauge transformations is allowed.
Here, we do not explore 2-groups themselves but rather discuss 2-group background gauge fields.
To keep it straightforward, we will look at the simplest example where the mixing of a background

gauge field A(1) for a 0-form flavor symmetry, i.e. U(1)
(0)
A and a 2-form background gauge field B(2)

for previously mentioned 1-form symmetry is involved.
Such 2-group symmetry is said to be abelian and denoted as shown below.

U(1)
(0)
A ×κ̂A

U(1)
(1)
B (51)

Here, κ̂A ∈ Z [1]is a 2-group structure constant that characterizes the 2-group symmetry. To see
what κ̂A means, we should take a look at transformation rules for our gauge fields A(1) and B(2).
The transformation rule for A(1) remains standard:

A(1) → A(1) + dΛ
(0)
A , (52)

but, as said before, B(2) undergoes an additional shift.

B(2) → B(2) + dΛ
(1)
B +

κ̂A
2π

Λ
(0)
A F

(2)
A (53)

In the previous expression, F
(2)
A = dA(1) is the field strength. The consistency of the transformation

rule given with (53) is ensured with κ̂A being quantized. We should mention that κ̂A characterizes
the 2-group symmetry because it doesn’t change with the rescaling of the gauge fields. We see that

in equation (53) there is an additional shift proportional to the field strength F
(2)
A , meaning that

we cannot non-trivially set gauge field A(1) without it affecting B(2). We should recognize that
for κ̂A = 0, the 2-group shift in (53) disappears. Therefore, the 2-group symmetry dissolves into
product symmetry.

U(1)
(0)
A × U(1)

(1)
B

11



Many quantum field theories posses the 2-group symmetry given with (51) such as QED with many
flavours [1].

It can be shown that the 2-group symmetry described with (51) arises from a ”parent” theory
with

U(1)
(0)
A × U(1)

(0)
C (54)

flavor symmetry, with C(1) being the corresponding background gauge field. Because of this, it will
be useful to take a look at parent theories with such abelian 0-form flavor symmetry. We will show

how gauging U(1)
(0)
C leads to a new 1-form global symmetry. Let’s start by gauging U(1)

(0)
C from

(54) by promoting C(1) and its field strength F
(2)
C to dynamical fields. We will denote the change

using C → c.

U(1)
(0)
C → U(1)(0)c , C(1) → c(1), F

(2)
C → f (2)c

The action should contain:

S ⊃ 1

2e2

∫
f (2)c ∧ ∗f (2)c +

iθ

8π2

∫
f (2)c ∧ f (2)c . (55)

In the previous expression, we have added the theta-term2.

Now, we want to check for anomalies to make sure U(1)
(0)
C can be gauged. The most general

anomaly 6-form polynomial, constructed of the field strengths F
(2)
A and F

(2)
C is:

I(6) =
1

(2π)3

[κA3

3!
F

(2)
A ∧ F (2)

A ∧ F (2)
A +

κA2C

2!
F

(2)
A ∧ F (2)

A ∧ F (2)
c

+
κAC2

2!
F

(2)
A ∧ F (2)

C ∧ F (2)
C +

κC3

3!
F

(2)
C ∧ F (2)

C ∧ F (2)
C

]
.

(56)

For further analysis, we need a bit more context. An anomaly polynomial I(d+2) is called reducible
if it can be written as a product of closed, gauge invariant polynomials J (p) and K(d+2−p) of lower
degree.

I(d+2)
reducible = J (p) ∧ K(d+2−p)

= dI(d+1)
reducible

When trying to obtain Id+1
reducible, which is the procedure described earlier with (26) − (28), an

ambiguity gets involved, since the exterior derivative can be removed from either factor in (56).
This can be described using a real parameter s:

I(d+1)
reducible = J (p−1) ∧ K(d+2−p) + sd

(
J (p−1) ∧ K(d+1−p)

)
, (57)

where

J (p) = dJ (p−1),K(d+2−p) = dK(d+1−p) .

2the gauge invariant term that can be added to a 4-dimensional action, quadratic in field strength
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Another ambiguity arises when a similar procedure is used further[1]. Altogether, for d = 4 dimen-
sions, we obtain:

I(5) =
1

(2π)3

[κA3

3!
A(1) ∧ F (2)

A ∧ F (2)
A +

κA2C

2!
A(1) ∧ F (2)

A ∧ F (2)
c

+
κAC2

2!
A(1) ∧ F (2)

C ∧ F (2)
C +

κC3

3!
C(1) ∧ F (2)

C ∧ F (2)
C

]
+ sd

(
A(1) ∧ F (2)

A ∧ C(1)
)
+ td

(
A(1) ∧ C(1) ∧ F (2)

C

) (58)

Using the procedure described in (26)− (28), we compute the expression for anomaly AC .

AC =
i

4π2

∫
M4

Λ
(0)
C

(κC3

3!
F

(2)
C ∧ F (2)

C + sF
(2)
A ∧ F (2)

A + tF
(2)
A ∧ F (2)

C

)
(59)

For U(1)
(0)
C to be gauged, new U(1)

(0)
c gauge transformations must be anomaly-free, i.e. we impose

AC = 0. This is satisfied when:

κC3 = s = t = 0 . (60)

This leads to anomaly that appears under U(1)
(0)
A gauge transformations being of the form presented

here:

AA =
i

4π2

∫
M4

Λ
(0)
A

(κA3

3!
F

(2)
A ∧ F (2)

A +
κA2C

2!
F

(2)
A ∧ F (2)

C +
κAC2

2!
F

(2)
C ∧ F (2)

C

)
. (61)

Consequently, the following non-conservation law is obtained:

d ∗ j(1)A = − i

4π2

(κA3

3!
F

(2)
A ∧ F (2)

A +
κA2C

2!
F

(2)
A ∧ F (2)

C +
κAC2

2!
F

(2)
C ∧ F (2)

C

)
. (62)

When the gauge field C(1) is promoted to the dynamical gauge field c(1), together with its field
strength, these anomalous shifts become operator-valued and need to be accounted for.
First, we will examine the mixed κAC2 anomaly in the non-conservation law shown above.

d ∗ j(1)A ⊃ − iκAC2

8π2
f (2)c ∧ f (2)c (63)

The term shown in (63) violates the conservation of the current but can be accounted for if some
transformation rules are changed. We should emphasize that this will not affect the dynamics of
the theory and is different than cancellations of anomalies which involve coupling the theory to
additional fields. The anomaly is resolved if θ in (55) is promoted to a background field that shifts

under U(1)
(0)
A background gauge transformations as:

θ → θ − κAC2Λ
(0)
A , (64)

which shows that, since θ is not dynamical, but rather a background field, U(1)
(0)
A is explicitly broken

and there is no profile of θ that would stay the same after transformation (64). If we want our theory
to not be explicitly broken, we must demand:

κAC2 = 0 . (65)
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This analysis should be applied once again, this time for κA2C term in (62). Let’s start by observing
how this term appears in the non-conservation law, once the field C(1) is promoted (gauged) to the
dynamical c(1).

d ∗ j(1)A ⊃ − iκA
2C

8π2
F

(2)
A ∧ f (2)c (66)

The current is obviously not conserved, unless F
(2)
A is trivial. But, we will show that there is an

appropriate source (field) for f
(2)
c that will cancel the anomaly and will do so if it undergoes a 2-

group shift when U(1)
(0)
A transformation is applied. This shows that a U(1)

(0)
A × U(1)

(0)
C symmetry,

when gauged, births a theory with a 2-group symmetry.

To see exactly how, let’s set up a U(1)
(1)
B symmetry with a 2-form background gauge field B(2) that

is associated with the gauge field strength f
(2)
c as the current J

(2)
B :

J
(2)
B =

i

2π
∗ f (2)c , (67)

is conserved due to the Bianchi identity that f
(2)
c is earlier said to satisfy. Therefore, if we want the

current J
(2)
B to be defined as above, its classical source should be a background gauge field B(2) with

its own U(1)
(1)
B background gauge transformation:

B(2) → B(2) + dΛ
(1)
B , (68)

which includes the Bianchi identity for f
(2)
c . The action should, then, contain:

S ⊃
∫
B(2) ∧ ∗J (2)

B =
i

2π

∫
B(2) ∧ f (2)c . (69)

The resolution of the anomaly given in (66) is the following: we can impose that B(2) undergoes

a 2-group shift under U(1)
(0)
A background gauge transformation, and, since B(2) is an appropriate

source for f
(2)
c , if the transformation is of the following form:

B(2) → B(2) +
κ̂A
2π

Λ
(0)
A F

(2)
A , (70)

where

κ̂A = −1

2
κA2C , (71)

then the operator-valued shift given in (66) is canceled. Although the transformation rule for θ
given with (64) and the transformation rule for B(2) might seem to take a similar form, there is a

difference: B(2) transforms only if F
(2)
A is non-trivial. This is why, in the first case, the symmetry

was explicitly broken and we had to set κAC2 to be zero, unlike here, where the current j
(2)
A is

conserved if the field strength F
(2)
A = 0.
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5 Conclusion

Because they lead to conservation laws, continuous global symmetries play an important role
in physics. As research of higher-form gauge fields became usual in physics and mathematics, a
generalization of symmetry principles to objects of higher dimensions was needed. A q-form global
symmetry leads to a (q + 1)-form conserved current and a conserved charge that has q spatial
dimensions. In an attempt to quantize a classical theory with a global symmetry, anomalies can
occur. If we, upon quantization, come across a ’t Hooft anomaly, the theory cannot be gauged.
Having discussed generalized global symmetries through an example of free Maxwell theory - a

free U(1)
(0)
c gauge theory with two 1-form global symmetries U(1)

(1)
e,m, we have also found the dual

formulation of the theory with a matching ’t Hooft anomaly.
A 2 -group symmetry is a global symmetry where the mixing of background gauge fields under

their respective gauge transformations is involved. The notion of such symmetries was described

here using the simplest case: a theory with abelian 2- group symmetry U(1)
(0)
A ×κ̂A

U(1)
(1)
B . We

have presented how such symmetry arises from an ordinary product symmetry U(1)
(0)
A × U(1)

(0)
C

by promoting the background gauge field C(1) to a dynamical one. In our attempt to do so, we
have analyzed the anomalies that occurred. The generalization of global symmetries is a recent field
of research with consequences mainly in string theory and condensed matter physics and offers an
organized layout of symmetry principles.
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