Large solutions for subordinate spectral Laplacian

Ivan Biočić ${ }^{1}$, joint work with Vanja Wagner ${ }^{2}$
${ }^{1}$ Università degli Studi di Torino, Italy
${ }^{2}$ University of Zagreb, Croatia
Probability and Analysis, Bedlewo 22.4.2024.

The research was partly supported by CSF under the project IP-2022-10-2277
(1) Introduction
(2) Preliminary results
(3) Regularity of distributional solutions to $\phi\left(-\left.\Delta\right|_{D}\right) u=f$
(4) Large solution

Table of Contents

(1) Introduction

(2) Preliminary results

(3) Regularity of distributional solutions to $\phi\left(-\left.\Delta\right|_{D}\right) u=f$

(4) Large solution

The goal of the presentation

For a bounded $C^{1,1}$ domain $D \subset \mathbb{R}^{d}, d \geq 3$,

The goal of the presentation

For a bounded $C^{1,1}$ domain $D \subset \mathbb{R}^{d}, d \geq 3$, and for the non-local operator $\phi\left(-\left.\Delta\right|_{D}\right)$, the infinitesimal generator of a subordinate killed Brownian motion,

The goal of the presentation

For a bounded $C^{1,1}$ domain $D \subset \mathbb{R}^{d}, d \geq 3$, and for the non-local operator $\phi\left(-\left.\Delta\right|_{D}\right)$, the infinitesimal generator of a subordinate killed Brownian motion, we solve the following problem

$$
\begin{aligned}
-\phi\left(-\left.\Delta\right|_{D}\right) u(x) & =f(u(x)) & & x \in D \\
\lim _{x \rightarrow z} \frac{u(x)}{P_{D}^{\phi} \sigma(x)} & =\infty & & z \in \partial D
\end{aligned}
$$

for $f: D \rightarrow \mathbb{R}$,

The goal of the presentation

For a bounded $C^{1,1}$ domain $D \subset \mathbb{R}^{d}, d \geq 3$, and for the non-local operator $\phi\left(-\left.\Delta\right|_{D}\right)$, the infinitesimal generator of a subordinate killed Brownian motion, we solve the following problem

$$
\begin{aligned}
-\phi\left(-\left.\Delta\right|_{D}\right) u(x) & =f(u(x)) & & x \in D \\
\lim _{x \rightarrow z} \frac{u(x)}{P_{D}^{\phi} \sigma(x)} & =\infty & & z \in \partial D
\end{aligned}
$$

for $f: D \rightarrow \mathbb{R}$, where $P_{D}^{\phi} \sigma$ is a reference function - the Poisson potential of $(d-1)$-dimensional Hausdorff measure on ∂D.

The goal of the presentation

For a bounded $C^{1,1}$ domain $D \subset \mathbb{R}^{d}, d \geq 3$, and for the non-local operator $\phi\left(-\left.\Delta\right|_{D}\right)$, the infinitesimal generator of a subordinate killed Brownian motion, we solve the following problem

$$
\begin{aligned}
-\phi\left(-\left.\Delta\right|_{D}\right) u(x) & =f(u(x)) & & x \in D \\
\lim _{x \rightarrow z} \frac{u(x)}{P_{D}^{\phi} \sigma(x)} & =\infty & & z \in \partial D
\end{aligned}
$$

for $f: D \rightarrow \mathbb{R}$, where $P_{D}^{\phi} \sigma$ is a reference function - the Poisson potential of $(d-1)$-dimensional Hausdorff measure on ∂D.
Also:

- ϕ is the Laplace exponent of the subordinator, i.e. a Bernstein function,
- Example: $\phi(\lambda)=\lambda^{s}, s \in(0,1)$,

The goal of the presentation

For a bounded $C^{1,1}$ domain $D \subset \mathbb{R}^{d}, d \geq 3$, and for the non-local operator $\phi\left(-\left.\Delta\right|_{D}\right)$, the infinitesimal generator of a subordinate killed Brownian motion, we solve the following problem

$$
\begin{aligned}
-\phi\left(-\left.\Delta\right|_{D}\right) u(x) & =f(u(x)) & & x \in D \\
\lim _{x \rightarrow z} \frac{u(x)}{P_{D}^{\phi} \sigma(x)} & =\infty & & z \in \partial D
\end{aligned}
$$

for $f: D \rightarrow \mathbb{R}$, where $P_{D}^{\phi} \sigma$ is a reference function - the Poisson potential of $(d-1)$-dimensional Hausdorff measure on ∂D.
Also:

- ϕ is the Laplace exponent of the subordinator, i.e. a Bernstein function,
- Example: $\phi(\lambda)=\lambda^{s}, s \in(0,1), \phi\left(-\left.\Delta\right|_{D}\right)=\left(-\Delta_{\mid D}\right)^{s}$ is the spectral fractional Laplacian.

Probabilistic background

Underlying process and connection to $\phi\left(-\left.\Delta\right|_{D}\right)$

Let $W=\left(W_{t}\right)_{t}$ be a Brownian motion in \mathbb{R}^{d} with the char. $\exp . \xi \mapsto|\xi|^{2}$.

Probabilistic background

Underlying process and connection to $\phi\left(-\left.\Delta\right|_{D}\right)$

Let $W=\left(W_{t}\right)_{t}$ be a Brownian motion in \mathbb{R}^{d} with the char. exp. $\xi \mapsto|\xi|^{2}$.
Let $S=\left(S_{t}\right)_{t}$ be a subordinator with the Laplace exponent ϕ.

Probabilistic background

Underlying process and connection to $\phi\left(-\left.\Delta\right|_{D}\right)$

Let $W=\left(W_{t}\right)_{t}$ be a Brownian motion in \mathbb{R}^{d} with the char. exp. $\xi \mapsto|\xi|^{2}$. Let $S=\left(S_{t}\right)_{t}$ be a subordinator with the Laplace exponent ϕ. The killed Brownian motion W^{D} upon exiting the set D is defined by

$$
W_{t}^{D}:= \begin{cases}W_{t}, & t<\tau_{D}:=\inf \left\{t>0: W_{t} \notin D\right\} \\ \partial, & t \geq \tau_{D}\end{cases}
$$

where ∂ is the additional point added to \mathbb{R}^{d} called the cemetery.

Probabilistic background

Underlying process and connection to $\phi\left(-\left.\Delta\right|_{D}\right)$

Let $W=\left(W_{t}\right)_{t}$ be a Brownian motion in \mathbb{R}^{d} with the char. exp. $\xi \mapsto|\xi|^{2}$. Let $S=\left(S_{t}\right)_{t}$ be a subordinator with the Laplace exponent ϕ. The killed Brownian motion W^{D} upon exiting the set D is defined by

$$
W_{t}^{D}:= \begin{cases}W_{t}, & t<\tau_{D}:=\inf \left\{t>0: W_{t} \notin D\right\} \\ \partial, & t \geq \tau_{D}\end{cases}
$$

where ∂ is the additional point added to \mathbb{R}^{d} called the cemetery. The process

$$
X_{t}=\left(W^{D}\right)_{S_{t}}, t \geq 0
$$

is called the subordinate killed Brownian motion.

Subordination and killing do not commute!

Probabilistic background

Assumptions on ϕ

We assume that:

- ϕ is a

Bernstein function

$$
\phi(\lambda)=b \lambda+\int_{0}^{\infty}\left(1-e^{-\lambda t}\right) \mu(d t)
$$

Probabilistic background

Assumptions on ϕ

We assume that:

- ϕ is a complete Bernstein function without the drift

$$
\phi(\lambda)=\quad \int_{0}^{\infty}\left(1-e^{-\lambda t}\right) \mu(t) d t
$$

Probabilistic background

Assumptions on ϕ

We assume that:

- ϕ is a complete Bernstein function without the drift

$$
\phi(\lambda)=\quad \int_{0}^{\infty}\left(1-e^{-\lambda t}\right) \mu(t) d t
$$

- ϕ satisfies the weak scaling condition at infinity: there exists $a_{1}, a_{2}>0$ and $\delta_{1}, \delta_{2} \in(0,1)$ s.t.

$$
a_{1}\left(\frac{t}{s}\right)^{\delta_{1}} \leq \frac{\phi(t)}{\phi(s)} \leq a_{2}\left(\frac{t}{s}\right)^{\delta_{2}}, \quad t, s \geq 1
$$

Probabilistic background

Assumptions on ϕ

We assume that:

- ϕ is a complete Bernstein function without the drift

$$
\phi(\lambda)=\quad \int_{0}^{\infty}\left(1-e^{-\lambda t}\right) \mu(t) d t
$$

- ϕ satisfies the weak scaling condition at infinity: there exists $a_{1}, a_{2}>0$ and $\delta_{1}, \delta_{2} \in(0,1)$ s.t.

$$
a_{1}\left(\frac{t}{s}\right)^{\delta_{1}} \leq \frac{\phi(t)}{\phi(s)} \leq a_{2}\left(\frac{t}{s}\right)^{\delta_{2}}, \quad t, s \geq 1
$$

The assumption (WSC) drives small space-time behaviour of X.

Operator $\phi\left(-\left.\Delta\right|_{D}\right)$

Definition in $L^{2}(D)$

Let $\left\{\varphi_{j}\right\}_{j \in \mathbb{N}}$ be an ONB of $L^{2}(D)$ s.t. $-\left.\Delta\right|_{D} \varphi_{j}=\lambda_{j} \varphi_{j}$ in D. We define

$$
\phi\left(-\left.\Delta\right|_{D}\right) u=\sum_{j=1}^{\infty} \phi\left(\lambda_{j}\right) \widehat{u}_{j} \varphi_{j}
$$

for $u \in \mathcal{D}\left(\phi\left(-\left.\Delta\right|_{D}\right)\right):=\left\{v=\sum_{j=1}^{\infty} \widehat{v}_{j} \varphi_{j} \in L^{2}(D): \sum_{j=0}^{\infty} \phi\left(\lambda_{j}\right)^{2}\left|\widehat{v}_{j}\right|^{2}<\infty\right\}$.

Operator $\phi\left(-\left.\Delta\right|_{D}\right)$

Definition in $L^{2}(D)$

Let $\left\{\varphi_{j}\right\}_{j \in \mathbb{N}}$ be an ONB of $L^{2}(D)$ s.t. $-\left.\Delta\right|_{D} \varphi_{j}=\lambda_{j} \varphi_{j}$ in D. We define

$$
\phi\left(-\left.\Delta\right|_{D}\right) u=\sum_{j=1}^{\infty} \phi\left(\lambda_{j}\right) \widehat{u}_{j} \varphi_{j}
$$

for $u \in \mathcal{D}\left(\phi\left(-\left.\Delta\right|_{D}\right)\right):=\left\{v=\sum_{j=1}^{\infty} \widehat{v}_{j} \varphi_{j} \in L^{2}(D): \sum_{j=0}^{\infty} \phi\left(\lambda_{j}\right)^{2}\left|\widehat{v}_{j}\right|^{2}<\infty\right\}$.
$\phi\left(-\left.\Delta\right|_{D}\right)$ is an unbounded operator, $C_{c}^{\infty}(D) \subset \mathcal{D}\left(\phi\left(-\left.\Delta\right|_{D}\right)\right)$, and

Operator $\phi\left(-\left.\Delta\right|_{D}\right)$

Definition in $L^{2}(D)$

Let $\left\{\varphi_{j}\right\}_{j \in \mathbb{N}}$ be an ONB of $L^{2}(D)$ s.t. $-\left.\Delta\right|_{D} \varphi_{j}=\lambda_{j} \varphi_{j}$ in D. We define

$$
\phi\left(-\left.\Delta\right|_{D}\right) u=\sum_{j=1}^{\infty} \phi\left(\lambda_{j}\right) \widehat{u}_{j} \varphi_{j}
$$

for $u \in \mathcal{D}\left(\phi\left(-\left.\Delta\right|_{D}\right)\right):=\left\{v=\sum_{j=1}^{\infty} \widehat{v}_{j} \varphi_{j} \in L^{2}(D): \sum_{j=0}^{\infty} \phi\left(\lambda_{j}\right)^{2}\left|\widehat{v}_{j}\right|^{2}<\infty\right\}$.
$\phi\left(-\left.\Delta\right|_{D}\right)$ is an unbounded operator, $C_{c}^{\infty}(D) \subset \mathcal{D}\left(\phi\left(-\left.\Delta\right|_{D}\right)\right)$, and

Lemma (B., 2023)

The operator $-\phi\left(-\left.\Delta\right|_{D}\right)$ is the infinitesimal generator of $L^{2}(D)$ semigroup generated by $X_{t}=W_{S_{t}}^{D}$, i.e. of the subordinate killed Brownian motion X.

Table of Contents

(1) Introduction
(2) Preliminary results
(3) Regularity of distributional solutions to $\phi\left(-\left.\Delta\right|_{D}\right) u=f$
(4) Large solution

Properties of $\phi\left(-\left.\Delta\right|_{D}\right)$

$\phi\left(-\left.\Delta\right|_{D}\right)$ is a non-local operator with a pointwise representation

Proposition (B., 2023)

For $u \in C^{1,1}(D) \cap \mathcal{D}\left(\phi\left(-\left.\Delta\right|_{D}\right)\right)$ and a.e. $x \in D$

$$
\phi\left(-\left.\Delta\right|_{D}\right) u(x)=P . V . \int_{D}[u(x)-u(y)] J_{D}(x, y) d y+\kappa(x) u(x) .
$$

Properties of $\phi\left(-\left.\Delta\right|_{D}\right)$

$\phi\left(-\left.\Delta\right|_{D}\right)$ is a non-local operator with a pointwise representation

Proposition (B., 2023)

For $u \in C^{1,1}(D) \cap \mathcal{D}\left(\phi\left(-\left.\Delta\right|_{D}\right)\right)$ and a.e. $x \in D$

$$
\phi\left(-\left.\Delta\right|_{D}\right) u(x)=P . V . \int_{D}[u(x)-u(y)] J_{D}(x, y) d y+\kappa(x) u(x) .
$$

Here

$$
J_{D}(x, y) \asymp\left(\frac{\delta_{D}(x) \delta_{D}(y)}{|x-y|^{2}} \wedge 1\right) \frac{\phi\left(|x-y|^{-2}\right)}{|x-y|^{d}}, \quad x, y \in D
$$

Green and Poisson function

X has density $r_{D}(t, x, y)$,

Green and Poisson function

X has density $r_{D}(t, x, y)$, the Green function, $G_{D}^{\phi}(x, y)=\int_{0}^{\infty} r_{D}(t, x, y) d t$,

Green and Poisson function

X has density $r_{D}(t, x, y)$, the Green function, $G_{D}^{\phi}(x, y)=\int_{0}^{\infty} r_{D}(t, x, y) d t$, $G_{D}^{\phi} f(x)=\int_{D} G_{D}^{\phi}(x, y) f(y)=\mathbb{E}_{x}\left[\int_{0}^{\infty} f\left(X_{t}\right) d t\right]$,

Green and Poisson function

X has density $r_{D}(t, x, y)$, the Green function, $G_{D}^{\phi}(x, y)=\int_{0}^{\infty} r_{D}(t, x, y) d t$, $G_{D}^{\phi} f(x)=\int_{D} G_{D}^{\phi}(x, y) f(y)=\mathbb{E}_{x}\left[\int_{0}^{\infty} f\left(X_{t}\right) d t\right]$, and
Theorem (Kim, Song, Vondraček, 2016, B., 2023)
$G_{D}^{\phi}(x, y) \asymp\left(\frac{\delta_{D}(x) \delta_{D}(y)}{|x-y|^{2}} \wedge 1\right) \frac{1}{|x-y|^{d} \phi\left(|x-y|^{-2}\right)}, x, y \in D$.

Green and Poisson function

X has density $r_{D}(t, x, y)$, the Green function, $G_{D}^{\phi}(x, y)=\int_{0}^{\infty} r_{D}(t, x, y) d t$, $G_{D}^{\phi} f(x)=\int_{D} G_{D}^{\phi}(x, y) f(y)=\mathbb{E}_{x}\left[\int_{0}^{\infty} f\left(X_{t}\right) d t\right]$, and

Theorem (Kim, Song, Vondraček, 2016, B., 2023)
$G_{D}^{\phi}(x, y) \asymp\left(\frac{\delta_{D}(x) \delta_{D}(y)}{|x-y|^{2}} \wedge 1\right) \frac{1}{|x-y|^{d} \phi\left(|x-y|^{-2}\right)}, x, y \in D$.

Proposition (B., 2023)

The function

$$
P_{D}^{\phi}(x, z):=-\frac{\partial}{\partial \mathbf{n}} G_{D}^{\phi}(x, z), \quad x \in D, z \in \partial D .
$$

is well defined and $(x, z) \mapsto P_{D}^{\phi}(x, z) \in C(D \times \partial D)$. Moreover,

$$
P_{D}^{\phi}(x, z) \asymp \frac{\delta_{D}(x)}{|x-z|^{d+2} \phi\left(|x-z|^{-2}\right)}, \quad x \in D, z \in \partial D .
$$

Nonnegative harmonic functions

Definition

$h \in L^{1}\left(D, \delta_{D}(x) d x\right)$ is harmonic in D if $\phi\left(-\left.\Delta\right|_{D}\right) h=0$ in D in distributional sense.

Nonnegative harmonic functions

Definition

$h \in L^{1}\left(D, \delta_{D}(x) d x\right)$ is harmonic in D if $\phi\left(-\left.\Delta\right|_{D}\right) h=0$ in D in distributional sense.

Theorem (Song, Vondraček, 2006, B., 2023)

A function $h \geq 0$ is harmonic in D if and only if it satisfies the mean-value property,

Nonnegative harmonic functions

Definition

$h \in L^{1}\left(D, \delta_{D}(x) d x\right)$ is harmonic in D if $\phi\left(-\left.\Delta\right|_{D}\right) h=0$ in D in distributional sense.

Theorem (Song, Vondraček, 2006, B., 2023)

A function $h \geq 0$ is harmonic in D if and only if it satisfies the mean-value property, i.e. $h(x)=\mathbb{E}_{x}\left[h\left(X_{\tau_{u}}^{D}\right)\right]$, for every $x \in U \subset \subset D$.

Nonnegative harmonic functions

Definition

$h \in L^{1}\left(D, \delta_{D}(x) d x\right)$ is harmonic in D if $\phi\left(-\left.\Delta\right|_{D}\right) h=0$ in D in distributional sense.

Theorem (Song, Vondraček, 2006, B., 2023)

A function $h \geq 0$ is harmonic in D if and only if it satisfies the mean-value property, i.e. $h(x)=\mathbb{E}_{x}\left[h\left(X_{\tau_{U}}^{D}\right)\right]$, for every $x \in U \subset \subset D$.

Theorem (B., 2023)

If $h \geq 0$ is harmonic in D, then there exists a finite measure $\zeta \in \mathcal{M}(\partial D)$ such that

$$
h(x)=\int_{\partial D} P_{D}^{\phi}(x, z) \zeta(d z), \quad \text { for a.e. } x \in D
$$

Moderate solutions

Theorem (B., 2023)
Let $f \in L^{1}\left(D, \delta_{D}(x) d x\right)$ and $g \in L^{1}(\partial D)$, then the problem

$$
\begin{array}{rll}
-\phi\left(-\left.\Delta\right|_{D}\right) u & =f & \text { in } D \\
\frac{u}{P_{D}^{\phi} \sigma} & =g & \text { on } \partial D,
\end{array}
$$

has a so-called weak-dual solution $u=G_{D}^{\phi} f+P_{D}^{\phi} g$.

Moderate solutions

Theorem (B., 2023)
Let $f \in L^{1}\left(D, \delta_{D}(x) d x\right)$ and $g \in L^{1}(\partial D)$, then the problem

$$
\begin{aligned}
-\phi\left(-\left.\Delta\right|_{D}\right) u & =f \quad \text { in } D, \\
\frac{u}{P_{D}^{\phi} \sigma} & =g \quad \text { on } \partial D,
\end{aligned}
$$

has a so-called weak-dual solution $u=G_{D}^{\phi} f+P_{D}^{\phi} g$. Additionally, if f and g are "regular enough", u is a pointwise solution.

Large solutions

A solution $u: D \rightarrow \mathbb{R}$ to the problem

$$
\begin{aligned}
-\phi\left(-\left.\Delta\right|_{D}\right) u(x) & =f(u(x)) & & \text { in } D \\
\frac{u}{P_{D}^{\phi} \sigma} & =\infty & & \text { on } \partial D
\end{aligned}
$$

is called a large solution since

Large solutions

A solution $u: D \rightarrow \mathbb{R}$ to the problem

$$
\begin{aligned}
-\phi\left(-\left.\Delta\right|_{D}\right) u(x) & =f(u(x)) & & \text { in } D \\
\frac{u}{P_{D}^{\phi} \sigma} & =\infty & & \text { on } \partial D
\end{aligned}
$$

is called a large solution since

Lemma (B., Wagner, 2024+)

If $u: D \rightarrow \mathbb{R}$ satisfies

$$
\lim _{D \ni x \rightarrow z} \frac{|u(x)|}{P_{D}^{\phi} \sigma(x)}=\infty, \quad z \in \partial D
$$

then u is not uniformly bounded in D by any nonnegative harmonic function with respect to $\phi\left(-\left.\Delta\right|_{D}\right)$.

Table of Contents

(1) Introduction

(2) Preliminary results
(3) Regularity of distributional solutions to $\phi\left(-\left.\Delta\right|_{D}\right) u=f$

4 Large solution

Higher Hölder regularity of distributional solutions to $\phi\left(-\left.\Delta\right|_{D}\right) u=f$ in D

Theorem (B., Wagner, 2024+)
Let $d \geq 3, \alpha \in(0,1)$ and $k \in \mathbb{N}_{0}$ such that $k+\alpha+2 \delta_{1} \notin \mathbb{N}$, and let $f \in C^{k+\alpha}(D)$.
If $u \in L^{1}\left(D, \delta_{D}(x) d x\right)$ solves $\phi\left(-\left.\Delta\right|_{D}\right) u=f$ in D in distributional sense, then $u \in C^{k+\alpha+2 \delta_{1}}(D)$ and for any $K \subset \subset K^{\prime} \subset \subset D$, there exists $C>0$ such that

$$
\|u\|_{C^{k+\alpha+2 \delta_{1}}(K)} \leq C\left(\|f\|_{C^{k+\alpha}\left(K^{\prime}\right)}+\|u\|_{L^{1}\left(D, \delta_{D}(x) d x\right)}\right) .
$$

Higher Hölder regularity of distributional solutions to $\phi\left(-\left.\Delta\right|_{D}\right) u=f$ in D

Theorem (B., Wagner, 2024+)
Let $d \geq 3, \alpha \in(0,1)$ and $k \in \mathbb{N}_{0}$ such that $k+\alpha+2 \delta_{1} \notin \mathbb{N}$, and let $f \in C^{k+\alpha}(D)$.
If $u \in L^{1}\left(D, \delta_{D}(x) d x\right)$ solves $\phi\left(-\left.\Delta\right|_{D}\right) u=f$ in D in distributional sense, then $u \in C^{k+\alpha+2 \delta_{1}}(D)$ and for any $K \subset \subset K^{\prime} \subset \subset D$, there exists $C>0$ such that

$$
\|u\|_{C^{k+\alpha+2 \delta_{1}}(K)} \leq C\left(\|f\|_{C^{k+\alpha}\left(K^{\prime}\right)}+\|u\|_{L^{1}\left(D, \delta_{D}(x) d x\right)}\right)
$$

Moreover, if $f \in L_{\text {loc }}^{\infty}(D)$ and $\beta \in\left(0,2 \delta_{1}\right)$, then

$$
\|u\|_{C^{\beta}(K)} \leq C\left(\|f\|_{L^{\infty}\left(K^{\prime}\right)}+\|u\|_{L^{1}\left(D, \delta_{D}(x) d x\right)}\right)
$$

Higher Hölder regularity of distributional solutions to $\phi\left(-\left.\Delta\right|_{D}\right) u=f$ in D

Theorem (B., Wagner, 2024+)

Let $d \geq 3, \alpha \in(0,1)$ and $k \in \mathbb{N}_{0}$ such that $k+\alpha+2 \delta_{1} \notin \mathbb{N}$, and let $f \in C^{k+\alpha}(D)$.
If $u \in L^{1}\left(D, \delta_{D}(x) d x\right)$ solves $\phi\left(-\left.\Delta\right|_{D}\right) u=f$ in D in distributional sense, then $u \in C^{k+\alpha+2 \delta_{1}}(D)$ and for any $K \subset \subset K^{\prime} \subset \subset D$, there exists $C>0$ such that

$$
\|u\|_{C^{k+\alpha+2 \delta_{1}}(K)} \leq C\left(\|f\|_{C^{k+\alpha}\left(K^{\prime}\right)}+\|u\|_{L^{1}\left(D, \delta_{D}(x) d x\right)}\right) .
$$

Moreover, if $f \in L_{\text {loc }}^{\infty}(D)$ and $\beta \in\left(0,2 \delta_{1}\right)$, then

$$
\|u\|_{C^{\beta}(K)} \leq C\left(\|f\|_{L^{\infty}\left(K^{\prime}\right)}+\|u\|_{L^{1}\left(D, \delta_{D}(x) d x\right)}\right) .
$$

In particular, if u is $\phi\left(-\left.\Delta\right|_{D}\right)$-harmonic, then $u \in C^{\infty}(D)$, and $P_{D}^{\phi} \zeta \in C^{\infty}(D)$ for all finite measures ζ on ∂D.

Higher Hölder regularity of distributional solutions to $\phi\left(-\left.\Delta\right|_{D}\right) u=f$ in D : Remarks

- The proof is motivated by the proof/sketch of Abatangelo and Dupaigne (Ann. I. H. Poincare-An. 2017)

Higher Hölder regularity of distributional solutions to $\phi\left(-\left.\Delta\right|_{D}\right) u=f$ in D : Remarks

- The proof is motivated by the proof/sketch of Abatangelo and Dupaigne (Ann. I. H. Poincare-An. 2017)
- The goal is to connect $\phi\left(-\left.\Delta\right|_{D}\right) u=f$ in D to $\left.\phi(-\Delta)\right) \bar{u}=\bar{f}$ in \mathbb{R}^{d}, and to use the parabolic theory of $\partial_{t}-\Delta_{\mid D}$.

Higher Hölder regularity of distributional solutions to $\phi\left(-\left.\Delta\right|_{D}\right) u=f$ in D : Remarks

- The proof is motivated by the proof/sketch of Abatangelo and Dupaigne (Ann. I. H. Poincare-An. 2017)
- The goal is to connect $\phi\left(-\left.\Delta\right|_{D}\right) u=f$ in D to $\left.\phi(-\Delta)\right) \bar{u}=\bar{f}$ in \mathbb{R}^{d}, and to use the parabolic theory of $\partial_{t}-\Delta_{\mid D}$.
- At this point, we cannot remove $d \geq 3$ even in the fractional case. In the essential part of the proof we use function

$$
\bar{v}(x):=G_{\mathbb{R}^{d}} \bar{f}(x)=\mathbb{E}_{x}\left[\int_{0}^{\infty} \bar{f}\left(W_{t}\right) d t\right],
$$

but $G_{\mathbb{R}^{d}}$ is the Green function of the Brownian motion and in $d=2$ the Brownian motion is not transient so $G_{R^{d}}|\bar{f}| \equiv \infty$ for $f \not \equiv 0$.

Table of Contents

(1) Introduction
(2) Preliminary results
(3) Regularity of distributional solutions to $\phi\left(-\left.\Delta\right|_{D}\right) u=f$

4 Large solution

Introduction

We solve

$$
\begin{aligned}
-\phi\left(-\left.\Delta\right|_{D}\right) u(x) & =f(u(x)) & & \text { in } D \\
\frac{u}{P_{D}^{\phi} \sigma} & =\infty & & \text { on } \partial D
\end{aligned}
$$

for $f: D \rightarrow[0, \infty)$ such that

Introduction

We solve

$$
\begin{aligned}
-\phi\left(-\left.\Delta\right|_{D}\right) u(x) & =f(u(x)) & & \text { in } D \\
\frac{u}{P_{D}^{\phi} \sigma} & =\infty & & \text { on } \partial D,
\end{aligned}
$$

for $f: D \rightarrow[0, \infty)$ such that $f \in C^{1}(\mathbb{R})$ and

$$
\begin{equation*}
(1+m) f(t) \leq t f^{\prime}(t) \leq(1+M) f(t), \quad t \in \mathbb{R}, \tag{F}
\end{equation*}
$$

for some $0<m \leq M<\infty$, e.g. $f(t)=t^{p}$ for $p>1$.

Approximating sequence

Let $\left(u_{j}\right)_{j}$ be a sequence of solutions to the problems

$$
\begin{align*}
-\phi\left(-\left.\Delta\right|_{D}\right) u_{j} & =f\left(u_{j}\right) & & \text { in } D, \\
\frac{u_{j}}{P_{D}^{\phi} \sigma} & =j & & \text { on } \partial D, \tag{AP}
\end{align*}
$$

Approximating sequence

Let $\left(u_{j}\right)_{j}$ be a sequence of solutions to the problems

$$
\begin{aligned}
-\phi\left(-\left.\Delta\right|_{D}\right) u_{j} & =f\left(u_{j}\right) & & \text { in } D, \\
\frac{u_{j}}{P_{D}^{\phi} \sigma} & =j & & \text { on } \partial D,
\end{aligned}
$$

Lemma (B., Wagner, 2024+)
The sequence $\left(u_{j}\right)_{j}$ increases as $j \rightarrow \infty$,

Approximating sequence

Let $\left(u_{j}\right)_{j}$ be a sequence of solutions to the problems

$$
\begin{aligned}
-\phi\left(-\left.\Delta\right|_{D}\right) u_{j} & =f\left(u_{j}\right) & & \text { in } D \\
\frac{u_{j}}{P_{D}^{\phi} \sigma} & =j & & \text { on } \partial D
\end{aligned}
$$

Lemma (B., Wagner, 2024+)

The sequence $\left(u_{j}\right)_{j}$ increases as $j \rightarrow \infty$, and if $f \in C^{\alpha}(\mathbb{R})$ for $\alpha>2\left(\delta_{2}-\delta_{1}\right)$, then u_{j} is a pointwise solution to (AP).

Approximating sequence

Let $\left(u_{j}\right)_{j}$ be a sequence of solutions to the problems

$$
\begin{aligned}
-\phi\left(-\left.\Delta\right|_{D}\right) u_{j} & =f\left(u_{j}\right) & & \text { in } D, \\
\frac{u_{j}}{P_{D}^{\phi} \sigma} & =j & & \text { on } \partial D,
\end{aligned}
$$

Lemma (B., Wagner, 2024+)

The sequence $\left(u_{j}\right)_{j}$ increases as $j \rightarrow \infty$, and if $f \in C^{\alpha}(\mathbb{R})$ for $\alpha>2\left(\delta_{2}-\delta_{1}\right)$, then u_{j} is a pointwise solution to (AP).

The goal now is to find a Keller-Osserman-type condition that will guarantee that $\lim _{j} u_{j}=: u$ is finite and that it is a large solution. This will be obtained by using the method of supersolution.

Construction of a supersolution

Let

$$
F(t)=\int_{0}^{t} f(s) d s, \quad t>0
$$

and set $\varphi:(0, \infty) \rightarrow(0, \infty)$ as

$$
\varphi(t)=\int_{t}^{\infty} \frac{d s}{\sqrt{F(s)}}, \quad t>0
$$

Denote by ψ the inverse of φ.

Construction of a supersolution

Let

$$
F(t)=\int_{0}^{t} f(s) d s, \quad t>0
$$

and set $\varphi:(0, \infty) \rightarrow(0, \infty)$ as

$$
\varphi(t)=\int_{t}^{\infty} \frac{d s}{\sqrt{F(s)}}, \quad t>0
$$

Denote by ψ the inverse of φ.
A supersolution will be obtained from $U(x):=\psi\left(V\left(\delta_{D}(x)\right)\right)$, where $V(t)$ is the renewal function of the subordinate Brownian motion with char. $\exp . \phi\left(|\xi|^{2}\right)$.

Construction of a supersolution, part 2

Lemma (B., Wagner, 2024+)

The function $U=\psi\left(V\left(\delta_{D}(x)\right)\right.$ satisfies $U \in L^{1}\left(D, \delta_{D}(x) d x\right)$ if and only if

$$
\int_{1}^{\infty} \frac{d t}{\phi^{-1}\left(\varphi(t)^{-2}\right)}<\infty
$$

Construction of a supersolution, part 2

Lemma (B., Wagner, 2024+)

The function $U=\psi\left(V\left(\delta_{D}(x)\right)\right.$ satisfies $U \in L^{1}\left(D, \delta_{D}(x) d x\right)$ if and only if

$$
\int_{1}^{\infty} \frac{d t}{\phi^{-1}\left(\varphi(t)^{-2}\right)}<\infty
$$

If in addition

$$
\begin{equation*}
\int_{r}^{\infty} \frac{d t}{\phi^{-1}\left(\varphi(t)^{-2}\right)} \lesssim \frac{r}{\phi^{-1}\left(\varphi(r)^{-2}\right)}, \quad r \geq 1 \tag{KO}
\end{equation*}
$$

then there exist constants $C>0$ and $\eta>0$ such that

$$
\phi\left(-\left.\Delta\right|_{D}\right) U(x) \geq-C f(U(x)), \quad x \in D_{\eta}
$$

where $D_{\eta}=\left\{x \in D: \delta_{D}(x)<\eta\right\}$.

By modifying U to $\bar{U}:=\lambda U+\mu G_{D}^{\phi} \mathbf{1}$ for some $\mu, \lambda>0$, we get

By modifying U to $\bar{U}:=\lambda U+\mu G_{D}^{\phi} \mathbf{1}$ for some $\mu, \lambda>0$, we get

Corollary (B., Wagner, 2024+)

Let f satisfy (F) and (KO). Then there is a function $\bar{U} \in L^{1}\left(D, \delta_{D}(x) d x\right) \cap C^{1,1}(D)$ such that

$$
\phi\left(-\left.\Delta\right|_{D}\right) \bar{U} \geq-f(\bar{U}), \quad \text { in } D,
$$

both in the distributional and pointwise sense. Furthermore, assume that

$$
\begin{align*}
& \lim _{s \rightarrow 0+} \frac{\psi(s)}{s^{2} \phi^{-1}\left(s^{-2}\right)}=\infty \tag{B}\\
& \lim _{x \rightarrow \partial D} \frac{\bar{U}(x)}{P_{D}^{\phi} \sigma(x)}=\infty
\end{align*}
$$

Large solution under (F), (KO), and (B)

Recall the $u_{j}, j \geq 1$, which solve (AP), and $u=\uparrow \lim _{j} u_{j}$.

Large solution under (F), (KO), and (B)

Recall the $u_{j}, j \geq 1$, which solve (AP), and $u=\uparrow \lim _{j} u_{j}$. Under (F), (KO) and (B), we have $u<\infty$,

$$
u_{j} \leq \bar{U}
$$

hence $u \leq \bar{U}$ so:

Large solution under (F), (KO), and (B)

Recall the $u_{j}, j \geq 1$, which solve (AP), and $u=\uparrow \lim _{j} u_{j}$. Under (F), (KO) and (B), we have $u<\infty$,

$$
u_{j} \leq \bar{U}
$$

hence $u \leq \bar{U}$ so:

Theorem (B. Wagner, 2024+)

The function u is in $L^{1}\left(D, \delta_{D}(x) d x\right)$ and is a distributional and a pointwise solution to the semilinear problem

$$
\begin{aligned}
-\phi\left(-\left.\Delta\right|_{D}\right) u & =f(u) & & \text { in } D \\
\frac{u}{P_{D}^{\phi} \sigma} & =\infty & & \text { on } \partial D .
\end{aligned}
$$

References

- I. Biočić and V. Wagner, Large solutions for subordinate spectral Laplacian, soon on Arxive 2024+
- I. Chowdhury, Z. Vondraček and V. Wagner, Large solutions to semilinear equations for nonlocal operators in smooth domains, soon on Arxive 2024+
- I. Biočić, Semilinear equations for subordinate spectral Laplacian, Comm. Pur. Appl. Anal. 2023.
- N. Abatangelo and L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian, Ann. I. H. Poincare-An. 2016.
- P. Kim, R. Song and Z. Vondraček, Potential theory of subordinate killed Brownian motion. Trans. Amer. Math. Soc. 2019.

