Large solutions for subordinate spectral Laplacian

Ivan Biočić¹, joint work with Vanja Wagner²

¹Università degli Studi di Torino, Italy

²University of Zagreb, Croatia

Probability and Analysis, Bedlewo 22.4.2024.

The research was partly supported by CSF under the project IP-2022-10-2277

æ

2 Preliminary results

3 Regularity of distributional solutions to $\phi(-\Delta|_D)u = f$

Introduction

- 2 Preliminary results
- 3 Regularity of distributional solutions to $\phi(-\left.\Delta
 ight|_D)u=f$
- 4 Large solution

• • = • • = •

For a bounded $C^{1,1}$ domain $D \subset \mathbb{R}^d$, $d \geq 3$,

A B • A B •

э

For a bounded $C^{1,1}$ domain $D \subset \mathbb{R}^d$, $d \geq 3$, and for the non-local operator $\phi(-\Delta|_D)$, the infinitesimal generator of a subordinate killed Brownian motion,

- E - - E -

For a bounded $C^{1,1}$ domain $D \subset \mathbb{R}^d$, $d \geq 3$, and for the non-local operator $\phi(-\Delta|_D)$, the infinitesimal generator of a subordinate killed Brownian motion, we solve the following problem

$$\begin{array}{rcl} -\phi(-\Delta|_D)u(x) &=& f(u(x)) & x \in D, \\ \lim_{x \to z} \frac{u(x)}{P_D^{\phi}\sigma(x)} &=& \infty & z \in \partial D, \end{array}$$

for $f: D \to \mathbb{R}$,

For a bounded $C^{1,1}$ domain $D \subset \mathbb{R}^d$, $d \geq 3$, and for the non-local operator $\phi(-\Delta|_D)$, the infinitesimal generator of a subordinate killed Brownian motion, we solve the following problem

$$\begin{array}{rcl} -\phi(-\Delta|_D)u(x) &=& f(u(x)) & x \in D, \\ \lim_{x \to z} \frac{u(x)}{P_D^{\phi}(x)} &=& \infty & z \in \partial D, \end{array}$$

for $f: D \to \mathbb{R}$, where $P_D^{\phi} \sigma$ is a reference function - the Poisson potential of (d-1)-dimensional Hausdorff measure on ∂D .

For a bounded $C^{1,1}$ domain $D \subset \mathbb{R}^d$, $d \geq 3$, and for the non-local operator $\phi(-\Delta|_D)$, the infinitesimal generator of a subordinate killed Brownian motion, we solve the following problem

$$\begin{array}{rcl} -\phi(-\Delta|_D)u(x) &=& f(u(x)) & x \in D, \\ \lim_{x \to z} \frac{u(x)}{P_D^{\phi}\sigma(x)} &=& \infty & z \in \partial D, \end{array}$$

for $f: D \to \mathbb{R}$, where $P_D^{\phi} \sigma$ is a reference function - the Poisson potential of (d-1)-dimensional Hausdorff measure on ∂D . Also:

• ϕ is the Laplace exponent of the subordinator, i.e. a Bernstein function,

• Example:
$$\phi(\lambda) = \lambda^s$$
, $s \in (0,1)$,

For a bounded $C^{1,1}$ domain $D \subset \mathbb{R}^d$, $d \geq 3$, and for the non-local operator $\phi(-\Delta|_D)$, the infinitesimal generator of a subordinate killed Brownian motion, we solve the following problem

$$\begin{array}{rcl} -\phi(-\Delta|_D)u(x) &=& f(u(x)) & x \in D, \\ \lim_{x \to z} \frac{u(x)}{P_D^{\phi}\sigma(x)} &=& \infty & z \in \partial D, \end{array}$$

for $f: D \to \mathbb{R}$, where $P_D^{\phi} \sigma$ is a reference function - the Poisson potential of (d-1)-dimensional Hausdorff measure on ∂D . Also:

- ϕ is the Laplace exponent of the subordinator, i.e. a Bernstein function,
- Example: $\phi(\lambda) = \lambda^s$, $s \in (0, 1)$, $\phi(-\Delta|_D) = (-\Delta_{|D})^s$ is the spectral fractional Laplacian.

本語 と 本 ヨ と 本 ヨ と 二 ヨ

Probabilistic background

Underlying process and connection to $\phi(-\Delta|_D)$

Let $W = (W_t)_t$ be a Brownian motion in \mathbb{R}^d with the char. exp. $\xi \mapsto |\xi|^2$.

Biočić		

A B K A B K

э

Underlying process and connection to $\phi(-\Delta|_D)$

Let $W = (W_t)_t$ be a Brownian motion in \mathbb{R}^d with the char. exp. $\xi \mapsto |\xi|^2$. Let $S = (S_t)_t$ be a subordinator with the Laplace exponent ϕ .

Underlying process and connection to $\phi(-\Delta|_D)$

Let $W = (W_t)_t$ be a Brownian motion in \mathbb{R}^d with the char. exp. $\xi \mapsto |\xi|^2$. Let $S = (S_t)_t$ be a subordinator with the Laplace exponent ϕ . The killed Brownian motion W^D upon exiting the set D is defined by

$$W_t^D \coloneqq \begin{cases} W_t, & t < \tau_D \coloneqq \inf \{t > 0 : W_t \notin D\}, \\ \partial, & t \ge \tau_D, \end{cases}$$

where ∂ is the additional point added to \mathbb{R}^d called the *cemetery*.

Underlying process and connection to $\phi(-\Delta|_D)$

Let $W = (W_t)_t$ be a Brownian motion in \mathbb{R}^d with the char. exp. $\xi \mapsto |\xi|^2$. Let $S = (S_t)_t$ be a subordinator with the Laplace exponent ϕ . The killed Brownian motion W^D upon exiting the set D is defined by

$$W_t^D \coloneqq \begin{cases} W_t, & t < \tau_D \coloneqq \inf \{t > 0 : W_t \notin D\}, \\ \partial, & t \ge \tau_D, \end{cases}$$

where ∂ is the additional point added to \mathbb{R}^d called the *cemetery*. The process

$$X_t = (W^D)_{S_t}, t \ge 0,$$

is called the subordinate killed Brownian motion.

Subordination and killing do not commute!

	ćΙ		

Assumptions on $\boldsymbol{\phi}$

We assume that:

۲

• ϕ is a Bernstein function

$$\phi(\lambda) = b\lambda + \int_0^\infty (1 - e^{-\lambda t}) \mu(dt)$$

I. Biočić (UniTo
I. DIOCIC	

∃ ► < ∃ ►</p>

э

Probabilistic background

Assumptions on ϕ

We assume that:

.

 $\bullet \ \phi$ is a complete Bernstein function without the drift

$$\phi(\lambda) = \int_0^\infty (1 - e^{-\lambda t}) \mu(t) dt$$

★ E ► < E ►</p>

э

Assumptions on ϕ

We assume that:

.

• ϕ is a complete Bernstein function without the drift

$$\phi(\lambda) = \int_0^\infty (1 - e^{-\lambda t}) \mu(t) dt$$

• ϕ satisfies the weak scaling condition at infinity: there exists $a_1, a_2 > 0$ and $\delta_1, \delta_2 \in (0, 1)$ s.t.

$$a_1\left(rac{t}{s}
ight)^{\delta_1} \leq rac{\phi(t)}{\phi(s)} \leq a_2\left(rac{t}{s}
ight)^{\delta_2}, \quad t,s \geq 1.$$
 (WSC)

Assumptions on ϕ

We assume that:

.

• ϕ is a complete Bernstein function without the drift

$$\phi(\lambda) = \int_0^\infty (1 - e^{-\lambda t}) \mu(t) dt$$

• ϕ satisfies the weak scaling condition at infinity: there exists $a_1, a_2 > 0$ and $\delta_1, \delta_2 \in (0, 1)$ s.t.

$$\mathsf{a}_1\left(rac{t}{s}
ight)^{\delta_1} \leq rac{\phi(t)}{\phi(s)} \leq \mathsf{a}_2\left(rac{t}{s}
ight)^{\delta_2}, \quad t,s \geq 1.$$
 (WSC)

The assumption (WSC) drives small space-time behaviour of X.

Let $\{\varphi_j\}_{j\in\mathbb{N}}$ be an ONB of $L^2(D)$ s.t. $-\Delta|_D \varphi_j = \lambda_j \varphi_j$ in D. We define

$$\phi(-\Delta|_D)u = \sum_{j=1}^{\infty} \phi(\lambda_j)\widehat{u}_j\varphi_j,$$

for
$$u \in \mathcal{D}(\phi(-\Delta|_D)) \coloneqq \{v = \sum_{j=1}^{\infty} \widehat{v}_j \varphi_j \in L^2(D) : \sum_{j=0}^{\infty} \phi(\lambda_j)^2 |\widehat{v}_j|^2 < \infty\}.$$

*ロ * *理 * * 国 * * 国 * - 国

Let $\{\varphi_j\}_{j\in\mathbb{N}}$ be an ONB of $L^2(D)$ s.t. $-\Delta|_D \varphi_j = \lambda_j \varphi_j$ in D. We define

$$\phi(-\Delta|_D)u = \sum_{j=1}^{\infty} \phi(\lambda_j)\widehat{u}_j\varphi_j,$$

for $u \in \mathcal{D}(\phi(-\Delta|_D)) \coloneqq \{v = \sum_{j=1}^{\infty} \widehat{v}_j \varphi_j \in L^2(D) : \sum_{j=0}^{\infty} \phi(\lambda_j)^2 |\widehat{v}_j|^2 < \infty\}.$ $\phi(-\Delta|_D)$ is an unbounded operator, $C_c^{\infty}(D) \subset \mathcal{D}(\phi(-\Delta|_D))$, and

- 4 周 ト 4 国 ト 4 国 ト - 三日

Let $\{\varphi_j\}_{j\in\mathbb{N}}$ be an ONB of $L^2(D)$ s.t. $-\Delta|_D \varphi_j = \lambda_j \varphi_j$ in D. We define

$$\phi(-\Delta|_D)u = \sum_{j=1}^{\infty} \phi(\lambda_j)\widehat{u}_j\varphi_j,$$

for
$$u \in \mathcal{D}(\phi(-\Delta|_D)) := \{ v = \sum_{j=1}^{\infty} \widehat{v}_j \varphi_j \in L^2(D) : \sum_{j=0}^{\infty} \phi(\lambda_j)^2 |\widehat{v}_j|^2 < \infty \}.$$

 $\phi(-\Delta|_D)$ is an unbounded operator, $C_c^{\infty}(D) \subset \mathcal{D}(\phi(-\Delta|_D))$, and

Lemma (B., 2023)

The operator $-\phi(-\Delta|_D)$ is the infinitesimal generator of $L^2(D)$ semigroup generated by $X_t = W_{S_t}^D$, i.e. of the subordinate killed Brownian motion X.

(本語) (本語) (本語) (一語)

Introduction

- 2 Preliminary results
- 3 Regularity of distributional solutions to $\phi(-\left.\Delta
 ight|_D)u=f$
- 4 Large solution

• • = • • = •

э

 $\phi(-\left.\Delta\right|_{D})$ is a non-local operator with a pointwise representation

Proposition (B., 2023)

For $u \in C^{1,1}(D) \cap \mathcal{D}(\phi(-\Delta|_D))$ and a.e. $x \in D$

$$\phi(-\Delta|_D)u(x) = P.V.\int_D [u(x) - u(y)]J_D(x,y)dy + \kappa(x)u(x).$$

. Biočić 🛛		

周 ト イ ヨ ト イ ヨ ト 二 ヨ

 $\phi(-\left.\Delta\right|_D)$ is a non-local operator with a pointwise representation

Proposition (B., 2023)

For $u \in C^{1,1}(D) \cap \mathcal{D}(\phi(-\Delta|_D))$ and a.e. $x \in D$

$$\phi(-\Delta|_D)u(x) = P.V.\int_D [u(x) - u(y)]J_D(x,y)dy + \kappa(x)u(x).$$

Here

$$J_D(x,y) symp \left(rac{\delta_D(x)\delta_D(y)}{|x-y|^2} \wedge 1
ight) rac{\phi(|x-y|^{-2})}{|x-y|^d}, \quad x,y \in D.$$

X has density $r_D(t, x, y)$,

▲ 囲 ▶ | ★ 囲 ▶

э

X has density $r_D(t, x, y)$, the Green function, $G_D^{\phi}(x, y) = \int_0^{\infty} r_D(t, x, y) dt$,

A B > A B >

3

X has density $r_D(t, x, y)$, the Green function, $G_D^{\phi}(x, y) = \int_0^{\infty} r_D(t, x, y) dt$, $G_D^{\phi}f(x) = \int_D G_D^{\phi}(x, y)f(y) = \mathbb{E}_x \left[\int_0^{\infty} f(X_t) dt \right]$,

• • = • • = •

3

X has density $r_D(t, x, y)$, the Green function, $G_D^{\phi}(x, y) = \int_0^{\infty} r_D(t, x, y) dt$, $G_D^{\phi}f(x) = \int_D G_D^{\phi}(x, y)f(y) = \mathbb{E}_x \left[\int_0^{\infty} f(X_t) dt\right]$, and

Theorem (Kim, Song, Vondraček, 2016, B., 2023)

$$G^{\phi}_D(x,y) symp \left(rac{\delta_D(x)\delta_D(y)}{|x-y|^2} \wedge 1
ight) rac{1}{|x-y|^d \phi(|x-y|^{-2})}$$
, $x,y \in D$.

ト 4 三 ト 4 三 ト

X has density $r_D(t, x, y)$, the Green function, $G_D^{\phi}(x, y) = \int_0^{\infty} r_D(t, x, y) dt$, $G_D^{\phi}f(x) = \int_D G_D^{\phi}(x, y)f(y) = \mathbb{E}_x \left[\int_0^{\infty} f(X_t) dt \right]$, and

Theorem (Kim, Song, Vondraček, 2016, B., 2023)

$$G^{\phi}_D(x,y) \asymp \left(rac{\delta_D(x)\delta_D(y)}{|x-y|^2} \wedge 1
ight) rac{1}{|x-y|^d \phi(|x-y|^{-2})}$$
, $x,y \in D$.

Proposition (B., 2023)

The function

$$P^{\phi}_{D}(x,z) \coloneqq -rac{\partial}{\partial \mathbf{n}} G^{\phi}_{D}(x,z), \quad x \in D, z \in \partial D.$$

is well defined and $(x,z) \mapsto P^{\phi}_D(x,z) \in C(D \times \partial D)$. Moreover,

$$\mathcal{P}_D^\phi(x,z) symp rac{\delta_D(x)}{|x-z|^{d+2}\phi(|x-z|^{-2})}, \quad x\in D, z\in\partial D$$

I. Biočić (UniTo)

12 / 26

Definition

 $h \in L^1(D, \delta_D(x)dx)$ is harmonic in D if $\phi(-\Delta|_D)h = 0$ in D in distributional sense.

A B • A B •

э

Definition

 $h \in L^1(D, \delta_D(x)dx)$ is harmonic in D if $\phi(-\Delta|_D)h = 0$ in D in distributional sense.

Theorem (Song, Vondraček, 2006, B., 2023)

A function $h \ge 0$ is harmonic in D if and only if it satisfies the mean-value property,

- E - - E -

Definition

 $h \in L^1(D, \delta_D(x)dx)$ is harmonic in D if $\phi(-\Delta|_D)h = 0$ in D in distributional sense.

Theorem (Song, Vondraček, 2006, B., 2023)

A function $h \ge 0$ is harmonic in D if and only if it satisfies the mean-value property, i.e. $h(x) = \mathbb{E}_{x}[h(X_{\tau_{U}}^{D})]$, for every $x \in U \subset C$.

Definition

 $h \in L^1(D, \delta_D(x)dx)$ is harmonic in D if $\phi(-\Delta|_D)h = 0$ in D in distributional sense.

Theorem (Song, Vondraček, 2006, B., 2023)

A function $h \ge 0$ is harmonic in D if and only if it satisfies the mean-value property, i.e. $h(x) = \mathbb{E}_x[h(X_{\tau_U}^D)]$, for every $x \in U \subset C$.

Theorem (B., 2023)

If $h \ge 0$ is harmonic in D, then there exists a finite measure $\zeta \in \mathcal{M}(\partial D)$ such that

$$h(x) = \int_{\partial D} \mathsf{P}^{\phi}_D(x,z) \zeta(dz), \quad ext{for a.e. } x \in D.$$

I. Biočić (UniTo)

Theorem (B., 2023)

Let $f \in L^1(D, \delta_D(x)dx)$ and $g \in L^1(\partial D)$, then the problem

$$\begin{array}{rcl} -\phi(-\Delta|_D)u &=& f & \text{ in } D, \\ \frac{u}{P_D^{\phi}\sigma} &=& g & \text{ on } \partial D, \end{array}$$

has a so-called weak-dual solution $u = G_D^{\phi} f + P_D^{\phi} g$.

I. Biočić	(UniTo)
	(0

A E 🕨 A E 🕨 👘

Theorem (B., 2023)

Let $f \in L^1(D, \delta_D(x) dx)$ and $g \in L^1(\partial D)$, then the problem

$$\begin{array}{rcl} -\phi(-\Delta|_D)u &=& f & \text{ in } D, \\ \frac{u}{P_D^{\phi}\sigma} &=& g & \text{ on } \partial D, \end{array}$$

has a so-called weak-dual solution $u = G_D^{\phi} f + P_D^{\phi} g$. Additionally, if f and g are "regular enough", u is a pointwise solution.

Large solutions

A solution $u: D \to \mathbb{R}$ to the problem

$$\begin{array}{rcl} -\phi(-\Delta|_D)u(x) &=& f(u(x)) & \quad \text{in } D, \\ \frac{u}{P_D^{\phi}\sigma} &=& \infty & \quad \text{on } \partial D, \end{array}$$

is called a large solution since

Biočić		

Large solutions

A solution $u: D \to \mathbb{R}$ to the problem

$$\begin{array}{rcl} -\phi(-\Delta|_D)u(x) &=& f(u(x)) & \quad \text{in } D, \\ \frac{u}{P_D^{\phi}\sigma} &=& \infty & \quad \text{on } \partial D, \end{array}$$

is called a large solution since

Lemma (B., Wagner, 2024+)

If $u: D \to \mathbb{R}$ satisfies

$$\lim_{D\ni x\to z}\frac{|u(x)|}{P^{\phi}_D\sigma(x)}=\infty, \quad z\in\partial D,$$

then u is not uniformly bounded in D by any nonnegative harmonic function with respect to $\phi(-\Delta|_D)$.

• • = • • = •

1 Introduction

- 2 Preliminary results
- 3 Regularity of distributional solutions to $\phi(-\Delta|_D)u = f$

4 Large solution

A B • A B •

Higher Hölder regularity of distributional solutions to $\phi(-\Delta|_D)u = f$ in D

Theorem (B., Wagner, 2024+)

Let $d \geq 3$, $\alpha \in (0,1)$ and $k \in \mathbb{N}_0$ such that $k + \alpha + 2\delta_1 \notin \mathbb{N}$, and let $f \in C^{k+\alpha}(D)$. If $u \in L^1(D, \delta_D(x)dx)$ solves $\phi(-\Delta|_D)u = f$ in D in distributional sense, then $u \in C^{k+\alpha+2\delta_1}(D)$ and for any $K \subset C K' \subset C D$, there exists C > 0 such that

$$||u||_{\mathcal{C}^{k+\alpha+2\delta_1}(\mathcal{K})} \leq \mathcal{C}\left(||f||_{\mathcal{C}^{k+\alpha}(\mathcal{K}')} + ||u||_{L^1(D,\delta_D(x)dx)}\right)$$

Higher Hölder regularity of distributional solutions to $\phi(-\Delta|_D)u = f$ in D

Theorem (B., Wagner, 2024+)

Let $d \geq 3$, $\alpha \in (0,1)$ and $k \in \mathbb{N}_0$ such that $k + \alpha + 2\delta_1 \notin \mathbb{N}$, and let $f \in C^{k+\alpha}(D)$. If $u \in L^1(D, \delta_D(x)dx)$ solves $\phi(-\Delta|_D)u = f$ in D in distributional sense, then $u \in C^{k+\alpha+2\delta_1}(D)$ and for any $K \subset C K' \subset C$, there exists C > 0 such that

$$||u||_{\mathcal{C}^{k+\alpha+2\delta_1}(\mathcal{K})} \leq \mathcal{C}\left(||f||_{\mathcal{C}^{k+\alpha}(\mathcal{K}')} + ||u||_{L^1(D,\delta_D(x)dx)}\right)$$

Moreover, if $f \in L^{\infty}_{loc}(D)$ and $\beta \in (0, 2\delta_1)$, then

 $||u||_{C^{\beta}(K)} \leq C \left(||f||_{L^{\infty}(K')} + ||u||_{L^{1}(D,\delta_{D}(x)dx)} \right).$

Higher Hölder regularity of distributional solutions to $\phi(-\Delta|_D)u = f$ in D

Theorem (B., Wagner, 2024+)

Let $d \geq 3$, $\alpha \in (0,1)$ and $k \in \mathbb{N}_0$ such that $k + \alpha + 2\delta_1 \notin \mathbb{N}$, and let $f \in C^{k+\alpha}(D)$. If $u \in L^1(D, \delta_D(x)dx)$ solves $\phi(-\Delta|_D)u = f$ in D in distributional sense, then $u \in C^{k+\alpha+2\delta_1}(D)$ and for any $K \subset C K' \subset C$, there exists C > 0 such that

$$||u||_{\mathcal{C}^{k+\alpha+2\delta_1}(\mathcal{K})} \leq \mathcal{C}\left(||f||_{\mathcal{C}^{k+\alpha}(\mathcal{K}')} + ||u||_{L^1(D,\delta_D(x)dx)}\right)$$

Moreover, if $f \in L^{\infty}_{loc}(D)$ and $\beta \in (0, 2\delta_1)$, then

 $||u||_{C^{\beta}(K)} \leq C \left(||f||_{L^{\infty}(K')} + ||u||_{L^{1}(D,\delta_{D}(x)dx)} \right).$

In particular, if u is $\phi(-\Delta|_D)$ -harmonic, then $u \in C^{\infty}(D)$, and $P_D^{\phi}\zeta \in C^{\infty}(D)$ for all finite measures ζ on ∂D .

Higher Hölder regularity of distributional solutions to $\phi(-\Delta|_D)u = f$ in *D*: Remarks

• The proof is motivated by the proof/sketch of Abatangelo and Dupaigne (Ann. I. H. Poincare-An. 2017)

• • = • • = •

Higher Hölder regularity of distributional solutions to $\phi(-\Delta|_D)u = f$ in D: Remarks

- The proof is motivated by the proof/sketch of Abatangelo and Dupaigne (Ann. I. H. Poincare-An. 2017)
- The goal is to connect $\phi(-\Delta|_D)u = f$ in D to $\phi(-\Delta))\overline{u} = \overline{f}$ in \mathbb{R}^d , and to use the parabolic theory of $\partial_t - \Delta|_D$.

• • = • • = •

Higher Hölder regularity of distributional solutions to $\phi(-\Delta|_D)u = f$ in *D*: Remarks

- The proof is motivated by the proof/sketch of Abatangelo and Dupaigne (Ann. I. H. Poincare-An. 2017)
- The goal is to connect $\phi(-\Delta|_D)u = f$ in D to $\phi(-\Delta))\overline{u} = \overline{f}$ in \mathbb{R}^d , and to use the parabolic theory of $\partial_t - \Delta|_D$.
- At this point, we cannot remove d ≥ 3 even in the fractional case. In the essential part of the proof we use function

$$\overline{v}(x) \coloneqq G_{\mathbb{R}^d}\overline{f}(x) = \mathbb{E}_x\left[\int_0^\infty \overline{f}(W_t)dt\right],$$

but $G_{\mathbb{R}^d}$ is the Green function of the Brownian motion and in d = 2the Brownian motion is not transient so $G_{\mathbb{R}^d}|\overline{f}| \equiv \infty$ for $f \neq 0$.

御下 不是下 不是下 一日

Introduction

- 2 Preliminary results
- 3 Regularity of distributional solutions to $\phi(-\left.\Delta
 ight|_D)u=f$

4 Large solution

A B • A B •

We solve

$$\begin{array}{rcl} -\phi(-\Delta|_D)u(x) &=& f(u(x)) & \quad \text{in } D, \\ \frac{u}{P_D^{\phi\sigma}} &=& \infty & \quad \text{on } \partial D, \end{array}$$

for $f: D \to [0, \infty)$ such that

▶ ▲ 開下 ▲ 開下 -

We solve

$$-\phi(-\Delta|_D)u(x) = f(u(x)) \quad \text{in } D,$$

$$\frac{u}{P_D^{\phi}\sigma} = \infty \quad \text{on } \partial D,$$

for $f: D \to [0,\infty)$ such that $f \in C^1(\mathbb{R})$ and

$$(1+m)f(t) \le tf'(t) \le (1+M)f(t), \quad t \in \mathbb{R},$$
(F)

for some $0 < m \le M < \infty$, e.g. $f(t) = t^p$ for p > 1.

A B > A B >

$$\begin{array}{rcl} -\phi(-\Delta|_D)u_j &=& f(u_j) & \text{ in } D, \\ \frac{u_j}{P_D^{\phi}\sigma} &=& j & \text{ on } \partial D, \end{array} \tag{AP}$$

A B < A B </p>

$$\begin{array}{rcl} -\phi(-\Delta|_D)u_j &=& f(u_j) & \text{ in } D, \\ \frac{u_j}{P_D^{\phi\sigma}} &=& j & \text{ on } \partial D, \end{array} \tag{AP}$$

Lemma (B., Wagner, 2024+)

The sequence $(u_j)_j$ increases as $j \to \infty$,

I. Biočić	

* 第 * * 第 *

$$\begin{array}{rcl} -\phi(-\Delta|_D)u_j &=& f(u_j) & \text{ in } D, \\ \frac{u_j}{P_D^{\phi_\sigma}} &=& j & \text{ on } \partial D, \end{array} \tag{AP}$$

Lemma (B., Wagner, 2024+)

The sequence $(u_j)_j$ increases as $j \to \infty$, and if $f \in C^{\alpha}(\mathbb{R})$ for $\alpha > 2(\delta_2 - \delta_1)$, then u_j is a pointwise solution to (AP).

• • = • • = •

$$\begin{array}{rcl} -\phi(-\Delta|_D)u_j &=& f(u_j) & \text{ in } D, \\ \frac{u_j}{P_D^{\phi\sigma}} &=& j & \text{ on } \partial D, \end{array} \tag{AP}$$

Lemma (B., Wagner, 2024+)

The sequence $(u_j)_j$ increases as $j \to \infty$, and if $f \in C^{\alpha}(\mathbb{R})$ for $\alpha > 2(\delta_2 - \delta_1)$, then u_j is a pointwise solution to (AP).

The goal now is to find a Keller-Osserman-type condition that will guarantee that $\lim_j u_j =: u$ is finite and that it is a large solution. This will be obtained by using the method of supersolution.

御下 不是下 不是下 一日

Let

$$F(t) = \int_0^t f(s) ds, \quad t > 0,$$

and set $arphi:(0,\infty)
ightarrow(0,\infty)$ as

$$arphi(t)=\int_t^\infty rac{ds}{\sqrt{F(s)}},\quad t>0.$$

Denote by ψ the inverse of φ .

э

4 E 🕨 4 E 🕨

Let

$$F(t) = \int_0^t f(s) ds, \quad t > 0,$$

and set $arphi:(0,\infty)
ightarrow(0,\infty)$ as

$$arphi(t) = \int_t^\infty rac{ds}{\sqrt{F(s)}}, \quad t>0.$$

Denote by ψ the inverse of φ .

A supersolution will be obtained from $U(x) := \psi(V(\delta_D(x)))$, where V(t) is the renewal function of the subordinate Brownian motion with char. exp. $\phi(|\xi|^2)$.

Lemma (B., Wagner, 2024+)

The function $U = \psi(V(\delta_D(x)))$ satisfies $U \in L^1(D, \delta_D(x)dx)$ if and only if

$$\int_1^\infty \frac{dt}{\phi^{-1}(\varphi(t)^{-2})} < \infty.$$

	I. Biočić ((UniTo))
--	-------------	---------	---

人口区 人間区 人居区 人居区

Lemma (B., Wagner, 2024+)

The function $U = \psi(V(\delta_D(x)))$ satisfies $U \in L^1(D, \delta_D(x)dx)$ if and only if

$$\int_1^\infty \frac{dt}{\phi^{-1}(\varphi(t)^{-2})} < \infty.$$

If in addition

$$\int_{r}^{\infty} \frac{dt}{\phi^{-1}(\varphi(t)^{-2})} \lesssim \frac{r}{\phi^{-1}(\varphi(r)^{-2})}, \qquad r \ge 1,$$
(KO)

then there exist constants C > 0 and $\eta > 0$ such that

$$\phi(-\Delta|_D)U(x) \ge -Cf(U(x)), \quad x \in D_\eta,$$

where $D_{\eta} = \{x \in D : \delta_D(x) < \eta\}.$

イロン 不得 とう ほとう ほんし

By modifying U to $\overline{U} := \lambda U + \mu G_D^{\phi} \mathbf{1}$ for some $\mu, \lambda > 0$, we get

	očić		

• • = • • = •

By modifying U to $\overline{U} := \lambda U + \mu G_D^{\phi} \mathbf{1}$ for some $\mu, \lambda > 0$, we get

Corollary (B., Wagner, 2024+)

Let f satisfy (F) and (KO). Then there is a function $\overline{U} \in L^1(D, \delta_D(x)dx) \cap C^{1,1}(D)$ such that

$$\phi(-\Delta|_D)\overline{U} \ge -f(\overline{U}), \quad \text{in } D,$$

both in the distributional and pointwise sense. Furthermore, assume that

$$\lim_{s \to 0+} \frac{\psi(s)}{s^2 \phi^{-1}(s^{-2})} = \infty,$$
(B)
then
$$\lim_{x \to \partial D} \frac{\overline{U}(x)}{P_D^{\phi} \sigma(x)} = \infty.$$

Biočić (UniTo)

Large solution under (F), (KO), and (B)

Recall the u_j , $j \ge 1$, which solve (AP), and $u = \uparrow \lim_j u_j$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Large solution under (F), (KO), and (B)

Recall the u_j , $j \ge 1$, which solve (AP), and $u = \uparrow \lim_j u_j$. Under (F), (KO) and (B), we have $u < \infty$,

$$u_j \leq \overline{U},$$

hence $u \leq \overline{U}$ so:

・ 「 ト ・ ヨ ト ・ ヨ ト ・

Large solution under (F), (KO), and (B)

Recall the u_j , $j \ge 1$, which solve (AP), and $u = \uparrow \lim_j u_j$. Under (F), (KO) and (B), we have $u < \infty$,

$$u_j \leq \overline{U},$$

hence $u \leq \overline{U}$ so:

Theorem (B. Wagner, 2024+)

The function u is in $L^1(D, \delta_D(x)dx)$ and is a distributional and a pointwise solution to the semilinear problem

$$\begin{array}{rcl} -\phi(-\Delta|_D)u &=& f(u) & \text{ in } D, \\ \frac{u}{P_D^{\phi}\sigma} &=& \infty & \text{ on } \partial D. \end{array}$$

- I. Biočić and V. Wagner, Large solutions for subordinate spectral Laplacian, *soon on Arxive* 2024+
- I. Chowdhury, Z. Vondraček and V. Wagner, Large solutions to semilinear equations for nonlocal operators in smooth domains, *soon* on Arxive 2024+
- I. Biočić, Semilinear equations for subordinate spectral Laplacian, *Comm. Pur. Appl. Anal.* 2023.
- N. Abatangelo and L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian, *Ann. I. H. Poincare-An.* 2016.
- P. Kim, R. Song and Z. Vondraček, Potential theory of subordinate killed Brownian motion. *Trans. Amer. Math. Soc.* 2019.