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1 Introduction
The earth’s atmosphere is of overwhelming complexity due to a rich interplay be-
tween a large number of phenomena interacting on very diverse length and time
scales. There are mathematical equation systems which, in principle, provide a
comprehensive description of this system. Yet, exact or accurate approximate solu-
tions to these equations covering the full range of complexities they allow for are not
available. As a consequence, one of the central themes of theoretical meteorology
is the development of simplified model equations that are amenable to analysis and
computational approximate solution, while still faithfully representing an important
subset of the observed phenomena.

1.1 Governing equations

Throughout this paper we consider the three-dimensional compressible flow equa-
tions for an ideal gas with constant specific heat capacities, supplemented with a
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number of source terms, as the starting point of our derivations.

vt + v · ∇v + Ω× v +
1
ρ
∇p = Sv − gk

pt + v · ∇p + γp∇ · v = Sp

θt + v · ∇θ = Sθ ,

(1)

Here v, p, θ are the fluid flow velocity, the (thermodynamic) pressure, and the
fluid’s potential temperature. γ is the isentropic exponent, assumed to be constant.
Ω, g are the vector of earth rotation and the acceleration of gravity, k is a radial
unit vector, pointing away from the earth’s center. The source terms Su, Sp, Sθ are
abbreviations for molecular or turbulent transport terms, for effective energy source
terms from radiation, latent heat release from condensation of water vapor, etc..

The potential temperature is a variable, closely related to thermodynamic
entropy, and defined by

θ =
p

γ−1
γ

ref

R

p
1
γ

ρ
, (2)

where R is the ideal gas constant. This variable is the answer to the following
question: Suppose one isolates an infinitesimally small parcel of air at any location
in the atmosphere, and lets the parcel’s pressure and density be p, ρ, respectively.
What would be the parcel’s temperature if it were to undergo an adiabatic and
quasi-static, i.e., isentropic, process that leads to a final pressure pref?

The equations in (1), (2) account for the vapor-water, water-ice, and vapor-ice
phase transitions neither through balance equations for the related species densities,
nor through the thermodynamic relations for γ and θ(p, ρ). While this is certainly an
over-simplification for realistic meteorological applications, it allows us to present
the key ideas of this work in a transparent fashion. The incorporation of moist
processes within the present mathematical framework is work in progress.

Similar comments hold for other effects collected in the effective source terms,
Su, Sp, Sθ, such as turbulent transport.

1.2 Structure of the rest of the paper

Section 2 will summarize three typical simplified model equation systems that have
been developed to describe selected phenomena associated with specific ranges of
length and time scales. Models of this type play a central role in meteorology and
climate research as they condense the available knowledge regarding the targeted
phenomena in a mathematically compact, and computationally tractable fashion.

The derivation of such simplified models generally relies on a combination
of judicious physical reasoning and subsequent, sometimes quite intricate, mathe-
matical calculations. The first component, physical reasoning, requires an intimate
knowledge of the scientific field, and it is often quite hard to follow for the math-
ematically trained, but meteorologically untrained. On the other hand, it would
be the mathematically trained, who would be in a position to judge, e.g., the well-
posedness of the derived reduced model, to show rigorously that solutions of the
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model equations are somehow “close” to solutions of the original complex equations,
etc.. Thus it is desirable to bridge between the physics-oriented meteorological view-
point and the mathematical one.

Section 3 addresses this issue by describing a unified mathematical approach
to meteorological modelling developed recently by the author, and anticipated in
[Klein, 2000]. The approach is based on a set of carefully chosen distinguished
limits for several small non-dimensional parameters, and on specializations of a
very general multiple-scales asymptotic ansatz.

Section 4 will summarize three instructive applications of the approach, rang-
ing from a re-derivation of the well-known semi-geostrophic theory, [Gill, 1982,
Pedlosky, 1987], via one of the recently derived multi-scale models for the tropics,
[Majda and Klein, 2003], to numerical methods for (1), (2), that are “well-balanced”
with respect to nearly hydrostatic situations. (A numerical method for a complex
equation system is called well-balanced w.r.t. some singular limit regime if its ac-
curacy and robustness do not deteriorate as the limit is approached, [Cargo and
Roux, 1994].)

Section 5 draws a few conclusions.

2 Phenomena with widely disparate scales
As mentioned in the introduction, atmospheric flows feature a multitude of different
length and time scales. While some of these scales are imposed on the air flow exter-
nally, e.g., the characteristic lengths of the bottom topography, others are intrinsic
to the atmospheric layer on the rotating earth. An intuitive description of these
intrinsic scales may be given by reference to the phase speeds of three physically
important phenomena, namely

uref ∼ 10 m/s Characteristic flow velocity,

ci ∼ 60 m/s Typical propagation speed of internal gravity waves,

ce ∼ 300 m/s Typical propagation speed of external gravity waves.

The mentioned characteristic length scales are
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hsc ∼ 10 km Pressure scale height:
Vertical distance with significant pressure drop.

L1 ∼ 70 km For flows with horizontal characteristic length L1 the
inertial and Coriolis forces are comparable.

Li ∼ 500 km Internal Rossby deformation radius:
The distance a typical internal gravity wave with
speed ci would have to travel to be affected by Coriolis
effects significantly.

Le ∼ 3 000 km Obukhov radius or external deformation radius:
Analogous to Li, but for the much faster barotropic
gravity waves with speed ce. (see “Lamb waves”,
[Gill, 1982])

Lp ∼ 20 000 km The planetary scale.

Some physical arguments for the existence of these scales will be given in section 3
below. The appearance of these separated scales may also be understood, from a
mathematical point of view, as being naturally induced by the existence of a single
small asymptotic parameter, ε � 1, in the sense of multiple scales asymptotics.
The section will then “translate” between these two points of view.

Together with the signal speeds uref , ci, ce the length scales just introduced
make up an entire grid of different flow regimes as shown in left graph in Figure 1a.
Notice, in this context, that

tref ∼
uref

hsc

≈ L1

ci
≈ Li

ce
. (3)

Consider, e.g., the left-most three boxes of the grid in the lowest row, which have
the time scale tref in common. The left-most box represents advection over distances
comparable to hsc, the middle box covers the regime of internal gravity waves with
the same characteristic frequency, while the right-most box represents the regime
of external gravity waves that evolve on this time scale. Similarly, the lowest three
boxes of the Li-column cover, at successively slower time scales, fast external gravity
waves, internal gravity waves, and advection over distances comparable to Li.

Within each of the regimes in the graph, different physical mechanisms domi-
nate, and an associated reduced model equation is conceivable which approximately
describes the flow evolution in that regime. Figure 1b shows the regimes to be dis-
cussed briefly in this section as examples.

2.1 Climate scale adjustments

Global climate modelling strategies

Even though they are by far not complete, the scale maps in Fig. 1 indicate that the
global climate incorporates a very wide range of length and time scales and associ-
ated physical processes. Modern climate research proceeds along various pathways
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Figure 1. Regimes of length and time scales for flows involving the bulk of
the troposphere in the mid-latitudes. The corresponding regimes for near-equatorial
and stratosphere flows involve slightly different scales (see, e.g., section 4.2). a)
The backbone of a more involved scale diagram that would include the characteristic
scales of turbulence, water phase transitions, radiation, boundary layer processes,
atmospheric chemistry, etc.. b) Localization of the regimes to be discussed in this
section as examples.

in trying to cope with the resulting complexity. One strategy, generally subsumed
under the headline of General Circulation Models (GCM), involves the development
and numerical solution of a set of model equations that is “as complete as possi-
ble”. These avoid model reductions based on pre-assumed dominant length and
time scales to the widest possible extent. In practice, one aims at model equations
that properly describe all scales larger than those one can afford to resolve on the
most powerful computers available. Today’s resolutions involve computational grid
sizes of about 100 km in the horizontal, 200m in the vertical direction, and time
steps of several minutes. For all processes taking place on smaller length and time
scales, and which can therefore not be described explicitly, one introduces “sub-grid
scale parameterizations”. These are very similar in spirit to turbulence closures in
fluid mechanics, but account for a much larger set of processes, such as small scale
(natural) convection due to radiative heating, latent heat release from the conden-
sation of water vapor, interactions of the atmosphere with surface processes near
the ground, etc..

Modern GCMs draw their justification and attractiveness from the fact that
they directly implement the state-of-the-art knowledge regarding a large number of
participating processes. They are “the best climate research can do today” in this
sense, and they may be considered as reference and benchmark for alternative mod-
elling approaches. However, the sheer complexity of the simulation data turns their
analysis and interpretation into an entire scientific endeavour all by itself, involving
sophisticated statistical and combined deterministic / statistical techniques. More-
over, long term, thousands-of-years transients involving interactions of atmosphere,
ocean, sea and land ice, terrestrial and oceanic biosphere, land surface processes,
etc., are as yet beyond current GCMs’ capabilities. Also, for a range of global
climate research questions the small scale, short time details provided by GCM
simulations are not only not of interest, but they also shield the view, to some ex-



6

o
C

L
a
ti
tu
d
e

2 3 4 5 6 7 8 9 10

Figure 2. Map of the simulated annual-mean surface air temperature
change in the year 2100 for a standard scenario of future CO2 emissions relative to
the year 1800. (Courtesy of Stefan Rahmstorf, Potsdam Institut für Klimafolgen-
forschung.)

tent, on what are the relevant physical interactions on the very largest scales of the
climate system.

More recent developments of “Earth system Models of Intermediate Complex-
ity” (EMIC) address these issues, [Saltzmann, 1978, Petoukhov et al., 2000, Stone
and Yao, 1990]. These models are designed to describe only these largest scales
and to consider everything below, say, the external Rossby deformation radius Le

as “small scale processes” to be parameterized, see, e.g., [Stone and Yao, 1990]. In
comparison with full-fledged GCMs, such EMICs have the advantage of very high
computational efficiency and, by representing only the “climate scales”, they pro-
vide the desired direct view of the large scale mean variables. Figure 2 shows, as an
example, the computed deviations of the large scale, long time temperature mean
values between the year 1800 and the year 2100 as obtained with the CLIMBER-2
EMIC by Rahmstorf and Ganopolski [1999]. The figure clearly reveals that the
simulations do not display any spacial variations comparable to the typical cyclonic
/ anti-cyclonic patterns seen on daily weather charts (see section 2.2 below). In
fact, such variability is parameterized within the CLIMBER-2 model by averaging
over an assumed Gaussian statistics for these modes.
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Structure of an intermediate complexity atmosphere model

Here we report briefly on the structure of POTSDAM-2 (POTsdam Statistical Dy-
namical Atmosphere Model), the atmosphere component of the CLIMBER-2 EMIC,
as described by Petoukhov et al. [2000].

There are only two two-dimensional unsteady evolution equations

∂QT

∂t
= ∇‖ · F T + ST (4)

∂Qq

∂t
= ∇‖ · F q + Sq (5)

for the depth-averaged thermal energy, Qt, and water content, Qq, which are defined
as

QT =

Ha∫
zs

ρT dz and Qq =

Ha∫
zs

ρq dz , (6)

respectively. Here T, q, ρ are temperature, water vapor mass fraction, and air den-
sity, and zs,Ha are the vertical levels of the bottom topography and of the top of
the atmosphere. ∇‖ denotes the horizontal gradient operator. The flux F T is given
by

F T =

Ha∫
zs

ρ
(
uθ + û′θ′ + Dθ

)
dz . (7)

This expression includes advection of potential temperature by the large scale wind
field, u, the effective transport of potential temperature by synoptic scale fluctua-
tions, u′, θ′, and the transport by turbulent motions on even smaller scales subsumed
in Dθ. (The humidity flux F q has a similar representation).

These equations determine the evolution of the surface fields

Ts(t, x), qs(t, x)

of temperature and humidity. Closed expressions for the various integrals are ob-
tained by assuming piecewise linear and exponential vertical structures for T, θ, q, ρ,
respectively, namely

T =

{
Ts(t, x) + Γ(z − zs) for zs ≤ z < Ht

Ts(t, x) + Γ(Ht − zs) for Ht ≤ z < Ha

(8)

θ = Ts(t, x)− Γa(z − zs) , (9)

q = qs(t,x) exp
(
−z − zs

He

)
, (10)

ρ = ρ∗ exp
(
− z

hsc

)
. (11)
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Here ρ∗, hsc,He are constants, and the coefficients Γ,Γa,Ht are related to Ts, qs via
explicit algebraic functions.

The large scale horizontal wind field is composed of geostrophic and ageostrophic
components (see section 2.2), so that

u = ug + ua , (12)

where ug is determined by the current temperature field T and the sea level pressure
p0 via

fk × ug = − 1
ρ∗
∇p0 − g∇

z∫
0

T

T∗
dz′ (13)

with T∗ another constant, and f the vertical component of the earth rotation vector
Ω. The ageostrophic field ua is proportional to the gradient of the sea level pressure
p0. Finally, the sea level pressure is expressed in terms of the temperature distri-
bution T (t, x, z), using semi-empirical relations for the zonally averaged motions.
The reader is referred to [Petoukhov et al., 2000] for details.

While the relations just described for the large scale wind field can be derived
analytically within a rational scaling (asymptotic) analysis, the expressions given
by Petoukhov et al. [2000] for the turbulent and macro-turbulent fluxes Dθ, û′θ′,
and for the source terms ST , Sq in (4) and (5) are semi-empirical closures similar to
turbulence closures in fluid mechanics.

For future reference, we summarize the mathematical structure of the large
scale, long time evolution equations for the atmosphere: The two-dimensional fields,
Ts(t, x), qs(t,x), which represent the surface values of temperature and humidity,
are advanced in time by solving depth-averaged balance equations for internal en-
ergy and water content. These balance equations involve horizontal fluxes due
to large scale advection, and macro- and smaller scale turbulence, as well as other
source terms related to radiation, evapo-transpiration, precipitation, etc.. The large
scale wind field is related algebraically to gradients of the primary fields Ts, qs as a
result of a scale or asymptotic analysis which pre-assumes the characteristic length
and time scales of interest. For the various source terms and turbulence effects,
semi-empirical parameterizations are introduced that ultimately lead to a closed
equation set for the unknown fields Ts(t,x), qs(t, x).

Notes on the closure schemes for fast processes

EMICs are often criticized for over-simplified representations of possibly crucial
small scale processes, and there are a number of research activities on the way that
aim at (i) an overall model design that still addresses only the large scale, long time
climate variables, but which (ii) incorporates more sophisticated closure schemes
for the non-resolved processes. For example Conaty et al. [2001] include unsteady
evolution equations for the ensemble characteristics of smaller scales instead of the
static relations mentioned above. Achatz and Branstator [1999] combine a fluid
dynamics model for the large scale motions with a closure scheme that directly
incorporates the statistics generated by GCM simulations. Their model captures
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the energetically most important large scale patterns with considerable accuracy and
it provides insight into atmospheric variability on time scales that are normally not
accessible with statistical dynamical models as described above. This fosters hope
that more sophisticated, explicitly time dependent closure schemes might make
a much wider range of applications amenable to intermediate complexity models
without having to accept the full complexity of a general circulation model.

In this context, a novel approach to obtaining effective stochastic equations
for the large scale, long time variables has recently been proposed by A.J. Majda
et al. [Majda et al., 2003]. It is assumed, to start with, that a decomposition of
the original complex dynamics into equations for the slow and for the fast modes,
respectively has been established. The approach then consists of two steps: First,
a carefully chosen stochastic closure is introduced in the equations for the fast
variables so as to make them tractable by the tool kit of stochastic differential
equations. No approximations are made at that stage in the equations for the
slow modes. Secondly, appropriate stochastic closures for the “slow equations” are
derived systematically by stochastic projection procedures. The resulting effective
closure schemes have rich mathematical structures that are hard to anticipate in an
approach that tries to directly guess the functional form of such terms without this
two-step procedure.

The next subsection considers in more detail the dynamics on the next smaller
“synoptic scales”, which appears in low-resolution models and EMICs only through
such effective closure schemes.

2.2 Synoptic Scales

Scalings considerations

Figure 3 shows one of the typical results of the “synoptic analysis” of global atmo-
spheric flow simulations. The contours indicate the “geopotential height” H = Φ/gc

of a surface of constant pressure p = 500 hPa. Here Φ is the effective geopotential,
which is the sum of the earth’s gravitational potential and the potential associated
with the centripetal forces due to the earth’s rotation, and gc is a constant reference
value of the gravitational acceleration which varies by about 0.3% over the globe,
[Gill, 1982]. Countour labels show H measured in units of 10 m. The geopotential
height approximates the height of a pressure surface above sea level up to deviations
of the order of one percent.

The Figure exhibits a collection of “synoptic eddies” of high and low pres-
sure around which the main air flow circulates as indicated. The characteristic
diameter of these structures is about 500 . . . 1 000 km, i.e., comparable to the inter-
nal Rossby deformation radius, Li, and their characteristic evolution time scale is
about 1 . . . 5 days. Fig. 1b locates the evolution of these structures in the regime
diagram. Assuming a flow field with such characteristic length and time scales,
the important “quasi-geostrophic model” is derived, e.g., in [Pedlosky, 1987], as the
leading order approximation in terms of the Rossby number based on the internal
deformation radius Li,

RoLi =
uref

ΩLi
� 1 . (14)
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Figure 3. A typical countour plot of the geopotential height of the 500 hPa
surface over a large part of the northern hemisphere. (Courtesy of Peter Névir,
Institut für Meteorologie, Freie Universität Berlin)

An asymptotic expansion for the solution vector U for this regime would read

U =
∑

i

Roi
Li

U(i)(T,X, Z) (15)

where
T =

turef

Li
, X = (X, Y ) =

x

Li
Z =

z

hsc

(16)

are non-dimensional time, and horizontal and vertical space coordinates. A detailed
derivation is given, e.g., in [Pedlosky, 1987].

The quasi-geostrophic model

The resulting quasi-geostrophic equations are formulated in the β-plane approxi-
mation, i.e., they describe the flow of a shallow layer of fluid over a rotating plane
with spacially varying Coriolis coefficient

f = f0 + βY . (17)

Here f = Ω · k is the projection of the earth rotation vector onto the vertical unit
vector k in a tangent plane to the earth’s surface, f0 is its value at the location of
contact of the plane with the earth’s geometry, and β is its variation with distance
in the northern direction measured by the cartesian coordinate Y .
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The vertical momentum balance reveals that the pressure field is hydrostatic to
several orders in terms of the expansion parameter. In particular, there are time in-
dependent leading order hydrostatic pressure and density distributions p0(z), ρ0(z),
and a background stratification of potential temperature characterized by second
order deviations, Θ2(z), from a constant reference value. The first perturbation
pressure with non-trivial horizontal variation, p′ = ρ0(z)π, still satisfies a hydro-
static relation

∂π

∂z
= θ′ , (18)

where θ′ denotes the third order perturbation of potential temperature.
Gradients of the perturbation pressure balance the Coriolis forces at leading

order in the horizontal direction, so that

f0 k × u = −∇Xπ . (19)

Here u is the horizontal flow velocity component. This equation is insufficient to
determine a flow field including its temporal evolution. As usual in singular pertur-
bation analyses, the missing evolution equation is obtained through a consistency
condition at the next order. The result is a transport equation for the “potential
vorticity”, q, (

∂

∂T
+ u · ∇X

)
q = 0 , (20)

where

q = ζ + βY +
f0

ρ0

∂

∂Z

(
ρ0θ

′

dΘ2/dZ

)
(21)

and

ζ =
1
f0
∇2π (22)

is the vorticity associated with the horizontal velocity field u. This is the appro-
priate specialization to quasi-steady flow of a thin fluid layer on a rotating plane of
Ertel’s general conservation law for potential vorticity, see [Schröder, 1997]. Now
(18)–(22) form a closed set of equations for ζ, π, θ, u.

The physical meaning of the transport equation (20) is readily understood
considering that it is equivalent to the transport equation for vertical vorticity

ζT + u · ∇Xζ + βv + f0∇X · u′ = 0 , (23)

where v is the horizontal flow velocity in the direction of the Y -coordinate, and
u′ is the first order horizontal flow velocity perturbation. The potential vorticity
conservation law (20) is obtained from (23) using the identity v ≡ (∂T + u · ∇X) Y ,
and by eliminating ∇X ·u′ using mass conservation, ρ0∇X ·u′+(ρ0w

′)Z = 0, and the
transport equation for potential temperature (entropy) (∂T +u ·∇X) θ+w′ dΘ2

dZ = 0.
Equation (23) shows that, as the vorticity ζ is advected horizontally, it is aug-

mented by variations of the vertical component of the earth rotation vector, and
affected by vortex stretching. These are, in fact, the essential effects determining
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the evolution of the “synoptic eddies” seen in Fig. 3. Notice that the present dis-
cussion, which closely follows Pedlosky’s classical textbook presentation, [Pedlosky,
1987], does not include source terms from radiative balance, latent heat conversion,
boundary layer effects, etc., so that it reveals only the fluid dynamical aspects of
these synoptic scale flows.

2.3 Small scale anelastic flows

Here we consider motions on scales comparable to or smaller than the pressure scale
height hsc ∼ 10 km, and on the associated advection time scale of tref = hsc/uref ∼
20 min. In this flow regime, one of the prominent issues is the removal of inessential
acoustic modes in a reduced model.

The full compressible flow equations from (1) feature various flow modes, in-
cluding “high frequency” acoustic waves. Here “high frequency” denotes acoustic
modes with characteristic frequencies higher than 1 min−1. A plausibility argu-
ment states that sizeable elastic perturbations cannot establish in the atmosphere,
because acoustic waves rapidly redistribute the associated energy and lead to an
equilibration void of any acoustic modes. This intuitive explanation has been quan-
tified through asymptotic analysis for vanishing Mach number in non-rotating flows
without gravity (see, e.g.,[Schneider, 1978, Majda and Sethian, 1985]) and backed
up by rigorous justifications, e.g., in [Ebin, 1982, Klainerman and Majda, 1982,
Schochet, 1994].

In the absence of energy source terms, such an analysis results in the classical
variable density, incompressible flow equations, with zero velocity divergence.

Three-dimensional motions

However, if one includes the effects of gravity and energy source terms from radiation
or latent heat conversion, and allows for vertical motions comparable in scale to the
pressure scale height, then two distinctly different flow regimes can be identified,
[Ogura and Phillips, 1962, Durran, 1989, Klein, 2000]. The first regime involves
nearly neutral stratification of the atmosphere, so that parcels of air can move
freely in the vertical direction without being constrained by buoyancy effects. In
this situation, discussed first by Ogura and Phillips, [Ogura and Phillips, 1962], the
flow is governed by the anelastic equations in the Boussinesq approximation, so that

ut + u · ∇u + wuz +
1
ρ0
∇p′ = Su

wt + u · ∇w + wwz +
1
ρ0

p′z = θ′ + Sw

θ′t + u · ∇θ′ + wθ′z = Sθ′

∇ · (ρ0u) + ∂z(ρ0w) = 0

(24)

where ρ0(z) is a time independent, horizontally homogeneous density stratification.
Given suitable functional expressions for the source terms Su, Sw, Sθ′ , these equa-
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tions govern the temporal evolution of the horizontal and vertical velocity com-
ponents u, w, and the potential temperature perturbation θ′. The perturbation
pressure p′ is determined, as in the classical case of incompressible flows, by a
Poisson-type equation obtained by analyzing the consequences of the divergence
constraint (24)4 for the two momentum equations (24)1,2. The complexity and
structure of these equations is comparable to that of the classical three-dimensional
incompressible flow equations. They are particularly useful in studies of the at-
mospheric boundary layer, where the assumption of nearly neutral stratification is
well justified. (See [Durran, 1989] for an interesting generalization of (24), and the
discussions in [Botta et al., 1999, Klein, 2000].)

Quasi two-dimensional weak temperature gradient flows

In their original derivation Ogura and Phillips [1962] explicitly state that the strati-
fication of potential temperature in the atmosphere must be nearly neutral to arrive
at the reduced equation system from (24). Zeytounian [1991] pursues an analogous
scaling analysis but relaxes that constraint. The result is a system of equations in
which the vertical velocity is entirely dominated by buoyancy. In the absence of
energy source terms he find that all parcels of air are forced to reside within their re-
spective vertical levels of neutral buoyancy, so that vertical motions are suppressed.
This holds at least if the shortest relevant time scale is that of advective motions.
Internal gravity waves on shorter time scales will induce vertical displacements, but
their description would require a multiple time scale analysis, see, e.g., [Embid and
Majda, 1998, Babin et al., 2002] and section 3 below.

Klein [2000] compares both the near-neutral and the buoyancy-controlled
regimes and includes energy source terms. For the buoyancy-controlled regime,
the following system of equations obtains,

ut + u · ∇u + wuz +
1
ρ0
∇p′ = Su

w =
Sθ

dΘ2/dz

∇ · (ρ0u) + ∂z(ρ0w) = 0 .

(25)

Here u, w, p′ are the horizontal and vertical flow velocities and the perturbation pres-
sure as before, while Θ2(z) is the background stratification of potential temperature
responsible for the deviations from the Ogura and Phillips’ regime. These equations
are, as far as fluid dynamics is concerned, essentially two-dimensional, whereas the
vertical velocity appears as an algebraically determined auxiliary quantity. Similar
equation sets have been derived in other contexts including, in particular, near-
equatorial motions at much larger horizontal scales, in [Charney, 1963, Held and
Hoskins, 1985, Browning et al., 2000].

While (25) has been derived by [Klein, 2000] via low Mach number asymp-
totics, there is an alternative derivation that is based on the a priori assumption
that horizontal gradients of temperature often very weak in practical applications.
Referring to this line of thought, models of this class have been labelled “Weak
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Temperature Gradient” approximations in recent studies of near-equatorial flows,
[Neelin, 2000, A. Sobel et al., 2001, Bretherton and Sobel, 2001, Majda and Klein,
2003].

The reader may wonder, how any reasonable bottom boundary condition,
such as w ≡ 0 at z = 0 could be maintained under (25), unless the energy source
term represented by Sθ would be unnaturally constrained. The asymptotic limit
considered here has obviously removed one degree of freedom in posing boundary
conditions that had been present in the original three-dimensional flow equations
from (1). This is a typical case of a singular limit in which the mathematical type of
the equation changes when the limit is approached. In the present case, the failure of
solutions of (25) to comply with the physically relevant bottom boundary conditions
is a hint that a comprehensive analysis will have to include a near-bottom boundary
layer, in which different length and/or time scalings have to be assumed. Asymptotic
matching of the boundary layer solution to the bulk flow WTG equations will likely
lead to the desired physically consistent asymptotic representation all the way down
to the bottom of the atmospheric layer.

In the presence of non-trivial orography or surface conditions the near-bottom
flow can induce highly non-trivial effects. In this case appropriate boundary layer
theories need to be developed, [Hunt et al., 1988, Newley et al., 1991], and their
coupling to the bulk of the troposphere in the sense of asymptotic matching needs
to be addressed.

2.4 Looking back

Looking back, we have seen in this section that the mathematical structure of
reduced models for atmospheric motions depends heavily on the considered length
and time scales, and on particular assumptions regarding specifics of the considered
flow regime.

In the next section we introduce a unified approach to the analysis of such di-
verse scaling regimes that lets us get away with a minimal set of a priori assumptions.
The approach provides a systematic basis for structuring further mathematical anal-
yses and discussions. Furthermore, it incorporates multiple scales asymptotic ideas
by design, thereby providing a natural framwork for studying interactions between
such different phenomena as seen in this section.

3 A Unified Mathematical Modelling Approach

3.1 Overview

The derivation of simplified model equations of theoretical meteorology generally
relies on a combination of judicious physical reasoning and subsequent, often intri-
cate, mathematical calculations. The first component, physical reasoning, requires
an intimate knowledge of the scientific field, and it is often hard to follow for the
mathematically trained, but meteorologically untrained. Readers belonging to this
group might benefit from the unified mathematical approach proposed in this pa-
per, which reveals some common underlying structures of meteorological scaling
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theories. Meteorologists may appreciate the potential of the present approach for
systematically addressing multiple scales problems, and for structuring mathemat-
ical discussions regarding model derivations and the construction of appropriate
numerical techniques.

The approach is based on a set of carefully chosen distinguished limits for
several small non-dimensional parameters, and on specializations of a very general
multiple-scales asymptotic ansatz. Here is a summary of the key ideas, an early
version of which appeared in [Klein, 2000]:

1. Scale-independent reference quantities
First we collect a set of physical quantities that have well-defined characteristic
values in the majority of atmosphere flow applications independently of the
characteristic length and time scales of any particular phenomena.

2. Universal non-dimensional parameters
Next we combine these characteristic values to form non-dimensional param-
eters, say π1, π2, π3. These parameters will have more or less universally
accepted typical values.

3. Distinguished limits
We then group these parameters in a carefully chosen distinguished limit

π1 = π∗1 ,

π2 = ε2 π∗2 ,

π3 = ε3 π∗3 ,

where π∗j = Os(1) as ε → 0 for j ∈ {1, 2, 3}.

Here we have used the notation f = Os(ε) as ε → 0 iff 0 < lim sup
ε→0

||f || < ∞.

Subsequently we employ ε � 1 as an asymptotic expansion parameter. This
step defines a single asymptotic regime for the scale-independent dimensionless
parameters π1, π2, π3 which most atmospheric flows belong to.

4. Dimensionless governing equations
Using only the scale-independent reference quantities from the first step, we
non-dimensionalize the governing equations. Because these reference quanti-
ties are related via the distinguished limits from the previous step, the result-
ing system of dimensionless equations includes the constants π∗i and the small
parameter ε as the only dimensionless characteristic numbers.

5. Multiple-scales asymptotic expansions
By definition, reduced model equations of theoretical meteorology obtained
through scale analysis describe phenomena that are characterized by some
typical length and time scales and fluctuation amplitudes. Here we account
for such scalings through a general multiple scales asymptotic ansatz in terms
of ε. The solution U(t,x, z; ε) of the multi-dimensional compressible flow
equations is expressed as

U(t,x, z; ε) =
∑
i∈IN

φ(i)(ε)U(i)(
t

ε
, t, εt, ε2t, . . . ,

x

ε
,x, εx, ε2x, . . . ,

z

ε
, z) , (26)
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where the φ(i) form an asymptotic sequence, such as φ(i)(ε) = εi, and (t, x, z)
are time, horizontal space, and vertical coordinates, respectively. More com-
plex asymptotic sequences and non-powerlaw scalings of the coordinates are
to be adopted where necessary. See, e.g., [Hunt et al., 1988, Newley et al.,
1991] for examples necessitating non-powerlaw expansions.

Specializations of this formulation, obtained by reducing the set of coordinates to
merely one time, one horizontal, and one vertical coordinate, have allowed us to
recover systematically a large collection of well-known reduced models by applying
techniques of formal single-scale asymptotic analysis. Table 1 displays a list of ex-
amples (in which t, x, z have been non-dimensionalized with tref = `ref/uref , `ref ∼
10 km, uref ∼ 10 m/s; see Tables 2, 3 and equations (29)–(31)). Notice that through-
out this list the parameter ε has exactly the same meaning as established under
item 3 above. Thus, even though we address a multitude of different regimes in
terms of length and time scales, the fundamental distinguished limit for the dimen-
sionless scale-independent parameters π1, π2, π3 remains the same.

Table 1. Coordinate scalings and associated classical models.

Coordinates Resulting model describes ...

U(i)(
t

ε
,x,

z

ε
) Linear small scale internal gravity waves

U(i)(t, x, z) Anelastic & pseudo-incompressible flows

U(i)(εt, ε2x, z) Gravity waves influenced by Coriolis effects

U(i)(ε2t, ε2x, z) Mid-latitude quasi-geostrophic “QG” flow

U(i)(ε2t, ε2x, z) Equatorial weak temperature gradient flow

U(i)(ε2t,
1
ε

ξ(ε2x), z) Semi-geostrophic flow

U(i)(ε
3
2 t, ε

5
2 x, ε

5
2 y, z) Tropical Kelvin, Yanai, and Rossby Waves

The general multiple scales ansatz from (26) enables us to further study interactions
between phenomena acting on separate scales. For example, according to Table 1 we
could consider an expansion based on the coordinate set (εt, ε2t, ε2x, z) to analyze
the interaction of long-wavelength gravity waves that are influenced by Coriolis
effects with balanced geostrophic motions. (See section 4.2 for an example involving
multiple scales in the tropics.)
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3.2 Asymptotic characterization of atmosphere flows

Scale-independent reference quantities

There are a few physical quantities that have quite robustly agreed-upon typical
values under a wide range of atmospheric flow conditions and independently of the
particular length and time scales that might otherwise characterize the situation.
Table 2 collects quantities related to the rotating earth, table 3 lists typical reference
values for the main fluid dynamical variables, i.e., the thermodynamic pressure and
air density near the earth’s surface, and a characteristic flow velocity. While there
are phenomena where flow velocities exceed the listed 10 m/s considerably, as in
high-altitude jet streams and severe storms, the majority of the flow phenomena of
interest in meteorology are well characterized by flow velocities of several meters
per second.

Table 2. Properties of the rotating earth

Earth’s radius a ∼ 6 · 106 m
rotation frequency Ω ∼ 10−4 s−1

acceleration of gravity g ∼ 10 m/s2

Table 3. Aerothermodynamic conditions

thermodynamic pressure pref ∼ 105 kg/ms2

air flow velocity uref ∼ 10 m/s
air density ρref ∼ 1 kg/m3

Universal non-dimensional parameters

With mass, length, and time these six quantities involve three fundamental physical
dimensions, so that Buckingham’s theorem, [Buckingham, 1915], allows us to form
three independent dimensionless parameters. Let

cref =
√

pref

ρref

∼ 300 m/s ,

denote the speed of long wavelength (barotropic) gravity waves in the atmosphere,
which is proportional to the speed of sound sound at reference conditions. Then the
following dimensionless combinations turn out to be convenient for the subsequent
developments:
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π1 =
cref

Ω a
∼ 0.5 ∼ 1 ,

π2 =
uref

cref

∼ 3 · 10−2 � 1 ,

π2 =
Ω cref

g
∼ 3 · 10−3 � 1 .

(27)

(We discuss the relation of these parameters to more familiar ones, such as the
Rossby, Mach, and Froude numbers, in section 3.3 below.)

These order-of-magnitude estimates are appropriate for a majority of atmo-
spheric flow phenomena, no matter what are their characteristic length and time
scales. In constructing a generalized formal approach to atmosphere modelling we
are therefore interested in regimes that are compatible with these scalings.

Distinguished limits

When faced with multiple asymptotically small parameters, an important issue
is the precise path along which the parameters are to approach their respective
limiting values. Consider, e.g., Fig. 4 which displays the space spanned by two
parameters ε and δ supposed to characterize some physical system. In an actual
application these parameters are “small” in analogy with uref/cref and Ωcref/g in
(27). Thus we may wish to analyze the system under a limit process that sends
ε → 0 and δ → 0. If the system is nonlinear the result of the analysis will depend
on the path in the ε-δ–plane. Possible paths are the sequential limits I or II (see
the figure) or any “distinguished limit” such as III, where δ = δ̂(ε) = o(1) as ε → 0,
and δ̂(·) is an appropriate scaling function. Because of the path-dependence of
the resulting asymptotic limit equations, the choice of an appropriate distinguished
limit is crucial.

Notice also that distinguished asymptotic limits exist under much weaker con-
ditions than multiple parameter expansions that consider each of the small param-
eters as independent. A multiple parameter expansion in effect seeks to determine
the first and higher Frechét derivatives of solutions of the considered equations
with respect to the set of parameters, whereas a distinguished limit corresponds to
a particular version of a directional or Gateaux derivative. For functions of multi-
ple variables it is known that only if all Gateaux derivatives are continous does the
Frechét derivative exist! In this sense, the concept of a distinguished asymptotic
limit is more general than that of a multiple parameter asymptotic expansion.

One of the somewhat surprising conclusions of the present work is that a
large collection of simplified models of theoretical meteorology obtains with one
and the same distinguished limit amongst the non-dimensional parameters from
(27), namely

π1 =
cref

Ωa
= π∗1 , π2 =

uref

cref

= ε2 , π3 =
Ωcref

g
= ε3 π∗3 , as ε → 0 . (28)

Here π∗1 , π∗3 are independent of ε, which we now adopt as the expansion parameter
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ε

δ

I

II

III

Figure 4. Limit processes in an asymptotic system with two small parameters

in subsequent formal asymptotic analyses. (By the way, the specific values shown
in (27) suggest a range of values ε−1 ∼ 2π . . . 7 in practice.)

Dimensionless governing equations

The aerothermodynamic characteristic values from Table 3 and the ideal gas con-
stant R from (2) now serve as reference quantities for non-dimensionalization. The
resulting dimensionless variables read

p̂ =
p

pref

, v̂ =
v

uref

, ρ̂ =
ρ

ρref

, θ̂ =
θ

Tref

, (29)

where Tref = pref/(Rρref). Using in addition the acceleration of gravity g, we define
reference length and time scales as

hsc =
pref

gρref

, tref =
hsc

uref

, (30)

and dimensionless space and time coordinates

t̂ =
t

tref
. x̂ =

x

hsc

, ẑ =
z

hsc

. (31)

Dropping the “hat”-indicator for dimensionless variable for convenience again, we
obtain the dimensionless governing equations

vt + v · ∇v + ε π∗3 Ω× v +
1
ε4

1
ρ
∇p = Sv −

1
ε4

k ,

pt + v · ∇p + γp∇ · v = Sp ,

θt + v · ∇θ = Sθ .

(32)

Notice that these equations are still equivalent to the original dimensional equations
from (1), since we have merely chosen a particular set of units of measurement.
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Multiple scales and related asymptotic expansions

Atmospheric flow phenomena are characterized by a multitude of different length
and time scales and by varying typical amplitudes of the variables U = (p, θ,v, ρ).
We capture this variability through the general multiple scales asymptotic ansatz

U(t, x, z; ε) =
∑
i∈IN

φ(i)(ε)U(i)(
t

ε
, t, εt, ε2t, . . . ,

x

ε
,x, εx, ε2x, . . . ,

z

ε
, z) . (33)

Here the φ(i) are asymptotic scaling functions satisfying

φ(i+1)(ε) = o(φ(i)(ε)) as ε → 0 . (34)

In this paper we will consider cases where φ(i)(ε) = εi and/or φ(i)(ε) = εi+ 1
2 . More

general asymptotic sequences as well as more general coordinate scalings may also
arise, [Hunt et al., 1988, Newley et al., 1991].

Specializations of the tuple of arguments in (33) as given in Table 1 involv-
ing one coordinate each for time, and for the horizontal and vertical directions,
respectively, induce standard single-scale asymptotic expansions. They allow us to
re-derive a considerable collection of well-known reduced models of theoretical me-
teorology, and this may be considered as a “validation” of the present approach. If
we retain more than one coordinate for either of the independent variables, as in
U(i)(t, εt,x, z), multiple scales asymptotic techniques are to be invoked. See, e.g.,
[Schneider, 1978, Kevorkian and Cole, 1981] for textbook material on multi-scale
asymptotics, and 4.2 below.

3.3 Physical considerations and scaling arguments

Here we provide first some physical interpretations for the scale-independent non-
dimensional parameters introduced in the last section. Next we juxtapose the formal
asymptotic ansatz proposed here with the physically motivated viewpoint of mete-
orological scaling analyses, and provide a “translation scheme” to mediate between
the respective terminologies.

The universal scale-independent parameters

The first parameter, π1 = cref/(Ωa) in (27) may be interpreted as a ratio of two
propagation speeds. The quantity cref is of the order of the speed of sound. At
the same time, it is proportional to the speed of long wavelength “barotropic”, i.e.,
vertically homogeneous, gravity waves. The product Ωa is the absolute velocity of
points on the earth’s surface induced by its rotation. It is also the sun’s speed over
ground near the equator. The estimate cref/Ωa < 1 implies that, near the equator,
the sun moves at supersonic speed relative to the earth’s surface. In other words:
the main energy input into the atmosphere moves faster than the fastest gravity
waves near the equator. (If not important, this occurs at least as an amusing
observation.)

The second parameter, π2 = uref/cref =: M , is the “Mach number”. Small
Mach numbers indicate that changes of the fluid density due to compression by



21

inertial forces are small. At the same time, since cref has also been identified as the
speed of barotropic gravity waves, π2 is also the associated “Froude number”.

The third parameter in (27) compares two characteristic length scales via the
following interpretations

π3 =
Ωcref

g
=

hsc

Le
. (35)

Here
hsc =

pref

gρref

∼ 10 km (36)

is the pressure scale height, i.e., the characteristic vertical elevation over which the
thermodynamic pressure of the atmosphere drops by a factor of order unity. In
turn,

Le =
cref

Ω
∼ 3 000 km (37)

is the Obukhov radius or external Rossby deformation radius. It is the horizontal dis-
tance that the fastest atmospheric gravity waves will travel before being influenced
by the effects of earth rotation.

With these explanations, we obtain a new interpretation of our small expansion
parameter ε. Using the distinguished limit from (28) we find

1
ε
∼ π2

π3
=

guref

Ωc2
ref

=
uref

Ωhsc

=: Rohsc , (38)

where Rohsc is called the “Rossby number” based on the pressure scale height.
Rossby numbers Ro` = uref/(Ω`) formed with a reference length ` generally assess
whether fluid motions at speed uref over distances of ` will or will not be affected
by Coriolis effects, with small Rossby numbers indicating strong influences.

Scale-dependent non-dimensional parameters

Meteorological scale analysis obtains reduced model equations for specific flow phe-
nomena by focusing on solutions of the full governing equations that are charac-
terized by specific length and time scales. It is good common practice to quantify
these scalings through appropriate non-dimensional characteristic numbers. In this
section we demonstrate how various classical scaling relations of this type may be
expressed within the present asymptotics-based framework.

As an example we choose the family of Rossby numbers with length ` as a free
parameter, i.e.,

Ro` =
uref

Ω `
. (39)

In the discussions of section 2 we have seen that

hsc � L1 � Li � Le , (40)

and that each of these characteristic scales is associated with its own set of scale-
dependent phenomena. In order to preserve this structure of scales and related
physical effects in our asymptotic framework, we should preserve the ordering of
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scales from (40) as ε → 0. In fact, a quick check of equations (35) and (38) shows
that the distinguished limits from (28) guarantee

L1 ∼
1
ε

hsc , Le ∼
1
ε3

hsc . (41)

We can ensure in addition that L1 � Li � Le, as required in (40), if

Li ∼
1

εα+1
hsc as ε → 0 with 0 < α < 2 . (42)

This, however, is not an immediate consequence of the basic order-of-magnitude
estimates from Tables 2, 3. Instead, considering the definition of the internal Rossby
radius of deformation,

Li ∼
N

Ω
hsc , (43)

equation (42) amounts to an asymptotic constraint for the Brunt-Väisälä-frequency
N and, as a consequence, for the stratification of potential temperature, viz.

N =

√
g

θ

∂θ

∂z
∼ 1

εα+1
Ω . (44)

This constraint should be observed in subsequent asymptotic expansions schemes.
Fortunately, it is also compatible with evidence: Typical values for the Brunt-
Väisälä-frequency in the troposphere are 0.01 s−1, and 0.1 s−1 in the stratosphere,
which leads to α ≈ 1 for the troposphere, and α ≈ 2 for the stratosphere, respec-
tively, when ε ∼ 1/7. However, up to now we have not found an intrinsic argument
associated, e.g., with the radiation balance or with the transport of humidity, that
would reveal the mechanisms responsible for establishing these orders of magnitude.

Given these qualifications, the Rossby numbers characterizing flow regimes
associated with length scales hsc, L1, Li, Le, will have the following asymptotic scal-
ings,

Rohsc = O(ε) ,

RoL1 = O(1) ,

RoLi = O(εα) ,

RoLe = O(ε2) .

(45)

In the same fashion, one may relate ε to other scale-dependent dimensionless pa-
rameters that characterize particular flow regimes.

Coordinates for specific spatio-temporal scales

Here we explain how one can set up an asymptotic expansion in the present frame-
work to study flows with a given characteristic length scale. As an example, we
consider flows with characteristic scale Li, the internal Rossby radius of deforma-
tion. The flow shall evolve on the characteristic advection time scale for this length,
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tref = Li/uref , and engulf the entire depth, hsc, of the troposphere. In a meteoro-
logical scale analysis the appropriate non-dimensionalization of time and of the
horizontal and vertical space coordinates would read

τ =
t′uref

Li
, ξ =

x′

Li
, z =

z′

hsc

, (46)

where primes denote the original dimensional coordinates. The small non-dimensional
parameter justifying the perturbation analysis would be the Rossby number based
on the internal Rossby deformation radius Li, i.e.,

RoLi =
uref

ΩLi
∼ 1

10
. . .

1
5
� 1 . (47)

We would then seek solutions of the form

U =
∑

i

Roi
Li

U(i)(τ, ξ, z) . (48)

How would we go about analyzing the same situation within the present
asymptotic framework? Suppose we chose the following non-dimensional coordi-
nates in (33)

t =
t′uref

hsc

, x =
x′

hsc

, z =
z′

hsc

. (49)

From (42) we conclude that the dimensionless time and horizontal coordinates used
in the scale analysis expansion (48) may be expressed as

τ =
t′uref

hsc

= εα+1t , ξ =
x′

Li
= εα+1x , (50)

while the vertical coordinate, z, remains unchanged. Furthermore, from (45) we
have

RoLi ∼ εα (51)

so that (48) may be “translated” to

U(t, x, z; ε) =
∑

i

(εα)i U(i)(εα+1t, εα+1x, z) . (52)

Analogous “translation schemes” follow immediately when the relevant scales in the
scale analysis approach can be expressed in terms of the length, time, and velocity
scales considered here, i.e., in terms of (hsc, L1, Li, Le, a), (N,Ω), and (uref , cref).

There are situations, however, for which this condition is not satisfied. Con-
sider, e.g., the flow over a hill of height h ∼ 500 m, and horizontal extent L ∼ 3 km.
These scales are now imposed by orographical features rather than being directly
related to the abovementioned basic scales. As a consequence, two new dimension-
less parameters need to be accounted for. Without loss of generality we may choose
the ratios

h

hsc

, and
h

L
(53)
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for this example. Both these parameters are small and may motivate perturbation
analyses.

To cover such a case within the present scheme, one will have to decide upon
the path to the origin in the space of parameters ε, h/hsc, L/hsc, as discussed in the
context of Fig.4. For example, the concrete values for h and L given above would
be compatible with

h

hsc

∼ 2 · 10−1 = O(ε) and
h

L
∼ 0.6 · 10−1 = O(ε) . (54)

With these distinguished limits, we can proceed via asymptotic expansions in ε
based on the following set of coordinates for the perturbation functions

U(i)(t,x,
z

ε
, z) . (55)

Here the coordinate z/ε will resolve flow structures comparable in height with the
hill itself. The coordinates x, z cover structures comparable with the horizontal ex-
tension of the hill as well as farfield effects in the vertical direction. A comprehensive
discussion of flow effects induced by orography, surface roughness, and surface heat
fluxes is work in progress with J.C.R. Hunt and A. Owinoh (see, e.g., [Hunt et al.,
1988, Newley et al., 1991]).

3.4 “Pro’s and Con’s” of the present approach

Pro’s

1. The proposed approach directly relates any derived reduced models to the
three-dimensional compressible flow equations in a transparent fashion.

2. There is a clear-cut mathematical route through each of the derivations. These
have a common formal justification from the identification of a small number
of universal, scale-independent small parameters and a related distinguished
limit.

3. The approach prepares the ground for further studies of multiple scales inter-
actions, see section 4.2.

4. Item 1 makes the present approach a natural starting point for developments
of numerical methods for the compressible flow equations applicable to the
various singular limit regimes of atmospheric flows, see section 4.3.

5. The identification of a nearly universal small parameter ε ∼ 1
7 . . . 1

6 provides
an independent measure, besides empirical tests, for the regimes of validity
of reduced model equations. Models derived for a characteristic length and
time scales, L, T , (via scale analysis or via the present approach) loose cred-
ibility when the actual scales of a flow field considered cover a range that is
comparable or larger than εL . . . L/ε, εT . . . T/ε. In such cases one must, in
general, account for the possibility of scale interactions using multple scales
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techniques. We notice that ε ∼ 1/7 . . . 1/6 is not extremely small in practice,
so that the mentioned scale ranges are limited! On the other hand, reduced
models may be applicable beyond the assessed ranges, but this requires addi-
tional empirical or theoretical justification.

Con’s

1. The clear-cut mathematical route provided here may mislead newcomers into
neglecting the physical and empirical bases for model reductions. It is rel-
atively easy to come up with formal asymptotic derivations for all sorts of
scales; the art is to identify, through careful physical considerations, those
regimes that are of practical importance.

2. If we have managed to derive a particular reduced model via the present route,
employing some particular distinguished limit and argument scalings. Then
by no means does this guarantee that the adopted limit process is the only
one leading to this model. In our example from Fig. 4 this could mean that
the paths II and III, and any in between, yield the same result. Quantification
of this degree of freedom requires additional analyses not discussed here.

4 Applications
Here we discuss three instructive applications in which the present approach proved
useful. We will re-derive the well-known semi-geostrophic theory using multiple
scales techniques in section 4.1, consider systematic multiple scales models from
Majda and Klein [2003] in sectionssec:Tropics, and discuss recent developments of
a “well-balanced” numerical method for nearly hydrostatic compressible flows in
section 4.3.

4.1 Semi-geostrophic theory

Weather fronts are examples for atmospheric flow structures that feature anisotropic
horizontal scalings. When viewed from above, one may think of a front as being
a narrow band of activity centered about some smooth, large scale curve. All flow
variables are expected to vary substantially over relatively short distances normal
to the front, while they vary on scales comparable to the characteristic length of
the curve’s geometry in the tangential direction.

An appropriate ansatz to capture this structural behavior in an asymptotic
analysis, borrowed from WKB theories, geometrical optics/acoustics, or the theory
of thin flames in combustion, could read

U(t,x, z; ε) =
∑

i

U(i)

(
ε2t,

Φ(ε2x)
ε

, ε2x, z

)
. (56)

Here Φ(·) is a scalar function, which by the scaling of its argument, ε2x, in
(56) will have a characteristic scale comparable to the internal Rossby deformation
radius Li (see the previous section). The scaled coordinate ξ = Φ/ε will then resolve
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rapid variations of the solution that occur between levelsets Φ = Φ0 + O(ε). The
front will thus be centered about the level set Φ(ε2x) ≡ Φ0 and have a characteristic
thickness of order ` = O(εLi). According to (45), this is the characteristic length
L1 for which the Rossby number would be of order unity.

With the abbreviations

τ = ε2t, ξ =
Φ(ε2x)

ε
, X = ε2x , (57)

the partial derivatives in the governing equations (1) become

∂t = ε2∂τ

∇ = ε σ n ∂ξ + ε2 ∇X + k ∂z .
(58)

where σ = |∇XΦ| and n = ∇XΦ/|∇XΦ|. (We have left the complications of spherical
geometry aside here, as they are not relevant to the main message of this section.)

A somewhat subtle issue in semi-geostrophic theory is the scaling of the veloc-
ity components. It is assumed that they scale in proportion with the characteristic
length for their associated spatial direction. Thus one allows only the flow velocity
tangential to the front to be of order uref , i.e., v · t = O(uref), where t(X) is the
tangential unit vector to a level set Φ = const.. For the normal and vertical compo-
nents this assumption implies v · n = O(εuref), and v · k = O(ε2uref). Accordingly,
the velocity field is represented as

v = v(0) t + ε(v(1) t + u(1) n) + ε2(v(2) t + u(2) n + w(2) k) + . . . (59)

It is now straight-forward to insert the (56)–(59) into the governing equations
from (1) and to collect the following leading order set of equations. Using the
replacements

(θ(4), p(4)/ρ(0)) → (θ, π)

(u(1), v(0), w(2)) → (u, v, w)

(S(6)
θ , S(2)

v ) → (Sθ, Sv)

(60)

we obtain the semi-geostrophic approximation (see [Pedlosky, 1987], section 8.4 for
the case of an incompressible fluid)

−f v + σ
∂π

∂ξ
= 0

Dv

Dτ
+ f u(1) +

∂π

∂η
= Sv

∂π

∂z
− θ = 0

Dθ

Dτ
= Sθ

∂u

∂ξ
+

∂v

∂η
+

1
ρ0

∂

∂z
(ρ0w) = 0 ,

(61)
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Here ρ0(z) is the background density stratification corresponding to a homentropic
atmosphere,

D

Dτ
=

∂

∂τ
+ v

∂

∂η
+ u σ

∂

∂ξ
+ w

∂

∂z
, (62)

and
∂

∂η
= t · ∇X . (63)

Lower order expansion functions, such as θ(2), θ(3) and p(2), p(3), which do not ex-
plicitly appear here, can be shown not to participate in the dynamics within a
narrow front if the assumed time scaling is to be observed.

The semi-geostrophic equations are used in a range of contexts, including the-
ories for the formation and structure of strong weather fronts. The key difference
between these and the quasi-geostrophic equations discussed in section 2 is that only
one of the horizontal velocity components, v, is in geostrophic balance. The velocity
component normal to the front is, in contrast, the result of a balance between the
Coriolis force, the pressure gradient, and the fluid particle acceleration along the
front. The semi-geostrophic equations have, however, several attractive mathemat-
ical features, which are reviewed and extensively discussed, e.g., in [Hoskins, 1975,
Cullen et al., 1991, Roulstone and Sewell, 1997, McIntyre and Roulstone, 2002].
One of these is the surprising fact that, by an ingenious nonlinear change of vari-
ables developed by Eliassen [1962], Hoskins and Bretherton [1972], and omission of
one term they can be transformed into the quasi-gestrophic equations discussed in
section 2.2.

Possible extensions Having re-derived another classical result within the present
modelling framework, one may ask where to go next in the context of semi-geostrophic
flows. Here are two possible lines of thought:

• We observe that analyses involving anisotropic scalings in the vicinity of a
narrow front also occur, e.g., in the context of thin flame fronts in combustion.
There, one is interested in (i) approximate equations governing the internal
flame structure, and (ii) a flame propagation law that describes the flame’s
motion in space as time evolves. A slight modification of the asymptotic ansatz
in (56) would allow us to transfer these ideas into the present context. One
would introduce an explicitly time dependent level set function Φ(ε2t, ε2x)
to define the front-resolving coordinate, and aim at extracting an evolution
equation for this function by asymptotic matching with the surrounding flow.

• Another interesting option is to consider a faster time scale by allowing for
an additional time coordinate εt in the asymptotic ansatz. This will lead to
a multiple time variable expansion similar to [Embid and Majda, 1996, 1998,
Majda and Embid, 1998, Babin et al., 2002], where the authors considered the
averaged effects of fast gravity waves passing over quasi-gestrophical mean
flows. It has been argued that strong weather fronts in fact undergo fast
oscillations that affect their overall behavior non-trivially, and this problem
could be investigated with the proposed modification of the analysis.



28

4.2 Synoptic-planetary interactions in the tropics

Here we summarize recent joint work with A.J. Majda addressing scale interactions
in the tropics. A hierarchy of reduced model equations describing a range of possible
flow regimes is derived by Majda and Klein [2003] using systematic multiple scales
expansions. One particularly interesting regime involves interactions between the
equatorial synoptic and the planetary scales. Here we review the flow regime and
the key results of the analysis for this regime. For details the reader may consult
the original reference.

Expansion scheme and scaling considerations

The multiple scales expansion scheme for this regime reads

Φ(t,x, z; ε) = εα(Φ)
∑

i

εi Φ(i)(ε5/2t, ε5/2x, ε7/2x, z) , (64)

where α = 0 for Φ ∈ {p, θ, ρ, u}, and α = 1/2 for Φ = w,Sθ, Sv. Here u, w are
the horizontal and vertical flow velocity components, respectively, and the coordi-
nates x = (x, y) denote the zonal (along the equator) and meridional (north-south)
horizontal coordinates. As we will see shortly, this scheme merges the single scale
expansion for equatorial geostrophic motions,

Φ(t,x, z; ε) = εα(Φ)
∑

i

εi Φ(i)(ε5/2t, ε5/2x, z) , (65)

with a scheme that resolves planetary scale equatorial waves

Φ(t, x, z; ε) = εα(Φ)
∑

i

εi Φ(i)(ε5/2t, ε7/2x, ε5/2y, z) . (66)

The characteristic horizontal length scale accessed by the first scheme in (65) is
the internal Rossby deformation radius for near-equatorial flows. To verify this, we
reconsider the relation Li ∼ Nhsc/Ω from (43). Near the equator, the earth rotation
frequency Ω must be replaced with characteristic value of the vertical component
f = k · Ω = Ω sin(φ) of the earth rotation vector, where φ is the longitude. In
terms of the arclength in the meridional direction, y, we have φ = y/a, where a is
the earth’s radius. Anticipating that Li � a, which remains to be verified, we have
sin(φ) ∼ Li/a, and f ∼ βLi, where β = Ω/a. As a consequence,

Li ∼
N

βLi
hsc , or

Li

hsc

∼
√

N

Ω
a

hsc

∼ ε−5/2 . (67)

The last estimate follows from equations (44) with α = 1, and (41), which stated
that N/Ω ∼ ε−2 and a/hsc ∼ ε−3. We verify that Li � a, even though the difference
is merely of order ε1/2. Equation (67) shows that the scaling anticipated in (64)
and (65) in fact accesses the internal Rossby deformation radius Li.
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The second expansion scheme in (66) accesses even larger (planetary) scales
via the coordinate

XP = ε7/2x =
x′

Lp
with Lp = ε−7/2hsc . (68)

Notice that this expansion assumes anisotropic scalings along and normal to the
equator. This is compatible with theories of equatorial wave motions which reveal
confinement of near-tropical dynamics between about−30◦ and 30◦ degrees latitude,
see, e.g., [Gill, 1982, Majda, 2003].

The non-dimensional time coordinate in (64)–(66) may be re-written in two
different ways:

ε5/2t = ε5/2 t′

hsc/uref

=
t′

Li/uref

=
t′

Lp/ciref

, (69)

where t′ again denotes the dimensional time variable, and ciref ∼ Nhsc is the charac-
teristic speed of internal gravity waves with vertical scale comparable to hsc. This
dual representation shows that, on the one hand, the chosen time coordinate re-
solves advection with the flow velocity uref over synoptic distances comparable to
Li. On the other hand, it also resolves internal gravity waves travelling at speeds
ciref over planetary distances of the order Lp. As a consequence, the multiple scales
expansion from (64) is suited to describe direct interactions of these very different
phenomena on one and the same time scale.

Intra-Seasonal Planetary Equatorial Synoptic Dynamics (IPESD)

To simplify the notation, we will use the following replacements in the rest of this
section:

(θ(2), θ(3), p(3)/ρ(0), p(4)/ρ(0)) → (Θ2, θ, π, π′)

(u(0),u(1), w(2), w(3)) → (u,u′, w, w′)

(S(4)
θ , S

(5)
θ ,S(1)

u ,S(2)
u ) → (Sθ, S

′
θ,Su,S′

u)

(ε5/2t, ε5/2x, ε7/2x) → (TS,XS, XP) ,

(70)

where XS = (XS, YS).

Synoptic motions With the abbreviations from (70), the leading order set of equa-
tions describing motions on the smaller of the considered scales (which is still as
large as 2000 km) reads

∂zπ = θ

w
dΘ2

dz
= Sθ

−βy v + ∂xπ = Su

βy u + ∂yπ = Sv

∂x(ρ0u) + ∂y(ρ0v) + ∂z(ρ0w) = 0 .

(71)
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These equations describe, in this sequence, hydrostatic balance in the vertical di-
rection, the generation of vertical motions by heat sources forcing particles to move
towards their individual levels of neutral buoyancy, horizontal geostrophic balance
in the zonal (x) and meridional (y) directions, and mass conservation.

The equations in (71) may be considered as the three-dimensional version
of the Matsuno-Webster-Gill type of models, [Matsuno, 1966, Webster, 1972, Gill,
1980, 1982], who derived models for steady forced synoptic scale motions near the
equator in the context of the shallow water approximation (see also [Neelin, 1989,
Majda and Klein, 2003]). Gill [1980, 1982] demonstrates that these equations re-
produce typical quasi-steady large scale near-equatorial flow patterns when some
physically reasonable closures for the source terms are assumed. His examples in-
clude qualitative models for the important “Hadley” and “Walker” circulations.

For given source terms Sθ, Su, Sv the system in (71) is linear in u, v, w, π, θ.
General solutions, in this case, are superpositions of particular and homogeneous
solutions. One particular solution up, vp, wp, πp, θp is determined by, [Majda and
Klein, 2003],

wp =
Sθ

dΘ2/dz
, vp =

1
β

(Sv,x − Su,y) +
y

ρ0

(
ρ0Sθ

dΘ2/dz

)
z

, (72)

∂xup = −∂yvp − 1
ρ0

∂z(ρ0w
p) with βy up = Sv , (73)

∂xπp = Su − βy vp

∂yπp = Sv + βy up

}
with πp(t, 0, z) ≡ 0 , (74)

θp = ∂zπ
p . (75)

Homogeneous solutions to (71) satisfy,

v = w ≡ 0, (θ, u, π) = (Θ, U, P )(t, y, z) , (76)

where Θ, U, P are arbitrary except for the constraints

∂yP = −βy U , ∂zP = Θ . (77)

A few remarks regarding this synoptic scale model and the above particular solution
are in order:

• With the present results we could extend Table 1 by adding the line

U(i)(ε5/2t, ε5/2x, ε5/2y, z) Forced quasi-steady equatorial synoptic motions

described by quasi-steady “Matsuno-Webster-Gill”-models, [Matsuno, 1966,
Webster, 1972, Gill, 1980, 1982].
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• The equations incorporate a mechanism for the generation of large scale hor-
izontal flow divergence from energy source terms. Heat addition through Sθ

induces non-zero vertical velocities, which in turn drive horizontal flow diver-
gences through the continuity of mass. In fact,

ux + vy = − 1
ρ0

(
ρ0Sθ

dΘ2/dz

)
z

.

This mechanism is common to the family of “WTG” models, [Charney, 1963,
Held and Hoskins, 1985, Browning et al., 2000, Bretherton and Sobel, 2001,
A. Sobel et al., 2001, Majda and Klein, 2003], which are currently being
used extensively in the context of tropical meteorology. These models are
often derived on the basis of the assumption of Weak horizontal Temperature
Gradients, and hence the acronym. Often, these models do not explicitly
resolve all three space dimensions, but rather utilize Galerkin-type projections
onto the dominant vertical flow modes to obtain reduced, effectively two-
dimensional models, [Gill, 1980, Wang and Li, 1993, Neelin, 2000, Majda and
Shefter, 2001]. This kind of further reduction could, of course, be applied
here as well. We do not discuss this aspect here, as this step has no direct
justification within the present asymptotic framework.

• There is a consistency condition on the spatial structure of the source terms.
It is obtained by averaging the first equation in (74) with respect to x, and
using the expression for vp from (72),(

1
y

Su

)
y

=
β

ρ0

(
ρ0Sθ

dΘ2/dz

)
z

. (78)

When the source terms Su, Sθ are considered to be given explicitly, then this
is merely a constraint to be be observed. If these source terms are, however,
replaced with “parameterizations” of various net effects induced by small scale
motions not resolved by the present model, the above constraint attains a
quite different meaning. Generally, the source terms will then be functions
of (π, θ, u, v, w), and the consistency condition will introduce a functional
relationship between these variables that is entirely determined by the chosen
parameterizations! This corroborates the often-voiced warning that adequate
parameterizations are at least as important for the success of a model as its
fluid dynamical consistency.

From here on up, vp, wp, πp, θp denote the particular solutions (72) to (75), and the
source terms Su, Sv, Sθ are assumed to satisfy (78).

Planetary waves As pointed out in conjunction with (76), the equation system for
the synoptic scales determines solutions only up to a zonal (along the equator) shear
flow. In the present context of a multiple scales expansion, this zonal shear flow
may still not depend on x, but it may well depend on the planetary scale coordinate
XP, and multiple scales asymptotic techniques should allow us to derive evolution
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equations for these large scale averaged mean motions. In fact, the following system
is derived by Majda and Klein [2003],

Dp
t U + ∂XP − βy v′ = S′u −Dp

t up

Dp
t Θ + w′ dΘ2

dz
= S′θ −Dp

t θp

βy U + ∂yP = 0

∂zP = Θ

∂XU + ∂yv′ +
1
ρ0

∂z(ρ0w′) = 0 ,

(79)

where
Dp

t = ∂t + up∂x + vp∂y + wp∂z

Dp
t = ∂t + vp∂y + wp∂z .

(80)

These equations are the three-dimensional analogue of the linear equatorial long
wave equations, [Heckley and Gill, 1984], supplemented with the net large scale
effects of the synoptic scale transport as represented by the terms, Dp

t up, Dp
t θp,

and with advection by the mean synoptic meridional velocity vp, see also [Majda
and Klein, 2003]. Again, a few general remarks are in order:

• If we restrict here to very weak source terms, so that Su = Sv = Sθ ≡ 0 and,
as a consequence, (up, vp, wp, θp, πp) ≡ 0, then the operators Dp

t , Dp
t reduce

to the partial time derivative ∂t, and the only source terms left in (79) are the
perturbation source terms S′u, S′θ.

The equations then describe the generation of linear equatorial long waves by
weak momentum and energy sources, as in an inhomogeneous Heckley–Gill
model, [Heckley and Gill, 1984]. We have thus successfully added another line
to Table 1,

U(i)(ε5/2t, ε7/2x, ε5/2y, z) . Linear equatorial long wave motions

• The equatorial synoptic scale may be estimated as Li ∼ 2000 km. Clearly,
with ε ∼ 1/7, a length scale of order Li/ε must be expected to participate in
the equatorial dynamics. Single scale expansions that do not acknowledge the
presence of these asymptotically separated scales, will not be able to describe
the scale interactions revealed in this section.

4.3 Balancing numerical methods for nearly hydrostatic motions

This section summarizes a quite different development that was motivated by our
asymptotic considerations for atmospheric flows. Botta et al. [under revision; Preprint:
PIK-Report No. 84, Potsdam Institute for Climate Impact Research (2002] address
a nagging numerical issue associated with the (asymptotically) dominant balance
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Figure 5. Archimedes’ principle for the gravity source term.

between pressure forces and the gravitational acceleration in most realistic atmo-
sphere flow regimes.

Consider the vertical component of the momentum balance in the dimension-
less governing equations from (32), i.e.,

wt + u · ∇w + wwz + ε π∗3 k · (Ω× v) +
1
ε4

(
1
ρ

∂p

∂z
+ 1

)
= Sw . (81)

Suppose further that we had adopted a numerical discretization of all terms that
is second order accurate in terms of the (vertical) space discretization parameter
h = ∆z/hsc. Then the numerical truncation error induced by the two terms in (81)
multiplied by 1/ε4 would read

δnum. = O

(
h2

ε4

)
. (82)

Current production runs with numerical weather forecasting or climate simulation
codes use around 30 grid layers to resolve the vertical direction, so that h ∼ 1/30.
Our earlier estimates indicate that ε ∼ 1/7 . . . 1/6, so that

h2

ε4
= O(1) (83)

under realistic conditions for up-to-date computational simulations of atmospheric
flows. We conclude that the computed vertical accelerations will be highly inac-
curate, unless special measures are taken to ensure that the limiting situation of
hydrostatic balance is adequately captured by the numerical discretization.

Construction principle for a well-balanced scheme

Botta et al. [under revision; Preprint: PIK-Report No. 84, Potsdam Institute for
Climate Impact Research (2002] propose a quite generally applicable remedy for this
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problem, and specifically describe an implementation in the context of conservative
finite volume compressible flow solvers. The key ideas involved are as follows.

Archimedes’ principle for the gravity source term: Figure 5 displays a general
control volume that might serve as the ith grid cell ci for our finite volume method.
A straight-forward second order approximation of the gravity source term for such
a volume would read ∫

ci

ρk d2x = |ci|ρik + O(δ2) (84)

where ρi is the computed cell-averaged density and |ci| is the cell’s volume, and
δ = diam(ci) is its characteristic diameter. In the context of conservative finite
volume methods the integral of the pressure gradient over the volume is discretized
as ∫

ci

∇p d2x =
∮

∂ci

p n dσ =
∑

j

Ai,jpi,jni,j + O(δ2) (85)

where Ai,j , pi,j ,ni,j are the length (area) of the jth section of the ith control vol-
ume’s boundary, and approximations to the pressure and outward unit normal vec-
tor on that cell interface section. As indicated, these approximations are second
order accurate in terms of δ. But this alone is insufficient to properly capture the
hydrostatic limit, because the magnitude of the truncation errors is independent of
whether the flow state is or is not close to hydrostatic.

To overcome this difficulty we observe that the vector −ρk may be interpreted
as the gradient of a virtual hydrostatic pressure distribution, i.e.,

ρk = −∇phy . (86)

The gravity source term may then be rewritten as∫
ci

ρk d2x = −
∮

∂ci

phyn dσ = −
∑

j

Ai,jp
hy
i,jni,j + O(δ2) . (87)

As a consequence, the sum of the gravity source term and the pressure gradient is
discretized as∫

ci

(∇p + ρk) d2x =
∑

j

Ai,j(pi,j − phy
i,j)ni,j + O(δ2‖p− ph

i ‖) , (88)

where the phy
i,j = phy

i (zj) are values of a locally reconstructed virtual hydrostatic
pressure distribution evaluated at the grid cell interface centers. (For the cell-wise
construction of phy

i (z) see below.) This modification will not change the approxi-
mation order of the scheme, which is still of second order for suitable formulations
of the hydrostatic pressure distribution ph

i (z). Yet, we observe that the numerical
approximate expression for the sum of the two terms now vanishes identically when
the pi,j match the phy

i,j , i.e., when the pressure is hydrostatic in the sense of ph
i .
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Even if the approximate construction of ph
i is inexact, so that ‖p− ph

i ‖ 6→ 0 as the
hydrostatic limit is approached, the truncation error will be O(δ2‖p− ph

i ‖) instead
of O(δ2), and thus reduced as much as we manage to reproduce the local vertical
balance.

Local hydrostatic reconstructions: The local hydrostatic pressure distributions
phy

i (z) obey
dph

i

dz
= −ρ

(
ph

i , θh
i

)
g (89)

with initial data
ph

i (zi) = pi (90)

where pi is the pressure of the ithe cell evaluated using the available cell averages
of mass, momentum, and energy. The function θh

i (z) is a local approximate dis-
tribution of potential temperature as constructed from the cell-centered data via
standard first or second order reconstruction formulae. In practice we have ob-
tained very good results by using piecewise constant distributions θh

i (z) ≡ θi, while
piecewise linear reconstructions yield further improvement.

Piecewise hydrostatic first order scheme: Standard first order finite volume
schemes for hyperbolic conservation laws without source terms rely on an inter-
pretation of the grid cell averages ui of some conserved quantity u as providing
cell-by-cell piecewise constant reconstructions

urec.(x) = ui for x ∈ ci . (91)

Second order schemes are then designed by improving these reconstructions, and to
adopt piecewise linear or higher order polynomial distributions which are compatible
with the grid cell averages at the cell centers. This approach satisfies the minimal
requirement that spatially constant initial data, which constitute a stationary state
for compatible boundary conditions, are also stationary in the discrete sense.

In the presence of, e.g., the gravity source term, this latter requirement is no
longer satisfied, as stationary states feature non-trivial hydrostatic distributions of
pressure and density. This incompatibility is avoided by adopting piecewise hydro-
static distributions as discussed in the last paragraph as the first order reference
states. Higher order schemes are then constructed by piecewise polynomial recon-
structions of deviations from these local hydrostatic states, [Botta et al., under
revision; Preprint: PIK-Report No. 84, Potsdam Institute for Climate Impact Re-
search (2002],.

Discussion and results

Properties of the well-balanced scheme The improved scheme just discussed has
several desirable features.

• Straight-forward implementation:
The implementation of the balancing approach merely requires the re-formulation
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of the gravity source term and application of discretization stencils to devia-
tions from a hydrostatic state instead of deviations from piecewise constant
distributions.

• Flexibility w.r.t. the underlying base scheme:
The design idea carries over to finite difference methods and finite element
schemes. In fact, we have successfully implemented the approach in a test
version of the local model “LM” of the Deutscher Wetterdienst (DWD), which
uses finite difference discretizations.

• Improved accuracy on a given grid:
The scheme provides considerably improved accuracy on a given grid in com-
parison with the underlying non-balanced base scheme. Botta et al. [under
revision; Preprint: PIK-Report No. 84, Potsdam Institute for Climate Impact
Research (2002] demonstrate that for some test cases one obtains the same
accuracy with (i) the standard scheme using 80 vertical discretization layers
and (ii) the well-balanced scheme using just 32 vertical layers. As compute
time is a limiting factor in meteorological applications, this is of considerable
interest in practice.

• Robustness w.r.t. inessential details of a discretization:
Non-balanced schemes are much more sensitive w.r.t. details of the numerical
discretization scheme. For instance, we have found that the choice of a slope
limiting function, used to avoid unphysical overshoots in the piecewise linear
reconstructions of a second order scheme, will non-trivially affect the compu-
tational results. This is understood by comparing the reconstructions of the
state variables at the left and right edges of a grid cell in the one-dimensional
case for the standard and for the balanced scheme. With the standard ap-
proach, the value of some quantity u at, say, the right edge of the ith grid cell
would be approximated as

u(xi+1/2) ≈ ui +
∆z

2

(
∂u

∂z

)
i

, (92)

where (
∂u

∂z

)
i

= Lim
(

ui+1 − ui

∆z
,
ui − ui−1

∆z

)
. (93)

Here Lim(·, ·) is some nonlinear limiting function that guarantees second or-
der accuracy in the end, but avoids the generation of new extrema in the
reconstructed distributions. Suppose now that u is near-hydrostatic, so that
u = uhy+δu′, where δ � 1. Then the standard slope limiting procedure would
essentially yield the limited slope of the hydrostatic distribution. As δ → 0
the result would depend on both the hydrostatic distribution and the choice
of the limiting function. One will generally not obtain the exact hydrostatic
states at the grid cell interfaces and, as a consequence, a hydrostatic state will
generally not be a static state of the numerical method.
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Consider now the reconstruction of the balanced scheme. Here we have

u(xi+1/2) ≈ ui + (uhy(xi+1/2)− ui) +
∆z

2

(
∂δu′

∂z

)
i

, (94)

where the slope limiting procedure is now applied only to deviations from the
local hydrostatic distributions, i.e.,(

∂δu′

∂z

)
i

= Lim
(

δ
u′i+1 − u′i

∆z
, δ

u′i − u′i−1

∆z

)
(95)

As δ → 0 this version will produce the exact hydrostatic state at xi+1/2. To-
gether with the Archmedes’-principle for the evaluation of the gravity source
term we have a scheme that maintains any hydrostatic state exactly that is
compatible with our local hydrostatic reconstruction based on piecewise con-
stant or piecewise linear potential temperature distributions. For hydrostatic
states not belonging to this class we still obtain considerable improvements
as explained in the context of (88).

Sample results Unless the problem of unbalanced truncation errors explained
above is addressed, numerical methods for flows under the influence of gravity will
generate spurious motions under nearly hydrostatic conditions. This often becomes
particularly prominent in the vicinity of steep orography as seen in Fig. 6.

There are classes of vertical distributions of potential temperature (entropy)
for which the well-balanced scheme described above is able to reproduce the steady
state up to machine accuracy by construction. These involve piecewise constant
and piecewise linear distributions, in particular. For more general distributions, the
truncation error is still reduced considerably as explained in the context of equation
(88) above. An important example is an “inversion situation”, for which the vertical
gradient of potential temperature changes abruptly between several limited vertical
layers of air. Figure 7 shows the time evolution of vertical velocity for a test case
involving hydrostatic initial conditions in the vicinity of a 2 km high “mountain”
and with the following vertical distributions of the Brunt-Väisälä-frequency.

N = Ni for zi ≤ z < zi+1 (i ∈ {0, 1, 2}) (96)

where
z0 = 0 m , z1 = 750m , z2 = 1 250 m , z3 = 8 000 m . (97)

Here z3 indicates the top of the computational domain, where the initial data are
imposed as external states in the computation of boundary fluxes. On these bound-
aries, the fluxes are obtained by approximately solving Riemann problems. These
problems are defined in terms of the states reconstructed inside the computational
domain and the imposed external states. This formulation is also used at the lateral
boundaries. (See the legends for values of N .) The graph shows that the maximum
(spurious) vertical velocities for all cases considered do not exceed 0.1 m/s, and re-
main as small as a few centimeters per second in general. This is in sharp contrast
with the situation displayed in Fig. 6, obtained with the standard scheme, where
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Figure 6. Spurious vertical winds in the vicinity of steep orography gener-
ated by an unbalanced conservative finite volume method, [Botta et al., under revi-
sion; Preprint: PIK-Report No. 84, Potsdam Institute for Climate Impact Research
(2002]. An 18 km high layer of air at rest is placed near a 3 km high “mountain”.
Vertical winds of up to 4 m/s are observed within about 60 min physical time on a
computational grid with 32× 128 grid points. The graph shows a color-plot of ver-
tical velocity in a −10 . . . 10 km vicinity of the orographical feature, involving about
50 gridpoints in the horizontal direction.

vertical velocities reached levels of 4m/s, a level that is entirely unacceptable for
meteorological applications. For details of this test case, the reader is referred to
the original reference.

With the well-balancing approach in place, the finite volume compressible flow
solver is now competitive in terms of accuracy with other well-established numerical
techniques used in numerical weather forecasting. Its advantage is that it imple-
ments conservation of mass and energy up to machine accuracy, and momentum
conservation in cases where the momentum source terms have a divergence form
representation. Results for a challenging test case involving lee wave generation
over non-trivial terrain from Schär et al. [2002] are shown in Fig. 8.

The test case involves dry air flow past the “wavy” topography

zb(x) = h exp
(
−x2

a2

)
cos2

(π x

λ

)
(98)

where h = 250m, a = 5 km, and λ = 4km. The Brunt-Väisälä-frequency is assumed
constant at N = 0.01 s−1, and the bottom pressure and temperature are set to p0 =
105 kg/ms2 and T0 = 273, 16 K, respectively. The horizontal flow velocity imposed
at the upstream (left) entrance to the domain is 10 m/s for 0 ≤ z ≤ 10.395 km,
and decreases linearly to zero from there to the top of the domain at 19.5 km.
The vertical velocity is set to zero throughout the domain initially. The boundary
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Figure 7. Remaining spurious motions for an inversion situation with
piecewise constant vertical distributions of the Brunt-Väisälä-frequency N (see
(44)).

condition formulation is the same as that explained above in the context of the
static cases without mean flow.

Figure 8 shows contours of the vertical velocity after the solution has reached
near steady state conditions. These results are consistent with those obtained by
Schär et al. [2002] as a result of linear perturbation theory. At the same time they
are comparable in terms of quality with their simulations using the canadian MC2-
model, [Benoit et al., 1997], and a newly proposed computational grid structure that
drastically reduces grid distortions away from the bottom topography. Our results
have been computed using the well-balanced conservative finite volume scheme on
a standard terrain-following grid without such modifications, albeit with a 20 %
higher spatial resolution. For further details the reader is referred once more to the
original references.

5 Conclusions
The present paper proposes a systematic approach, based on techniques of multiple
scales asymptotics, for structuring the vast variety of reduced model equations of
theoretical meteorology. The bottom line of the approach has been summarized
focusing on the fluid mechanics of atmospheric motions. “Diabatics”, i.e, energetic
processes, boundary layer problems, and many other meteorological processes of
interest are not addressed here, due to both a lack of space and the fact that
further work is still needed in this direction.

The concrete applications of the technique may have convinced the reader
that it gives rise to interesting extensions of existing theories, that it leads to novel
multi-scale models, and that it is quite useful also in the analysis of numerical
methods.



40

[km]

[km]

Figure 8. Steady state lee waves over complex terrain in a test case taken
from Schär et al. [2002] represented by countours of the vertical velocity. Computa-
tions are based on the present well-balanced conservative finite volume scheme, and
a grid resolution of 800× 128 nearly equally spaced grid cells for the discretization
of the computational domain covering 19.5 km × 200 km. A single “bump” is thus
resolved by about 10 grid cells. Only a 9.5 km× 40 km near-topography subdomain,
resolved by about 160× 64 grid cells, is shown.
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