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Poglavlje 1

Uvod

Glavna motivacija za algebarsku teoriju brojeva nam je rjeSavanje Diofanstkih
jednadzbi, kao &to su npr. y2 +3 = 23, 22 + 92 = 22, 2" + y" = 2, itd. Ideja
je ovakve jednadzbe faktorizirati:

W+ V=2 (y—v=2)=2° (z+iy)(z—iy) =2

(:17 - y)(m - Cny)(x - CTQLy) ce (l‘ - Cﬁ_ly) = Zn? Cn = 62;”‘
lako trazimo rjeSenja nad Z, faktorizacija se odvija nad proSirenjima od Z.
Faktoriziramo u Z C O, gdje je O red(ili poredak, eng. order), ve¢i prsteni koji
sadrzi Z.

Pojmovi grupa, prstena, ideala s kojima ste se susretali u algebri i algebar-
skim strukturama zapravo imaju povijesnu motivaciju iz teorije brojeva. Alge-
barsku teoriju brojeva moZemo smatrati teorijom brojeva "u proSirenjima od
Z.". Vrijedit ¢e sljedece analogije:

Z+— 7 C O — red
Q +— Q C K — polje algebarskih brojeva, tj. kona¢no prosirenje od Q
alb<—a|buOznad Ice O td. b=ac,
{£1} =Z* +— O* — obi¢no beskona¢na grupa,
prosti elementi, 0 # p ¢ O, plab = pla ili p|b

prosti brojevi «— < o ) . .
ireducibilni elementi, 0 £ p ¢ O* ,qlp=q€ O* ilig=upiue O*.

Osnovni teorem aritmetike (jedinstvena fakt. na proste br.) +—7 (opéenito ne vrijedi).

Predznanje za koje se pretpostavlja da ga znate na kolegiju: gradivo iz Al-
gebarskih struktura, Algebre 1 i 2; grupe, prsteni, ideali (prosti, maksimalni),
domene glavnih ideala, domene jedinstvene faktorizacije, Kineski teorem o os-
tacima, proSirenja polja, Galoisova teorija (iako ¢emo nju ponoviti).
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1.1 Uvod u faktorizaciju

Definicija 1.1.1

Definiramo da je prsten D FEuklidova domena ako postoji funkcija ¢ :
D\ {0} — N takva da:

(i) ¢(2) 20, Vz € D\ {0},

(ii) zasve a € D ib € D\ {0}, postoje g, € D takvi da a = gb+r,
gdjejer=01lir £ 01 ¢(r) < ¢(b).

Propozicija 1.1.2

U integralnoj domeni D, svaki prost element je ireducibilan.

\ J

Dokaz. Pretpostavimo da p € D nije ireducibilan. Po definiciji to znaci da
mozemo p napisati kao:
p = ab,

gdje su a,b € D, a niti a niti b nisu invertibilni elementi u D.
Bududi da je p prost, ako p | ab, tada prema definiciji imamo:

pla ii p|b.

Bez smanjenja opcéenitosti, pretpostavimo da p | a. To znaci da postoji element
d € D takav da je a = pd. Uvrstimo a = pd u p = ab:

p = (pd)b = p(db).

Buduéi da smo u integralnoj domeni i p # 0, moZemo podijeliti obje strane s p,
Sto daje:
1 =db.

Dakle, d i b su invertibilni elementi u D, $to je kontradikcija s neinvertibilno§éu
od b. O

Sjetimo se karakterizacije prostih/ireducibilnih elemenata.
Teorem 1.1.3
Neka je D integralna domena i 0 # x ¢ D*.

1. z je ireducibilan ako i samo ako je () maksimalan u skupu glavnih
ideala. Ideal (z) je maksimalan (u skupu svih ideala) ako i samo
ako je D/(z) polje.

2. z je prost ako i samo ako je (z) prost, ako i samo ako je D/(x)
integralna domena.

,
.
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Dokaz. Dokazano na Algebarskim strukturama.

Definicija 1.1.4

Prsten R se naziva Noetherin prsten ako zadovoljava jedno od sljedeca
tri ekvivalentna svojstva:

1. Svaki ideal u R je konacno generiran.

2. Svaki uzlazni lanac ideala u R stabilizira se. To znaci da za svaki
niz ideala Iy C I C I3 C ... postoji indeks n takav da za sve
m > n vrijedi I, = I,.

3. U svakom skupu ideala postoji maksimalan (u tom skupu), tj. ideal
koji nije sadrzan ni u jednom drugom.

Primjer prstena koji nije Noetherin: polinomi u beskona¢no mnogo varijabli.

Definicija 1.1.5

Noetherin prsten koji je integralna domena zove se Noetherina domena.

Propozicija 1.1.6

| '
\

Ako je D Noetherina domena, svaki ne-nul element se moze napisati kao
produkt ireducibilnih elemenata.

\ J

Dokaz. Pretpostavimo suprotno, te promotrimo skup S glavnih ideala (y), gdje
se y ne moze faktorizirati kao produkt ireducibilnih. Neka je (x) maksimalan
ideal u tom skupu (takav postoji jer je D Noetherin)

Sada z nije ireducibilan, pa se moze zapisati kao x = a - b, gdje su a,b
neinvertibilni, te se barem jedan od njih (bez smanjenja opéenitosti a) ne moze
zapisati kao produkt ireducibilnih. Medutim sada imamo

() S (a), a€b,

OJ

§to je kontradikcija s maksimalnoséu od (x).

U integralnoj domeni D postoji jedinstvena faktorizacija na ireducibilne
ako i samo ako je svaki ireducibilan element prost u D.

Dokaz. Pokazimo samo jedan smjer, drugi ostavljamo za DZ. Neka je 7 € R
ireducibilan. Razmotrimo glavni ideal (7). Ako je (7) C (a) za neki a, onda
vrijedi m = ar za neki r. Buduéi da je 7 ireducibilan, ili je a jedinica ili je r
jedinica; stoga vrijedi (a) = () ili (a) = R. Dakle, (7) je maksimalan (nenul)
ideal, a samim time i prost. Prema tome, 7 je prost element. O
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Propozicija 1.1.8

Vrijedi:
(a) Svaka Euklidova domena je DGI (domena glavnih ideala),
(b) Svaka DGI je DJF (domena jedinstvene faktorizacije).

Dokaz. (a) Neka je D Euklidova domena s pripadaju¢om funkcijom ¢, te pret-
postavimo da I # 0 ideal u D. Odaberimo z takav da je p(z) jednak minimumu
skupa {¢(a) : a € I\{0}}. Ocito je da (z) C I.

Pokazimo obrnutu inkluziju. Neka je a € I. Tada postoje g, € D takvi da
a=gr+r,gdjejer =01ilir £ 01 p(r) < ¢(z). Kako je r = a — gz € I,
oCito je da druga mogucnost nije moguca jer bi ¢(r) bila manja od p(x), Sto je
u suprotnosti s definicijom od x. Dakle a = gz € (), dakle I C (x).

(b) Postojanje faktorizacije na ireducibilne faktore slijedi iz prethodne pro-
pozicije.

Dokazimo jedinstvenost rastava. Da su ireducibilni elementi prosti slijedi iz pret-
hodnog primjera, a kad su svi ireducibilni elementi prosti, standardni argument
za jedinstvenost faktorizacije vrijedi: ako

U-P1pP2-Pn =V q1G2 " dm

gdje su w, v invertibilni i svi p;, ¢; ireducibilni (dakle prosti), tada zbog svojstva
prostosti mozemo, nakon moguée permutacije i zamjene elemenata asociranim,
spariti svaki p; s nekim ¢;. Stoga su faktorizacije jedinstvene do reda i asocira-
nosti. O

Kombinirajuéi (i) i (ii) zaklju¢ujemo da je svaka DGI DJF.

1.2 Gaussovi cijeli brojevi

Prouc¢avamo jednadzbu 22 + y? = 22, gdje su z,y,z € Z. Promotrimo polje
Gaussovih racionalnih brojeva

Qi =Q+iQ={r+iy|z,ycQ}.

T1+iy1

o rezultat je:

Za bilo koja dva Gaussova racionalna broja

T4y 122 + Y1y + 1(T2y1 — T1Y2)

Ta +iy2 x3+y3

Prsten Gaussovih cijelih brojeva je definiran kao
Zji) ={z +iy | z,y € Z}.

Funkcija norme N : Z[i] — Z definirana je s N(z + iy) = 2% + y* = |z + iy|>.
Neka je a € QJi], tada je norma N(a) = a - @, i vrijedi:
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N(ab) = N(a)N(b), a,be€ Q[i]
Vrijedi i N(Z[i]) C Z.

Vrijedi:

(1) Za z € Z[d], vrijedi z € Z[i]* < N(z) = 1.

(i) Z[i])* = {£1,+i}).

Dokaz. (i) Ako x € Z[i]*, tada postoji y € Z[i] tako da x -y = 1. Prema tome:
N(z-y) = N(z)N(y) = N(1) = L.

Norme N(z) i N(y) su nenegativni cijeli brojevi, stoga mora vrijediti N(z) = 1.

Obrnuto, Ako je
1= N(a+bi)=a*+b* = (a+bi)(a— bi),

zaklju¢ujemo da je (a + bi)~! = a — bi.
(ii) Ocito je da {£1,+i} C Z[i]*. Dokazimo obratnu inkluziju: iz (i) vrijedi
N(a+bi) =1

= a4+ =1 abeZ = (a,b)e{(£1,0),(0,+1)}
= a+bie{£l,+i}

Propozicija 1.2.2

Z[i] je Euklidova domena.

Dokaz. O¢ito je da je N(z) = |z|> > 0 za sve z € Z]i]. Akosua,b € Z[i] i b# 0,
tada vrijedi:
¢

1
A € Qi) = dg € Zi] takav da ’Re%—Reg‘ < 51

1
5"

Im%—lmg‘ <

[ of = |(ref —g) + o1 (5 o)

b
2 2
:’Re%—Reg‘ +’Im%71mg‘
11 1 , )
<4 == 7
_4+4 5 (mnozimo s |b|%)
b|? b
= Ja—gb? < U 4 N(a— gty < MV
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Oznac¢imo a — gb = r. Sada imamo a = gb+ (a — gb) = gb + r, gdje je r € Z]i].
Ako r # 0, tada vrijedi N(r) < X8 < N(b) (vrijedi N(b) > 0 jer je b #
O

0).

Z[i] je domena jedinstvene faktorizacije.

RjeSenje jednadzbe 22 + y? = 22, gdje su z,y, 2z € Z (cijeli brojevi) nazivamo
Pitagorinom (ili Pitagorejskom) trojkom. Primijetimo

NZD(z,y,z) =1 NZD(z,y) = NZD(x,2) = NZD(y,z) = 1.

Ako je najvecéi zajednicki djelitelj od x, y i z jednak 1, tada kazemo da je
Pitagorina trojka primitivna.

Promotrimo svojstva Pitagorinih trojki. Primijetimo da kvadrat bilo kojeg
broja pri dijeljenju s 4 daje ostatak 0 ili 1. Zbog toga, ako su z i y razlicite
parnosti, tada je z neparan.

Jednadzba (z+yi)(x —yi) = 22 faktorizira se u Z[i] (Gaussovi cijeli brojevi),
tako da su Gaussovi cijeli brojevi prirodno mjesto za promatranje Pitagorinih
trojki.

Neka je (z,y, z) primitivna Pitagorina trojka:

2y’ =2 (i) —y) =2 (ey) =(y.2) = (1,2) = 1,
Neka je ((z + iy), (v —iy)) = 7.
= 7|2z, |2y
= N(m) ’4302, N ()| 492
= N(m) |4
Takoder, N(m) | N(z) = 22, §to je neparno.
N(m) |1l =N(m) =1
((z +iy), (x —iy)) =1
x4+ iy = v(m +iu)*, m,u € Z,v € Z[i]* = {+1}
x+iy:v(m2+2mui—u2)
{z,y} = {j: (m2 - u2) ,:I:2mu}
z:i(m2+u2),(m,u) =1.

A

1.3 Neki primjeri u drugim prstenovima

Dokazite da prsten Z[v/—5] nije DGI (domena glavnih ideala).
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RjeSenje: Vrijedi 6 = 2-3 = (1 +v=5)(1 — v/—=5). Ako pokaZemo da
su 2,3,1 & /=5 ireducibilni, to znaéi da postoji vise razli¢itih faktorizacija u
ireducibilne u Z[v/—5].

Definirajmo normu N : Z[/—5] — Z sa:

N(a+ bv/=5) = a* + 5b°.

Tvrdnja: N(xy) = N(x)N(y) za sve z,y € Z[/—5].
Dokaz: Racunski, DZ. O

Primjeri:
N(2)=4, N(3)=9, N(1++v-5)=N(1—-+-5)=6.

Tvrdnja: z € Z[v—5]* < N(z) =11 Z[\/-5]* = {£1}.
Dokaz: Neka je: z = a + by/—5.
Iz definicije vrijedi:

a?+50° =1 <<= (a+b/=5)(a—b/=5)=1

Dakle, ako N(x) = 1, tada je  multiplikativno invertibilan i pripada Z[v/—5]*.
Neka je z € Z[/—5]*

— Jy € Z[V-5*t.d.N(zy) = N(z)N(y) = N(1)
= N(z) =1 jer N(z),N(y) € No.

Odmah zakljuéujemo da su jedini elementi s normom 1 upravo +1. O
Tvrdnja: 2,3,1 £ +/—5 su ireducibilni elementi.
Dokaz: Pretpostavimo suprotno, tj. 2 = ab, gdje a,b ¢ Z[/—5]*. Sada imamo:

N(2) = 4 = N(a)N(b),

§to implicira da N(a) = N(b) = 2. Neka je a = 1 + y11/—5, tada:

o7+ 5y =2
No, rjesavanje ove jednadzbe mod 5 pokazuje da nema rjefenja jer 23 = 2
(mod 5) nije moguée. Analogno se dokaze i za 3,1 + /—5. O

Primijetimo da 2,3, 1 4+ +/—>5 nisu prosti elementi u Z[/—5]: Pretpostavimo
da je 2 prost. Vrijedi

216 = (1+v=5)(1 - v=5) = 2|(1+ v=5) ili 2|(1 — V=5)

—=4=N(2) | N1+V-5) =6. =<
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Definicija 1.3.2

Neka je R prsten, te neka su aq,as,...,a, € R. Najveéi zajednicki djeli-
telj elemenata aj,as,...,a, u prstenu R je element d € R, koji zadovo-
ljava:

(a) d | a; za sve i.

(b) Ako neki element ¢ € R dijeli svaki element a;, tada vrijedi ¢ | d.

\ J

Primjer 1.3.3

Elementi 6 i 2 + 2v/—5 u prstenu Z[v/—5] nemaju najveéi zajednicki
djelitelj.

Rjesenje:
N(6)=6%=36, N(2(1++V=5))=N(2) -N(1++/-5)=4-6=24.

Pretpostavimo da d = ged(6,2(1 ++/—5)) postoji, tj. da je d najveci zajednicki
djelitelj elemenata 6 i 2(1 4+ +/—5)) u Z[v/—5]. Tada bi po (a) vrijedilo da d | 6
id|2(1+v/=5). Vrijedi

216, 2]2(1+v—5) <L 94,

1+vV=5) |6, (1+v=5)|2(1+v=5) L (1+v=5)d

Napisimo d = +y(1 + v/=5), gdje y|2. Lako vidimo, promatrajué¢i normu, da je
2 ireducibilan, pa zaklju¢ujemo da je y = £1 ili £2. Posto 2|d, vidimo da je
y # £1, jer 24 (1 4+ /=5).

Pretpostavimo sada da je d = +2(1 + /=5).

— 2(14+v=5) |6 =24 = N(2(1 +V=5)) | N(6) = 36 =< .

Primjer 1.3.4

Z[/3]* je beskonacna.

Rjesenje: Definiramo normu kao:
N(a+bV3) = (a+ bvV3)(a — bV/3) = a? — 3b°.

Lako se dokaze, kao i prije da je element invertibilan ako i samo ako njegova
norma iznosi 1, tj. N(a + bv/3) = 1 (lako se vidi da je N(a + bv/3) = —1
nemoguce). Pellova jednadzba 22 — 3y? = 1 ima beskona¢no mnogo rjesenja.
Generalna rjeSenja Pellove jednadzbe su:

T + yn\/§ = (r1 + yl\/g)ny
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gdje je (z1,y1) = (2,1) prvi ¢lan. Vrijedi

N(z1+31V3)" = (21 4+ 11V3)" (21 — V3" = 1,

pa je (z1 +y1V3)" € Z[V3]*. U
Moze se pokazati i vide, tj. da je Z[v3]* = (=1,2 4+ /3) ~ Z/27 x 7.

Odredite koji su od elemenata 144, 2—74, 5, 7 i 127 ireducibilni u prstenu
Z[i.

Rjesenje:

e Element 1 + i:
N(l+i)=1*+1*=2.

Norma 2 je prosta. Dakle, 1 4 ¢ je ireducibilan.

e Element 2 — 7::
N(2—7i) =2+ (=7)> =4+49 = 53,
Norma 53 je prosta. Dakle, 2 — 7i je ireducibilan.

e Element 5:
N(5) = 5%+ 0% = 25.
MoZemo napisati 5 = (2+41)(2 —14), $to pokazuje da 5 nije ireducibilan, jer
su oba faktora neinvertibilna. Dakle, 5 je reducibilan.
e Element 12::
N(124) = 0% + 12? = 144.
Norma 144 nije prosta (jer 144 = 12-12). Sli¢no kao i prije, moZemo pisati
12¢ = (3)(44), gdje su oba faktora neinvertibilna. Dakle, 127 je reducibilan.
e Element 7:
N(7) =7+ 0% = 49.

Pretpostavimo da 7 nije ireducibilan. Tada je 7 = 2129, gdje je N(z;) =7
iz =a;+b; zai=12 Medutim tada bi bilo N(z;) = a? + b? = 7, §to
je nemoguc¢e modulo 4. Dakle 7 je ireducibilan. Opéenitije, vrijedi da je
prost prirodan broj p =3 (mod 4) ireduciblan u Z[i].

O

Primjer 1.3.6

Rijesite (u Z) jednadzbu y? + 4 = 23.
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RjeSenje: Faktorizirajmo desnu stranu: (y + 2i)(y — 2i) = 23. Neka je 7 =

ged((y+2i)(y—2i)). Tada 7|(y+2i) i |(y—2i), pa |2y i w|4i. Dakle N()|dy?,
N(m)[16, te N(7)|(y? +4). Ako je y neparan, onda je ovaj zadnji izraz neparan,
pa mora biti ged((y + 2i)(y — 27)) = 1.

Rijesimo prvo slucaj kada je ‘ ged((y + 2i)(y — 2i)) =1 ‘

Slijedi

y+2i =u(a+0bi)®, y+2i=uv(a—0bi)? zaneke a,b€ Z, u,v e Z[i]*.

Primijetimo da je Z[i]* ~ Z/4Z, paslijedi da su u i v kubovi u Z[i]*, tj. moZemo
samo zapisati
y+2=(a+bi)?, y—2i=(a—Dbi)?
= y+2i = a® + 3a%bi — 3a®b — b3i, y—2i =a® — 3a®bi — 3ab® + b3i
(oduzmemo ove dvije jednadzbe i pogledajmo imaginarni dio)
=2=3a’—0"=b(3a> - V") => b=H1ilib==2

Pogledajmo prvo slu¢aj b= +1 = 2 = +1 (3a® — 1). Primijetimo da 3a? — 1 =
—2 nema rjeSenja, pa slijedi a = +1. UvrStavanjem dobijemo i b =1 i dalje
y=a3—3ab2:j:1:F3:>y::|:2
=|(y,2) = (£2,2)}

Promotrimo sada b = 2. Slijedi 3a2 —4 = 1, tj. 3a® = 5, §to je nemoguce.
Ostaje slu¢aj b = —2. Slijedi 3a? — 4 = —1. Imamo

302 =3=a=+l=y=+1F12€ {-11,11} > 2=5=|(y,2) = (£11,5)]

| ged((y + 2i)(y — 20)) > 1]

Kao sto smo veé pokazali, y mora biti paran, pa imamo y = 2t, pa slijedi
4t% + 4 = 23; zaklju¢ujemo da je z paran, tj. z = 2u. Slijedi 4¢% +4 = Su?>, dakle
t2 + 1 = 2u?. Faktorizirajmo lijevu stranu:

(t+a)(t —1i) = 2u®.
Neka 7 | (¢t £ ); slijedi
w|2t, w2
=72 =7 € {u,u(l +14),u- 2} za neki u € Z[i]*.
Primijetimo sada da 2 ne dijeli ¢ + ¢, jer bi u suprotnom bi bilo 2(a + bi) =t +1,
§to je nemoguce za a,b € Z.

Ostaje jedino mogué¢nost ged(t +4,t — i) = 1 +4 (sjetimo se da je ged dobro
definiran do na asociranost).
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=t+i=14+14)(a+bi)? t—i=(1—i)(a—0b)>
= t+i=(1+1) (a® + 3a®bi — 3ab®i — bi)
= a® + 3a*bi — 3ab%i — b*i + a®i — 3a®b + 3ab® + b°
(pogledajmo imaginarni dio)
=1 =3a’b — 3ab> — b* + a® = (a — b)* + (6ab® — 6a°b) = (a — b)> — 6ab(b— a)
= (a—1b) (a® — 2ab+ b* + 6ab) = (a — b) (a® + 4ab + b°) .

Pogledajmo prvo slucaj a —b =1, to jest a = b+ 1.

1=1-((a+b)*+2ab) = (2b+1)> + 2b(b+ 1)

=4b% +4b+ 1 4 2b> + 2b = 6b* + 6b + 1

=b6b+6)=0 = b=0,—1.
Akob=0,tadaa=1,pay =21z = 2, §to je rjeSenje koje smo veé¢ dobili.
Analogno b = —1 da je y = —2 i z = 2, koje takoder veé¢ imamo.

Pogledajmo sada a — b = —1, to jest a = b — 1. Imamo —1 = 6b%> — 6b + 1,
te lako vidimo da to nema rjeSenja za b € Z. O



Poglavlje 2

Prosirenja polja

Definicija 2.0.1

Element « se naziva algebarski nad poljem K ako:
3f(z) € K[z] takav da f(z) = ap2"™ + ap_12" '+ + a1z + ao,

gdje su ag,ay,...,a, € Kia, #0,a f(a) =0.
U suprotnom, ako ne postoji takav polinom, onda se o naziva transcen-
dentan nad K.

\ J

Primijetimo da je ekvivalentna definicija: o je algebarski ako je skup {a, a2, ...}
linearno zavisan nad K.

Ako kazemo samo da je « algebarski (bez specifikacije polja), uvijek mislimo
algebarski nad Q. ProSirenje polja L D K je algebarsko ako je svaki element
u L algebarski nad K.

Propozicija 2.0.2

Neka su F' O L D K prosirenja polja. Ako je L algebarsko nad K i F
algebarsko nad L, tada je F' algebarsko nad K.

Dokaz. DZ. O
Sljedeé¢i teorem nec¢emo dokazivati.

Teorem 2.0.3

Neka je R domena jedinstvene faktorizacije. Tada je R[z] domena jedins-
tvene faktorizacije.

14
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Korolar 2.0.4

Neka je K polje. Prsten polinoma K|[zy,...,x,]| je domena jedinstvene
faktorizacije.

Primijetimo da Kz, 23] nije DGI, te je ovo jednostavan primjer DJF koji
nije DGI.

Neka je sada a algebarski nad K, te neka je g € K[x] t.d g(«) = 0. Fakto-
rizirajuéi g na ireducibilne dobijemo normiran ireducibilan polinom f, € K|z]
takav da je f,(a) = 0. Taj polinom zovemo minimalni polinom od « (nad
K).

Propozicija 2.0.5

Neka je a algebarski nad K. Tada je njegov minimalni polinom nad K
jedinstven.

Dokaz. Neka je 0 # h € K[z] t.d. h(a) =01 fo 1 h. Posto je f, ireducibilan,
to znadi da su f, i h relativno prosti, tj. postoje g,k € K|[z] takvi da je

fag + hk - 1.
Medutim, sada imamo
0= fala)g(@) + h(a)k(a) = 1,

§to je ocito kontradikcija. O

Definicija 2.0.6

Neka je f, minimalni polinom od « (nad K). Korijeni od f, se zovu
konjugati od « (nad K).

Neka je n = deg f,. Vrijedi

te je {1,q,...a" '} baza od K(«) nad K.

Definicija 2.0.7

Neka je K polje. Polinom f(z) € K|[z] je separabilan ako su svi njegovi
korijeni u K razli¢iti, odnosno ako ne postoje dva ista korijena.
Prosirenje L/K je separabilno ako su minimalni polinomi svakog ele-
menta u L separabilni polinomi nad K.
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Primjer 2.0.8

Neka je

K =T, (1)

polje racionalnih funkcija u jednoj varijabli ¢ nad kona¢nim poljem Fp,
gdje je p prost broj. Promotrimo element

a=t/P
Onda je a korijen polinoma
f(z) =2 —t € K[z].
Derivacija polinoma je
f'(z) = pa?~t =0,

jer smo u karakteristici p. Dakle, f(z) nema razli¢ite korijene, tj. svi
njegovi korijeni su viestruki. Polinom f(x) je ireducibilan u K{z], jer ¢
nije p-ta potencija u K. Dakle, prosirenje

L = K(a) =F,(t"/?)

je neseparabilno progirenje stupnja [L : K] = p.

Neka su K, L polja, te neka je f : K — L homomorfizam prstena. Tada je
ker f ideal u K, a jedini ideal u K je (0), pa zaklju¢ujemo da je f injektivan.
Zato se homomorfizmi polja obi¢no nazivaju ulaganja polja.

Definicija 2.0.9

Konaéno prosirenje K/Q (tj. K je kona¢no-dimenzionalni vektorski pros-
tor nad Q) se zove polje algebarskih brojeva (PAB).

Lema 2.0.10

Svi korijeni (u C) ireducibilnog polinoma f € K[z], gdje je K polje
algebarskih brojeva su razliciti.

Dokaz. Pretpostavimo suprotno, tj. da f ima barem dvostruki korijen 5. Tada

je f(B) = f/(B) = 0. Vrijedi deg f' < deg f — 1, pa (f') € (f). Posto je (f)
maksimalan slijedi (f') 4+ (f) = K|x], pa postoje g, k € K|[z] takvi da je

fg+ f'lk=1.

Medutim, sada imamo

0= f(B)g(B) + f(B)k(B) =1,
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§to je ocito kontradikcija.
O

Dakle sva prosirenja PAB su separabilna. Pretpostavimo od sada nadalje da
je Q C K C C. Sljedeci teorem je dokazan na Algebri.

Teorem 2.0.11

Neka su K C L potpolja od C. Tada se ulaganje ¢ : K — C moze
prosiriti na ulaganje L < C na to¢no [L : K] nacina.

\ J

Definicija 2.0.12

Ulaganje od L u C koje fiksira K se zove K-ulaganje od L u C.

. J

Korolar 2.0.13

Postoji [L : K] K-ulaganja L u C.

Definicija 2.0.14

Neka je K C L. Ako vrijedi L = K(«a), kaZemo da je L/K prosto
prosirenje, te kazemo da je o primitivni element tog proSirenja.

Primijetimo da je [K(«) : K] = deg fa.

Teorem 2.0.15: Teorem o primitivnom elementu

Neka su K C L PAB. Tada je L = K(«) za neki o € L.

Dokaz. Indukcijom po stupnju prosirenja n = [L : K|. Baza n = 1 je odita.
Pretpostavimo da tvrdnja vrijedi za sva proSirenja svakog PAB stupnja < n.

Neka je a € L. Ako je L = K(«), gotovi smo. Pretpostavimo L # K(«).
Vrijedi

[L:K]=[L: K(a)][K(a): K].

Po pretpostavci L/K(«) je prosto proSirenje, pa slijedi L = (K(«))(8), tj.
L = K(a,f). Neka je a € K* proizvoljan. Neka je v = a + af. Ako je
L = K(v), gotovi smo.

Pretpostavimo K(vy) € L. Neka su o;, i = 1,...,n razli¢ita K-ulaganja
od L u C. Neka je f minimalni polinom od v (nad K). Tada je deg f < n.
Promotrimo skup

{oi(7),i=1,...,n}.
Vrijedi
f(v) =0, pajeai(f(v)) = f(oi(v)) =0
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(ovdje koristimo da je f € Klz]). Zakljutujemo da postoje i # j takvi da je
0i(7) = 0;(7); ti-

oi(@) +oi(af) = o;(a) + 0;(af) = oi(e) — 0j(a) = a(o;(8) — i(B))-

Mora vrijediti o;(a) # o, () ili 0;(8) # 0:(B), jer bi u suprotnom K-ulaganja
0; 1 0; bila identi¢na. Medutim, ako vrijedi jedna nejednakost, vrijedi i druga.

Dakle (@) (@)
oi(a) —oj(a
aES:={¥, 1<ij<mn, z‘#j}.
oj(B) — oi(B)
Zakljutujemo da za b € K*\S vrijedi da je K(«+ b3) = L, $to uvijek mozemo
izabrati, posto je S konacan, a K* beskonacan. O

Definicija 2.0.16

Kazemo da je L normalno proSirenje od K ako zadovoljava sljedece:
ako je « € L korijen nekog f € K[z] tada su svi konjugati od a nad K
sadrzani u L.

Primjer 2.0.17

Polja Q(i), Q(¢,) su normalna prosirenja od Q, medutim Q(+/2) nije.

Sljedeci rezultati su dokazani na Algebri.
Ekvivalentno je:
1. L/K je normalno prosirenje,

2. Svako K-ulaganje L — C je automorfizam od L,

3. L ima to¢no [L : K] automorfizama koji fiksiraju K.

. J

Dokaz. |1) = 2) |: Neka je L 2 K normalno i ¢ : L — C K-ulaganje. Tvrdimo
¢(L) = L. Za o € L, neka je f, minimalni polinom od «. Vrijedi

0=0(0) = ¢(fala)) = fald(a))

posto ¢ djeluje kao identiteta na koeficijente of f, Slijedi da je ¢(«) korijen od
fo, P2 posto je L normalno slijedi da je ¢(a) € L.

Slijedi ¢(L) C L, te onda posto je dimg ¢(L) = dimg L, slijedi ¢(L) = L.
Dakle ¢ je automorfizam.
2) = 1) | Pretpostavimo da je svako K-ulaganje L — C automorfizam od

L. Neka je a € L, te B konjugat od a nad K.
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Neka je ¢ K-ulaganje ¢ : K(a) — C takvo da je ¢(a) = B. Po ranije
dokazanom teoremu, to ulaganje moZemo prosiriti na ulaganje ¢ : L — C. Po
pretpostavci vrijedi ¢(L) = L. Vrijedi

B =¢(a)=d(a) € L.

: Znamo da postoji [L : K] K-ulaganja L u C. Dakle postoji
barem [L : K| automorfizama od L koji fiksiraju K. S druge strane ako kom-
poniramo svaki taj automorfizam sa nekim fiksnim ulaganjem L u C, dobijemo
neko ulaganje L u C, te su sva takva razli¢ita. Dakle, ima to¢no [L : K] auto-
morfizama od L koji fiksiraju K.

3) = 2) | Kad bi imali neko K-ulaganje koje nije automorfizam, imali bi

> [L: K] + 1 ulaganja L — C, sto je kontradikcija s ranijim teoremom.
O

Teorem 2.0.19

Neka je L = K(ay,...,a,) 1 neka L sadrzi sve konjugate nad K od
(a1,...,ap). Tada je L normalno prosirenje od K.

Dokaz. Neka je 0 : L — C K-ulaganje. Tada je
o(L) = K(o(ay),...,0(ap)) C L,

posto su svi o(ay),...,0(a,) € L. Sada tvrdnja slijedi iz Teorema [2.0.18 O

Propozicija 2.0.20

Neka su F' O L D K prosirenja polja. Ako je F' normalno nad K. Tada
je F' normalno nad L.

Dokaz. Neka je ¢ : F — C L-ulaganje. Slijedi da je ¢ i K-ulaganje. Po Teoremu

je ¢ automorfizam od F, pa je opet po Teoremu [2.0.18 F' normalno i nad
L (posto je svako L-ulaganje automorfizam). O

Primjer 2.0.21

Neka su F' O L D K prosirenja polja. Ako je L normalno nad K i F
normalno nad L, tada ne mora vrijediti da je F' normalno nad K.
Kontraprimjer je npr. Q € Q(v/2) C Q(v/2).

Da bi to vidjeli primijetimo da je minimalni polinom od v/2 nad Q(+/2)
jednak 22 — v/2, te su njegovi korijeni ++v/2 sadrzani unutar Q(v/2).

S druge strane minimalni polinom od v/2 nad Q je 2* — 2, te su konjugati
(nad Q) od \“/ijednaki ik \‘75, k =1,...4, koji nisu svi sadrzani u V2 CR.
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Korolar 2.0.22

Ako je L D K, tada postoji prosirenje M D L takvo da je M normalno
nad K.

Napomena: Primijetimo da ée M iz korolara biti normalan i nad L.

Dokaz. Neka je L = K(«), takav a postoji po teoremu o primitivnom elementu.
Neka su o, ..., a, konjugati od o. Neka je M = K(ay,...,ay). Po Teoremu
[2:0:19 slijedi da je M normalan nad K. O

Definicija 2.0.23

Neka je L O K. Najmanji M 2O L koji je normalan nad K se zove
normalno zatvorenje od L nad K.

Napomena: Mi pretpostavljamo cijelo vrijeme da radimo sa separabilnim
i kona¢nim prosirenjimal

Definicija 2.0.24

Neka je L/K normalno prosirenje. Grupa od K-automorfizama od L se
zove Galoisova grupa od L nad K i oznacava s Gal(L/K).

Napomena: Primijetimo da raniji teorem kaze | Gal(L/K)| = [L : K].

Definicija 2.0.25

Za H < Gal(L/K) definiramo fiksno polje od H, s oznakom L% kao

L ={aeL|ola)=a, Vo H}.

Sada ¢emo iskazati bez dokaza (poSto je veé¢ dokazano na Algebri) glavne
rezultate Galoisove teorije.

Teorem 2.0.26

Neka je L/K normalno progirenje i G = Gal(L/K). Tada je K fiksno
polje od G i K nije fiksno polje niti jedne druge podgrupe od G.

Teorem 2.0.27: Osnovni teorem Galoisove teorije

Neka je L/K normalno prosirenje i G = Gal(L/K). Tada postoji bijek-
cija izmedu podgrupa od G i medupolja K C F C L. Ta bijekcija u
jednom smjeru Salje podgrupu H u fiksno polje od H, a u drugom 3alje
medupolje F' u Gal(L/F).

Nadalje, medupolje F' je normalno nad K ako i samo ako je Gal(L/F)
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normalna u Gal(L/K).

Dakle imamo:
{Fpolje: KCFCL}+—{H:H<G}
F+— Gal(L/F)< G
"« H<G

Teorem 2.0.28

Neka je L/K normalno proSirenje, te neka je E O K bilo koje prosirenje.
Oznac¢imo s FL polje generirano s £ U L. Tada je FL O E normalno i
Gal(EL/E) se ulaze u Gal(L/K) restringirnajem na L. Ta restrikcija je
izomorfizam ako i samo ako je ENL = K.

2.1 Ciklotomska polja

Definicija 2.1.1

Za pozitivan cijeli broj n, n-to ciklotomsko polje K = Q((,) je proSirenje
polja racionalnih brojeva Q, koje se dobije dodavanjem primitivnog n-tog
korijena iz jedinice (,. Ovaj korijen je kompleksni broj koji zadovoljava
¢y =1, a (, nije k-ti korijen iz jedinice za k < n.

Jedan primjer n-tog korijena iz jedinice je e

Definicija 2.1.2

n-ti ciklotomski polinom ®,,(x) je normirani polinom ¢iji su korijeni to¢no
svi primitivni n-ti korijeni iz jedinice (ili analogno, minimalni polinom
nekog primitivnog korijena jedinice). Drugim rije¢ima, n-ti ciklotomski
polinom ®,,(x) je zadan kao

1<k<n
ged(k,n)=1
gdje je ¢, = e primitivni n-ti korijen iz jedinice, a produkt ide po svim
k takvim da je ged(k,n) = 1, odnosno za sve k koji su relativno prosti s
n.

Polinom @, (z) zadovoljava sljedeé¢u jednadzbu:

2" =1 =[] ®a(x),
d|n
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gdje produkt ide po svim djeliteljima n, a ®4(z) su ciklotomski polinomi za
sve d. Ova jednadzba omogucuje rekurzivno ra¢unanje ciklotomskih polinoma.
Vidimo da je stupanj od ®,,(x) jednak ¢(n).

Na primjer, kada je n = p, gdje je p prost broj, n-ti ciklotomski polinom je

Dp(x) =a? 2P+ a4 L

Polinom @,(z) je ireducibilan u Qlx].

Dokaz. Vrijedi

P —1
x—1"

Pp(z)=aP P P4+l =
Uvedimo supstituciju y = z — 1. Sada imamo

+1r—1 ¥+ Oy e+ ()Y
Yy Yy

9(y) == Sply +1) =

=y P+

Upotrebom Eisensteinovog kriterija zaklju¢ujemo da je ¢ ireducibilan. Slijedi
da je i ®,(z) ireducibilan. O

Neka je ¢ = (,, primitivni p-ti korijen iz jedinice. Tada su nultocke od @,(z)
¢, ¢%,...¢P71. Dakle (nad Q(¢,)) vrijedi

<I>p(x):xp_1+x”_2+--~+x+1:(m—()(m—CQ)...(x—Cp_l).

Uvrstavanjem « = 1 dobivamo

2.2 Konstruktibilnost ravnalom i Sestarom

Problem: S ravnalom i Sestarom u kona¢no mnogo koraka rijeSite sljedece
probleme:

1. "Duplikacija kocke" - konstruirati kocku s duplo veé¢im volumenom,
2. "Trisekcija kuta" - podijeliti zadani kut na 3 jednaka dijela,

3. "Kvadratura kruga" - Za zadani krug konstruirati kvadrat iste povrsine.
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Neka je zadan skup F koji predstavlja skup to¢aka u ravnini. Definiramo Dg
kao skup svih pravaca koji prolaze kroz dvije toc¢ke iz E. Takoder, definiramo
Cg kao skup svih kruznica sa srediStem u nekoj tocki iz F i radijusom jednakim
udaljenosti izmedu nekih tocaka iz F.

Tocka u ravnini je konstruktibilna u jednom koraku iz F ako je:

1. presjek dvaju pravaca iz D,
2. presjek pravca iz Dg i kruznice iz Cg,
3. presjek dviju kruznica iz Cg.

Konstruktibilnost u n koraka iz E se definira induktivno.

Koordinatni sustav éemo postaviti tako da su O € E i (1,0) takoder iz E.
Neka je k = Q(F), gdje je F skup svih koordinata tocaka iz E u toj bazi.

Tada:

e Svaki pravac iz Dg ima jednadzbu:
ar+by+c=0, a,bcek
e Svaka kruZnica iz Cg ima jednadzbu:

2+ far+by+c=0, abcck

Propozicija 2.2.1

Neka je P = (p,q) tocka u ravnini konstruktibilna u jednom koraku iz
E. Tada je k(p, q) ili jednako k, ili je kvadratno progirenje od & (vrijedi
i obrat).

Dokaz. (a) Presjek dvaju pravaca:

ax+by+c=0 i dz+by+c =0
Pretpostavimo da ovi pravci nisu paralelni.
J(x,y) € k? koji zadovoljava ove 2 jednadzbe
= k(p,g)=k

(b) Presjek pravca i kruznice:

22+ +ar+by+c=0
drx+by+cd =0

—d -V
= o=

a/

Uvrstimo u jednadzbu kruznice i dobijemo kvadratnu jednadzbu za y.

[k(z,y) : k(y)] =1
= [k(z,y): k] =11ili 2.
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(c) Presjek dvije kruznice:

v+ tart+by+c=0

i rde+Vy+d =0 /-
(a—ad)Yx+(b-b)y+(c—)=0
svodi se na  (b)

O

Korolar 2.2.2

Neka je P = (p,q) konstruktibilna iz E.

1. Tada postoji konac¢an niz polja K;,0 < i < n takav da je svako K;
kvadratno prosirenje od K;_1, Ko = K, K,, CR, K,, = K(p,q).

2. pi g su algebarski nad K i stupanj im je potencija od 2.

Rijesimo sada probleme:

1. Neka je stranica kvadrata s vrhovima O i (0,1). Zelimo nadi kocku volu-
mena 2. Tada bi kocka s volumenom 2 bez smanjenja opéenitosti imala
vrhove u O i (0, V/2). Medutim stupanj od /2 je 3, pa tocka (0, ¥/2) nije
konstuktibilna. Ovo je dokazao Wantzel 1837.

2. Problem je ekvivalentan iz toga da iz zadanog cos 3a dobijemo cos . Me-
dutim, lako dobijemo

cos 3o = 4 cos® a — 3cos .
Uzimanjem x := cos o vidimo da zapravo trazimo korijen jednadzbe
42% — 3x — cos 3a.

Npr. ako uzmemo a = 40°, slijedi cos 3a = —1/2, te vidimo da je 43 —
3x+1/2 ireducibilna nad Q. Dakle z je stupnja 3 nad Q. Dakle ne moZemo
ga konstruirati. Ovo je dokazao Wantzel 1837.

3. Radijus je bez smanjenja opcenitosti 1, pa slijedi da je volumen jednak 7.
Dakle problem je ekvivalentan konstrukciji kvadrata sa stranicom duljine
/7. Bez smanjenja opéenitosti jedna stranica ima vrhove u O i (0, /7).
Medutim 7 nije algebarski (Lindeman-Weierstrassov teorem, 1882.), tako
da druga tocka nije konstruktibilna.
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2.3 Rjesivost radikalima

Definicija 2.3.1

Polje K C C je radikalno prosirenje od F ako postoji niz (K;)o<i<r
koji zovemo radiklani toranj t.d. za ¢ =0,...,r vrijedi:

1. Kiy1 D Ki, F =Ko, K, =K.

2. Za svaki i € {1,...,r} postoje n; € N, a; € K;—1 t.d: K; =
Ki—l( Y ai)~

‘ ’
§

Primjer 2.3.2

K=Q<1§/\3/2+€/—_7+\/5+\7—_7).

Vrijedi
Q c Q(¥/=7) c Q(¥/=7,v5) c Q(v/=7,V5, ¥/=7)

CQ<\3/2+ =T+ VB, YT, ﬁﬁ) CK

pa je K radikalno prosirenje.

Definicija 2.3.3

Neka je f € F[z]. Kazemo da je jednadzba f(x) = 0 rjesiva u radikalima
ako je polje cijepanja od f sadrzano u nekom radikalnom prosirenju od

|

Definicija 2.3.4
Grupa G je rjesiva ako postoji niz normalnih podgrupa
{e}=GodG19G22--- 4G, =G,

takav da su kvocijentne grupe G;i1/G; Abelove za svaki i =
0,1,2,...,n—1.
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Primjer 2.3.5

S3 je rjeSiva grupa, budué¢i da imamo niz normalnih podgrupa

{6} ﬁ A3 S] 537

i obje kvocijentne grupe As/{e} = Z/3Z i S3/As = Z/27Z su Abelove,
zaklju¢ujemo da je Ss rjeSiva grupa.

Lema 2.3.6: Galois

Ako je progirenje F' C K radikalno, tada je Galoisovo zatvorenje proSire-
nja F' C K takoder radikalno.

. J

Dokaz. Skica: normalno zatvorenje se dobije dodavanjem svih konjugata, a ko-
njugati od m-tih korijena nekog elementa a € F' su opet m-ti korijeni tog istog
elementa. O

Napomena: (DZ) Ako je G rjesiva grupa, tada su sve podgrupe i kvoci-
jentne grupe od G rjesive.

Teorem 2.3.7: Galois

Neka je f € F[z], i K polje cijepanja od f nad F. Tada je f(z) =0
rjesiva u radikalima <= Gal(K/F) je rjesiva grupa.

Dokaz. Dajemo samo dokaz smjera = (obrat je sli¢an). Po pretpostavci, pos-
toji radikalno progirenje M/F t.d. K C M. Neka je L Galoisovo zatvorenje od
M nad F'. Dakle vrijedi FF C K C L, pa je po Galoisovoj teoriji

Gal(K/F) ~ Gal(L/F)/ Gal(L/K).

Po Napomeni prije teorema, dosta je dokazati da je Gal(L/F') rjesiva (jer tada
slijedi i da je Gal(K/F) rjesiva).

Posto je po Lemi L radikalno proSirenje od F, postoji niz

F=LyCLiC...Ly=1L,

gdje je Liy1 = L;( "/a;). za neki a; € L;, i n; € N. Imamo 2 slu¢aja.
1) laksi sluéaj: ¢, € F zasve i =1,...,s. Po Kummerovom teoremu vrijedi da
je Lit1/L; ciklicko prosirenje, pa time i normalno.

Definirajmo G; := Gal(L/L;) i G := Gal(L/F'). Po Galoisovoj teoriji vrijedi

1=Gs<G_1<... <G <Gy =G.

Posto je L;11/L; normalno prosirenje, imamo da je G;+1 < Gj, te je po Galo-
isovoj teoriji Gal(L;+1/L;) ~ G;/Git1 ciklicka grupa (a time i Abelova). Ovo
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dokazuje prvi slucaj.

2) opéi sluéaj. Definirajmo E := F((n,,-..Cn.). Vrijedi da je E/F Galoisovo,
pa posto je L/F Galoisovo, vrijedi da je EL/F Galoisovo. Pogledajmo sada niz

ECELyCEL C...CEL.
Po prvom slucaju, vrijedi da je Gal(EL/FE) rjesiva. Takoder,
Gal(E/F) ~ Gal(EL/F)/ Gal(EL/E)

Posto je Gal(EL/FE) rjesiva, Gal(EL/E) < Gal(EL/F), i Gal(E/F) Abelova,
slijedi da je Gal(EL/F) rjesiva. Sada po Napomeni slijedi da je Gal(L/F)
rjeSiva.

O

Mi neé¢emo to raditi na ovom kolegiju, ali moze se lako dokazati da S, nije
rjesiva grupa za n > 5, te da za svaki n postoji (beskona¢no mnogo) polinoma
¢ije polje cijepanja ima Galoisovu grupu 5, nad Q, za svako n € N. Iz toga
slijedi sljedeéi vazan teorem.

Teorem 2.3.8: Abel-Ruffini

Opca polinomijalna jednadzba stupnja > 5 nije rjesiva radikalima.




Poglavlje 3

Prsteni cijelih

Cilj: Izgradnja "teorije faktorizacije" u poljima algebarskih brojeva K (proSire-
nja nad Q, tj. K/Q) i prstenima Z C Q.
Treba odabrati pravi potprsten R. Zelimo:

1. "Smislena teorija faktorizacije."
2. Prsten R odgovara polju K kao §to prsten Z odgovara polju Q.

a) K je polje razlomaka od R.
b) (jate) Va € K, In € Z t.d. na € R.

3. RNQ=2

Primijetimo: Svojstvo 2 ne odreduje R jedinstveno. Npr. neka je S = pravi
podskup prostih brojeva.
Definicija:

S~z = {% ta,b € Z,ged(a,b) =1, i svi prosti faktori od b su iz S}
Npr. za S = {2},

S~z = {;in :aEZ,nENo}
Vidjeli smo da opéenito faktorizacija na ireducibilne elemente u prstenima u
poljima algebarskih brojeva nije jedinstvena. Ono $to ¢emo umjesto toga postici
je jedinstvena faktorizacija proizvoljnog ideala na proste ideale.
Sada ¢emo vidjeti da to ne moZemo posti¢i u svakom potprstenu polja alge-
barskih brojeva.

28
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Primjer 3.0.1

Vrijedi Z[Vd] € Q(+/d) je potprsten. Neka je d = —3. Vrijedi.
4=2-2=(1+v-3)(1-V-3)

Elementi 1 £+ v/—3 su ireducibilni u prstenu Z[/—3].
Je 1i faktorizacija ideala na proste ideale jedinstvena u ovom prstenu?
Pogledajmo primjer:

a=(2,1++v=3) (nije glavni ideal)
a? = (2,14+v=3)(2,1+vV=3) = (4,2(1 + vV=3), -2+ 2/—3)

= (4,2+2v-3,-24+2V-3) = (4,2 4+ 2/=3)
=2(2,1+v-3) = (2)a
Imamo li jedinstvenu faktorizaciju ideala? Da je imamo, onda bismo
imali  (2) = (2,1 +1/=3), §to nije istina.
Odabrali smo krivi prsten! Pravi prsten bi bio Z [%‘T], i u njemu je
jedinstvena faktorizacija na proste ideale.

Definicija 3.0.2

Neka je R integralna domena, R C K, gdje je K polje algebarskih bro-
jeva. Element o € K je cijeli nad R ako poniStava normirani polinom iz
R[z]. KaZemo da je R integralno zatvoren u K ako svaki element iz
K, koji je cijeli nad R, lezi u R.

\ J

Primjer 3.0.3

Neka je R = Z, K = Q, i neka je o = r/s, gdje (r,s) = 1, ponistava
polinom f € Z[z] oblika:

T4 ap 12" 1+ dax+ag=0

r\"”" ry\n—1 r
= (—) +an—1<—) +--Fa—+a=0 /s"#0

s s s
Imamo:

P Ap 1 s o+ arrs” T+ aps™ =0,

= 5(an_1r" 4t arrs™ 2 4 ags™ ) = —r"
=s|—r"=s=1

Dakle a € Z.
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Propozicija 3.0.4

Ako je K polje razlomaka od R, i ako je R DJF, tada je R integralno
zatvoren u K.

O

Dokaz. Potpuno isto kao i u primjeru.

Obrat ne vrijedi! Prsten Z[v/—5] = R je integralno zatvoren u K = Q(v/—5),
koje je polje razlomaka od R, ali R nije DJF.

Primjer 3.0.5

Dali je uvjet da je K polje razlomaka od R uvijek potreban? Promotrimo
primjer Z[i] C Q(i). Element i € Q(i), jer polinom f(z) = z? + 1,
zadovoljava f(i) = 0, §to znaci da je i cijeli nad Z; dakle Z nije integralno
zatvoren u Q(7).

Primjer 3.0.6

Neka je
R=7Z[V-3], K=QW-3), f(x)=2*4+2z4+1¢cZV-3|x]

Vrijedi f(a) =0 za «a= % Posto o ¢ R slijedi da R nije
integralno zatvoren u K. Slijedi da Z[v/—3] nije integralno zatvoren.

Definicija 3.0.7

Kazemo da je a € Q cijeli algebarski broj ako postoji f € Z[x] takav
da je f(a) = 0, pri ¢emu je f normiran polinom. Skup cijelih algebarskih
brojeva oznacavamo s A.

Napomena: Uvjeti
1. R je integralno zatvoren u K.
2. K je polje razlomaka od R.

osiguravaju da je R "dovoljno velik". Mi zapravo trazimo najmanji takav R.

Definicija 3.0.8

Neka je K polje, a R prsten. Integralno zatvorenje od R u K je
podskup od K koji sadrzi sve elemente koji su cijeli nad R.
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Definicija 3.0.9

Neka je K polje algebarskih brojeva. Definiramo prsten cijelih brojeva
Ok u K kao integralno zatvorenje Z u K. Dakle O = AN K.

Treba dokazati da je Ok prsten!

Propozicija 3.0.10

Neka je K polje algebarskih brojeva (PAB). Za o € K sljedeée tvrdnje
su ekvivalentne:

1. a€e A (tj. a € Og).
2. Prsten Z[a] je kona¢no generiran Z-modul.
3. « pripada potprstenu R C K koji je kona¢no generiran Z-modul.

4. Postoji kona¢no generiran Z-modul R C K t.d. je aR C R.

Dokaz. (1) = (2): Postoji polinom f, = 2™ +a,_12" '+ ...+ ag € Z[z] takav
da je fo(a) = 0. Vrijedi
Zlo] = Z[xl/ (fa) -

Primijetimo da to zna¢i da u Z[a] vrijedi o = —a,_1a""! — ... — ag. Dakle,
Z|a] je kona¢no generiran kao Z-modul sa generatorima 1,a, a2, ..., a" 1, gdje
jen= deg(fa)'
(2) = (3): Uzmimo R = Z[«], koji je po pretpostavci kona¢no generiran.
(3) = (4): Uzmemo opet R koji zadovoljava (3); on ¢e zadovoljavati i (4).
(4) = (1): Pretpostavimo da postoji Z-modul R C K koji je generiran s
a1,az,...,04, € Ryteaaq; € Rzai=1,...,n. Tadazasve:=1,...,n vrijedi:

n
aa; = E bi]‘aj, bijEZ, t=1,...,n.
Jj=1

Zapisimo to kao:

((Sij()é — bZ]) a; = 0.
1

n
Jj=

Dakle, jednadzba

(6ija —bij)a; =0, i=1,...,n.
1

J

n

ima netrivijalno rjeSenje. Definiramo matricu M:

M = (o — bij)ij :
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Posto jednadzba ima netrivijalno rjeSenje, slijedi da je
det M = 0.
Medutim det M je normirani polinom u a:
A + (b1 + b+ A b)) @4 = 0.

Iz ovoga zaklju¢ujemo da je o € O

Neka je a € K. Tada postoji 0 # ¢q € Z takav da qa € Ok.

Dokaz. Neka je fo(x) = 2" +a,—12" "1 +...+ap € Q[z] minimalni polinom od
a. Postoji ¢ € Z takav da

qx" + qan12" " - 4 qag = qfa(z) € Z[a).
Definiramo polinom:
n
g(z) = Z q" ‘a;x" € Zx).
i=0
Vidimo i da je g normiran, dakle njegovi korijeni su cijeli. Vrijedi:
9(q0) = ¢"a" + ¢ an—10" "t + -+ ¢"ag = ¢" f(a) = 0.
Dakle, ga € Ok. O

Neka su «, 5 € O. Tada je Z[a, 5] kona¢no generiran Z-modul koji je

sadrzan u K. Opéenito, Z[ay,...,a,] je konaéno generiran podmodul
od K za ay,...a, € Ok.

Dokaz. Neka su ay, ...a generatori od Z[a], a by,...b; generatori od Z[3].
Slijedi da {a;b; | 1 <14 < k,1 < j <1} generira Z|a, f]. O

Teorem 3.0.13

Of je prsten.

Dokaz. Neka su «, € Og. Moramo dokazati da o + 8, € Og. Po prosloj
lemi Z [« f3] je konaéno generiran Z-modul, te slijedi da o+ 8, a8 € Z[«a, 8]. O

Propozicija 3.0.14

Neka je f(x) € Oklz] normiran, te je a € K korijen od f. Tada slijedi
da je a € Ok, drugim rije¢ima Ok je integralno zatvoren.
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Dokaz. Neka je:

fx)=a" +an_12" ' + -+ ag € Ok[z], gdje su a; € Ok.

Definirajmo S = Z|ag,...,an—1]. Po lemi je to kona¢no generiran Z-modul.
Ako definiramo S’ := S[a], tada je S’ kona¢no generiran S-modul, a time i
kona¢no generiran Z-modul. Po propoziciji (3), slijedi da je o € O. O

Zakljucak je da vrijedi
Ok =KnNnA={aeK: f,€lz]}={aeK: f,€0Oklz]},

gdje zadnja jednakost slijedi iz integralne zatvorenosti od O. Dakle Ok je
"dovoljno velik prsten".

Neka je K = Q(+/d), gdje je d € Z kvadratno slobodan. Odredimo O
Nekaje v € K = a=a+b/d, a,be Q b#0. Pretpostavimo da je
a ¢ Qia € Ok. Minimalni polinom f, od a je: fo(z) = 22 — 2ax + (a* — b2d),
(DZ).
a€Op & fo€Zlzle 20€Z; a*—bdcl

Ako a € Z = b%d € Z, pa posto je d kvadratno slobodan, slijedi da je
VeZ=>bel
=  aeZVd.

Za o € Z[Vd] slijedi f, € Z[z], dakle o € O. Dakle Z[vd] C Ok-.
Neka je sada a ¢ Z.

2
agZ % a:%, a1€Z:>%—b2d€Z

b
= b:%,hez

Vidimo, posto je a; neparan, da vrijedi af = b3 = 1 (mod 4), pa slijedi
l—d=a?—-b3d=0 (mod 4). Dakle, vrijedi d =1 (mod 4)
Dobili smo da je, ako K = Q(V/d), slijedi

o Z %ﬁ] , akod=1 (mod 4),
K =
Z[Vd), ako d=2,3 (mod 4).



POGLAVLJE 3. PRSTENI CIJELIH 34

3.1 Trag i norma

Definicija 3.1.1

Neka je K polje algebarskih brojeva tako da [K : Q] = n. Neka su
01,...,0, ulaganja K — C.
Za element o € K definiramo:

Txg(a) = Z o;(a), jetrag od a nad Q,
i=1

Nk jola) = Hoi(a), je norma od a nad Q.
i=1

Odmabh slijedi iz definicija:

T(a+pB)=T(a)+T(p),
N(af) = N(a)N(B), Vo,p €K,

T(ra) =rT(a)

N(ra) =r"N(a), reQuaek,
T(r)=n-r,

N(r)=r", vr € Q.

Neka je a element stupnja d nad Q ([Q(«) : Q] = d). Tada definiramo trag
t(a)) 1 normu n(a) kao zbroj (umnozak) konjugata od o nad Q.

Vrijedi T(ar) = Zt(a), i N(a) = n(a) 4.

Dokaz. Ovdje su t(a) i n(«) trag i norma od « u odnosu na prosirenje Q(«)/Q.
Bududi da se svako ulaganje iz Q(a) — C moze progiriti na to¢no % ulaganja
K < C, te je svako ulaganje od « odredeno djelovanjem na Q(«), lema slijedi.

O

T(a) i N(a) € Q.

Dokaz. Dovoljno je prema Lemi dokazati da t(a) i n(a) € Q.
Neka je minimalni polinom od a nad Q:

f(z) = 2+ ag 12+ a4 ao

=(x—o)(z—a) - (x—ag).
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Prema Vieteovim formulama,

Ha) = —aq1 € Q,

Korolar 3.1.4

Ako je a € Ok, tada je T'(a), N(«) € Z.

Dokaz. Buduéi da je a € Ok 1 da je f(x) € Zlz], slijedi odmah t(a), n(a)
Z.

Primjer 3.1.5

K = Q(Vd)
TK/Q(CL—Fb\/E) = 2a
Nicjgla+bVd) = a® — db?.

Lema 3.1.6

Za u € Ok vrijedi

Om

we O <<= N(u) ==l

\

Dokaz.

.

Postoji v € Ok takavda wv=1 /N
N(uww) =1 =1 —  N(u)N(v) = 1.
Po Korolaru, N(u), N(v) € Z, pa N(u) = £1.
Neka je f minimalni polinom od wu.
f@) =2 +ag 12 4.+ arx + (=1)%n(u) € Zx],
0= f(u) =u+ag_1u® 4+ ...+ (—1)%n(u)
=u W™ + a1+ +a) = (-1 n(w) € {£1}
= wue 0.

OJ

Odredite O za K = Q(v/—2).
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RjeSenje: Znamo da je O = Z[v/—2]. Vrijedi @ € O = a = a +
bv—2, a,be€ Z. Vrijedi

N(a) = a® +2b%, pa je
N)==+1 & & +2°=1< a==1, b=0.

Zaklju¢ujemo O = {+1}. O
Analogno vrijedi za sve Q(v/d), gdje je d < 0, osim za d = —1, —3. Za K = Q(4)
smo ve¢ pokazali:Oj = {£1, £i}.

Neka je sada K = Q(v/—3). Znamo da je Ox = Z [@} . Za a € Ok

imamo a = a + bHT\/:S, a,b € Z. Tada vrijedi:

2
N(a) = <a+ g) + sz’

=a®+ab+ b%.
Ako je N(a) = +£1, tada imamo:

a’>+ab+ b =1.

Zakljuc¢ujemo:
b < 1,
b:—l:l—a+a2=1:>a€{0’1}:>ae{1_;_73’_1_2\/_73}’
sz:anl?O&G{il}’
b1:31+a+a21¢a€{1v0}§a€{1+;/73’1+2\/73}.

Dakle,

0% — {iL 1 i2\/—3’ -1 iQ\/—?)}.

(4) U sluéaju kada je K = Q(+/2), imamo

Ok = Z[\/ﬁ]a
ozza+bxf2, a,b e,
N(a) = +1 & a® — 2% = £1.
Vrijedi: N(1++v2) = —1, N((1+v2)") = (—1)". Dakle O} je beskonac¢na
grupa. Iz teorije brojeva zapravo mozemo zakljuciti
O ={(1+V2)",n € Z}.

Norma se moZze Kkoristiti da se pokaZe da je element o € O ireducibilan ako
je N(a) = £ prost broj. O¢ito to implicira da je « ireducibilan.
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1. 94 /10 je ireducibilan u Z[v/10], jer je N(9 ++/10) = 81 — 10 = 71, §to
je prost broj

2. Neka je O = Z[v/—5]. Tada Ok ne sadrzi elemente ¢ija je norma = +2
(mod 5) posto
a® 4+ 5b%> = £2  (mod 5),

nema rjeSenja. Slijedi da su npr. elementi 2,3, 1++/—5 ireducibilni (posto
ne postoje elementi norme +2,+3 u Ok).

Norma i trag elementa se mogu definirati opéenitije. Neka je L/K prosirenje
polja, gdje je [L : K] =n, a 01,...,0, su K-ulaganja L — C.
Definiramo trag 77,k («) kao:

Ty k(a) = oi(a)
i=1
i normu Ny, /g (o) kao:
n
Np/k(a) = Hai(a)-
i=1

Lako se vidi sljedece:

Propozicija 3.1.8

Neka je o € L, te L/K progirenje. Vrijedi Ty, /i () € K, te Np/k(a) €
K. Ako je o € Op, tada je T k() € Ok, te Np k(o) € Ok.

Teorem 3.1.9

Neka su K C L C M polja algebarskih brojeva. Tada za a € M vrijedi:

Tp x (Tuyo(@)) = Tayx (@),
Nijk (Nayr(a)) = Nag/re ().

Dokaz. Neka su o1, ...,0, K-ulaganja L — C i neka su 74,...,7, L-ulaganja
M — C. oj-eve moZemo prosiriti na K-ulaganja M < C, gdje je M normalno
zatvorenje od M nad K (neée biti bitan izbor ulaganja).

Tada imamo:

Trx (Tayn(e) =Tk (Z Tz'@é))

= Z o (Z Ti(a)>

i=1

= Zajri(a).
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gdje o;7; K-ulaganja M u C, te ih ima m -n = [M : K|. Treba pokazati da su
sva razlicita, to jest

0T} = 0uTy & i=u, J=u.

Neka je 07 = 04Ty
= O‘Z‘Tj|L = O’UTy|L
=  oilL =o0ulL

posto je 7;, T, identiteta na L. Dakle ¢ = u. UvrStavanjem gore dobijemo

TilM=TolM =T =Ty =>j=0.

O

3.2 Diskriminanta

Definicija 3.2.1

Neka je K PAB i neka je [K : Q] = n. Oznac¢imo sa o1, ...,0,, ulaganja
K — C, ineka su a1,...,a, € K. Diskriminanta A (aq,...,q,) je

kvadrat determinante matrice (o;(c;)), I

Primjer 3.2.2

Neka je K = Q(v/2). Tada:

s0)=|( )

Lema 3.2.3

Neka su oznake kao i iznad. Tada vrijedi

2

= (—2v2)? =3.

A(Oq, RN ,Oln) = det (TK/Q(aiaj))ij .

\

Dokaz. Neka je A= (0,(c;))i;j. Posto je det(A) = det(A7), vrijedi

.

= det (ﬁK/Q(aiaj))ij
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‘D

Primjer 3.2.4

A(1,\/§):’<§ 2)‘:8.

Korolar 3.2.5

Alag,...,an) € Q,iakosuay,...,«an € Ok, tada je Ao, ..., ap) € Z.

Teorem 3.2.6

Alaq,...,an) =04 ay,...,q, su linearno zavisni nad Q.

Dokaz. Ako su aq,...,a, linearno zavisni, tada postoji relacija

n
a1 = E ;0.
=2

Onda imamo matricu:

o1 o1 o1(an
pon qten sl e e aia)
. = a;| o2() o2 (i) =0
=2
on(ar) op(ag) -+ oplay)
Dakle imamo 2 ista stupca, pa je A(aq,...,a,) =0.

Neka je A(aq,...,a,) = 0 1 pretpostavimo suprotno, tj, aq,...,an
linearno nezavisni nad Q.
Oznagimo s Ry, ..., R, retke matrice

A= TI'(OliOéj)ij.

Vrijedi det A = A (aq,...,a,) =0.
= Ry,..., R, su linearno zavisni nad Q, pa postoji relacija:

a1Ry +asRo+ ...+ a,R, =0, gdjesua; €Q, 1inisusvia; =0
pa posto suma u j-tom stupcu mora biti 0 vrijedi:
n
ZaiTr(oziaj) =0, Vj=1,...,n.
i=1

Neka je @ = a11 + asas + ... + apay, = a # 0.
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Pogledajmo

Tr(aq;) = Tr (Z aiaiaj> = Zai Tr(a;e) =0, Vi=1,...,n.
i=1 i=1

= Tr(af) =0, VB€EK.
Medutim

n=Te() =T (a- 1) <o

dakle dobili smo kontradikciju. O

Propozicija 3.2.7

Neka je K PAB s bazom (nad Q) ay,...,a, € Og. Neka su a; € Q takvi
da je a1y + asas + ... + apa, € Ok. Tada je A(aq,...,an) - a; € Z.

Dokaz. Neka je A := Aoy, ..., qn).
Neka su o1, ...,0, ulaganja K < C. Promotrimo sustav

oi(a) = aroi(aq) + agoi(az) + ... + anoi(ay).

MoZemo ga promatrati kao sustav s n "nepoznanica" a;. MoZe se zapisati u
matrici oblika:

o1(a) o1(ar) -+ or(ay) ay

on(a) on(ar) o onlay) an,

Posto je A # 0, slijedi da postoji jedinstveno rjesenje. Po Cramerovom

pravilu: a; = %, gdje je 7; determinanta matrice dobivene zamjenom i-tog
o1(a)

stupca sa stupcem : , a d je determinanta matrice jednadzbe. Posto
on ()

ulaganje o; Salje a;; u neki njegov konjugat, slijedi da su 4,v; € Ok, te

7:6*
Aa; =
“=s

:’}/Z‘(SE Ok.
Sh_]edl Aai € Q NOg = 7. O

Teorem 3.2.8

Neka je K konacno proSirenje polja Q stupnja [K : Q] = n. Tada je
prsten cijelih brojeva O slobodan Z-modul ranga n.
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Dokaz. Neka je {aj,as,...,a,} baza od K nad Q s «; € Ok; takva postoji po

Lemi(3.0.11} te
Zog + ...+ Zaoy, € Ok,

slijedi da je rang od Ok vedi ili jednak od n.
Po prosloj propoziciji vrijedi:

Ok C (Za1+Za2+--~+Zan),

Alar,ag,. .., qp)

pa slijedi da je rang O manji ili jednak od n. O

Ok je Noetherin prsten.

Dokaz. Po prosSlom teoremu mozemo zapisati
OK = Z[ah cee 70571}

za neke aq, ..., qy,.
Dakle, postoji surjektivni homomorfizam

Zlx1, ..., xn] = Z]aq, ..., ap).
Posto je Z[x1, ..., x,] Noetherin prsten, te posto je slika homomorfizma iz
Noetherinog prstena opet Noetherin prsten, slijedi da je i Z[ay, ..., ay] Noet-
herin prsten. O

3.3 Dedekindove domene

Definicija 3.3.1: Dedekindova domena

Integralnu domenu R nazivamo Dedekindovom domenom ako zadovoljava
sljedeée uvjete:

e R je Noetherin prsten (svaki ideal u R je kona¢no generiran),
e R je integralno zatvoren u svojem polju razlomaka,

e Svaki nenul prosti ideal je maksimalan.

Lema 3.3.2

Neka je a ideal u O (prstenu cijelih brojeva PAB K), gdje a # (0).
Tada vrijedi a NZ # {0}.
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Dokaz. Neka je a € a. Tvrdimo da
Nk jola) € anZ.

Treba dokazati da Nk q(a) C a.
Neka je o : K < C neko ulaganje, te ay,as, ..., q, svi konjugati elementa
a nad Q. Neka je bez smanjenja opcéenitosti oy = o(«). Tada vrijedi:

NK/Q(O{) = Q109 Oy,

te definirajmo o/ := a3 - - - @v,,. Primijetimo da su svi konjugati od « cijeli alge-
barski brojevi, pa je i o cijeli algebarski broj.
Slijedi

o Nggole)

aq

€ Ok

Neka je o takva da je o/ := o= 1(a’).
Buduéi da je a ideal, zaklju¢ujemo da o’ € a. Kona¢no imamo:

o a=0"Hd) o o) =0y cay) = N jgla).

Dakle o’ - o € Z N a, te smo gotovi. O

Propozicija 3.3.3

O je Dedekindova domena.

Dokaz. Tvrdimo da je svaki nenul prosti ideal u Og maksimalan ideal.
Neka je P neki nenul prosti ideal, pa po Lemi[3.3.2| postoji m € ZNP. Dakle,
(m) C P.
Pogledajmo preslikavanje ¢ : Ok /(m) — Ok /P zadano sa

a+(m)—a+ P.

O¢ito je surjekcija.
Ako je [K : Q] = n, tada je

|Ok/(m)| = |(Zay + Zas + ... + Zay)/(m)| = m™ < 400,

za neke aq, ..., qy,.

Slijedi da je Ok /P kona¢na integralna domena. Medutim, svaka konacna
integralna domena je polje (DZ - pogledajte potencije od z, pa zbog kona¢nosti
postoji neki m takav da je 2™ = z, pa slijedi da je 2™~ ! = 271.) Slijedi da je
P maksimalan ideal. O
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3.4 Jedinstvena faktorizacija u Dedekindovim do-
menama

Neka je A ideal u Dedekindovoj domeni R. Tada postoje prosti ne-nul
ideali p1,...,pp t.dp1-... - py, C A.

Dokaz. Pretpostavimo suprotno, neka postoje ideali za koje to ne vrijedi, te na-
zovimo skup takvih ideala S. Posto je R Noetherin, postoji maksimalni element
u tom skupu; nazovimo ga B. Posto je B iz S, on nije prost.

Dakle postoje o, 8 € R takvida af € B,alia ¢ Bif ¢ B.

Posto je B maksimalan u S, slijedi da B + («) i B + (8) nisu iz S. Sada
imamo

(B+ ())(B+ () = B- B+ B(a) + B(f) + (a)(8).

Vidimo da su svi sumandi iz B, pa je i suma iz B.

Medutim, posto B + («) i B + (8) nisu iz 5, slijedi da postoje ideali p;, ¢;
takvi da

B+ (a)2p1--- pr,
B+B)2aq ... q
pa je
Lo prGr ..o q C (B4 (a)(B+(8)) C B,
S§to je kontradikcija s naSom pretpostavkom. O

Neka je A # 0 ideal u Dedekindovoj domeni R, i neka je A # R. Neka

je K polje razlomaka od R. Tada postoji element v € K takav da je
YACRivy¢R.

Dokaz. Neka je 0 # a € A proizvoljan. Sada po prosloj lemi postoje prosti
nenul ideali pq, ..., pr takvi da je

(&) Dp1-... D

takvi da je k minimalan. Posto je prsten R Noetherin, A je sadrzan u nekom
maksimalnom idealu P. Vrijedi

POAD(a)2p1-... Dk

S druge strane, posto je R DD, slijedi da su p1, ..., pr maksimalni. Dakle bez
smanjenja opcenitosti vrijedi P = p1; ovo vrijedi jer je P prost, pa ako sadrzi
produkt, onda mora sadrzati i jedan faktor. Primijetimo da ako je k = 1, tada
jepa-...-pr=R.

Po pretpostavci minimalnosti od k, slijedi da « ne sadrzi produkt k& — 1
prostih ideala. Dakle postoji 8 € pa - ... pi takav da 8 ¢ («).

Neka je v := g Tvrdimo da ~ zadovoljava lemu. Vrijedi
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L y¢Rjer ¢ (a)

2. Za svaki o € A, slijedi da je o’ € p1-p2- ... pr, poSto je & € p1, a
B E€ps-... pg. Dakle o/ € py - ... pr C (). Slijedi da je
!
1
o= e Ly R
a o«
O

Propozicija 3.4.3

Neka je A # 0 ideal u DD (Dedekindovoj domeni) R. Tada postoji ideal
B C R t.d je AB glavni ideal.

Dokaz. Neka je 0 # o € A ineka je
Bi={f e RIFAC (a)}.

Posto je a € B, slijedi da B # (0). Takoder, lako se provjeri da je B ideal.
Nadalje, po definiciji od B slijedi da je

AB C (a).
Tvrdimo da je AB = (). Promotrimo C := LAB C R. Vrijedi
AB = (o) <= C = R.

Posto su A i B ideali u R, slijedi i da je C' ideal u R.

Pretpostavimo suprotno, tj. da je C' # R. Po Lemi postoji v € K
takav da v ¢ R takav da je vC C R.

Mi éemo pokazati da je v nultotka normiranog polinoma iz R[z], iz Cega
ée slijediti da je v € R, posto je R integralno zatvoren. To ¢e medutim biti
kontradikcija s naSom pretpostavkom na +.

Primijetimo da za svaki 8 € B vrijedi

1
f=-afel,
o]

pa je B C C. Imamo
vB C~vC C R.

Sada tvrdimo: . Neka je 8 € B proizvoljan. On zadovoljava

Ba’ € (a) za sve o € A. Zelimo dokazati:
Vol € A, 4B € (a).
Fiksirajmo o’ € A. Vrijedi

pa’ € (o) (po definiciji od B),
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= Ba’ = ad, zanekide R
1
= §=-dpBecC
a
= e€yCCR
= vBd’ = ayd € (o) posto je vd € R.
=€ B=—~vBCB.

Imamo da je B ideal u R, pa posto je R Noetherin, B je kona¢no generiran
kao R-modul, tj. B = R[by,...,b,]. Ako promotrimo mnoZenje s 7 to je "line-
arni operator" u B, pa moZemo djelovanje na bazu {by, ..., b, } zapisati s nekom
matricom M s koeficijentima iz R. Po Hamilton-Cayleyevom teoremu postoji
normirani polinom iz R[z] koji poniStava -y, poSto je v svojstvena vrijednost od
matrice M. O

Neka su A, B, C ideali u Dedekindovoj domeni R i neka je A # {0}. Tada
AB = AC povlaci da je B =C.

Dokaz. Neka je A’ C R ideal takav da je AA’ = («) glavni ideal; takav postoji
po Propoziciji |3.4.3
Posto je AB = AC, slijedi da je

AA'B = AA'C,

pa je
(a)B = (a)C, to jest aB = aC.

Slijedi da je B = C. O

Definicija 3.4.5

Za ideale A, B u Dedekindovoj domeni R kazemo da B dijeli A ako
postoji ideal C' u R takav da je A = BC.

Primijetimo da ako B dijeli A, tada B O A. Dokazimo da u Dedekindovoj
domeni vrijedi i obrat ovoga.

Neka su A, B ideali u Dedekindovoj domeni R. Tada B dijeli A ako i
samo ako B D A.

Dokaz. Ovo je ocito.
Neka je B D A, B’ ideal takav da BB’ = (). Neka je

1
C=-B'ACR.
B
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Ovo je ideal u R posto je B D A. Slijedi

1 1
BC = ~BB'A=—BA=A.
B B

Definicija 3.4.7

Kazemo da se ideal A C R faktorizira u proste ideale ako se moze zapisati
kao A = PP, ... Py, gdje su P; # 0 prosti ideali u R. KaZemo da se A
jedinstveno faktorizira u proste ideale ako je faktorizacija od A u proste
ideale jedinstvena do na poredak P;-ova.

Teorem 3.4.8: Teorem o jedinstvenoj faktorizaciji u Dedekindo-

vim domenama

Svaki nenul ideal u Dedekindovoj domeni R ima jedinstvenu faktorizaciju
u proste ideale.

Dokaz. Dokazimo prvo da se svaki nenul ideal faktorizira u proste ideale. Neka
je S skup pravih ideala koji se ne faktoriziraju u proste ideale. Pretpostavimo
S # 0.

Posto je R Noetherin, slijedi da S ima maksimalni element A (primijetimo da
ovo ne znadi da je A maksimalan ideal). Slijedi da je A C P za neki maksimalan
ideal P. Slijedi da je P prost ideal. Po Lemi [3.4.0] slijedi da P dijeli A, pa je
A = PB za neki ideal B u R.

Pokazimo da A # B. Pretpostavimo suprotno, tj. A = B. Podijelimo
B = A= PB s B; dobijemo P = R, §to je kontradikcija.

Dakle imamo A C B, A # B, tj. A C B. Slijedi da B ¢ S, dakle B se
faktorizira na proste ideale

B=P...P.

Slijedi da se A faktorizira u proste ideale
A=PP,... P,

Sto je kontradikcija.
Dokazimo sada jedinstvenost faktorizacije. Pretpostavimo

Q1...Q.=A=P,...P,

za neke proste ideale @Q;, P;. Slijedi Pi|Q1...Qs, paje Pr D Q1...Qs. Podto
je Py prost, slijedi da P, 2 Q; za neki i € {1,...s}. Bez smanjenja opcenitosti
mozemo pretpostaviti da je i = 1. Imamo P; O @1, te je Q1 maksimalan, poSto
smo u DD. Dakle slijedi P, = Q1. Dijeljenjem s P; = @)1, te ponavljanjem ovog
postupka dokazujemo teorem. O
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Primjer 3.4.9

Pogledajmo faktorizaciju 6 u Z[/—5|. Neka je

P, =(2,14+v/-5), P,=(3,1++/-5), P3=(3,1—+v—5).

Sada imamo
(PE)(P2P3) = (2)(3) = (6) = (1 + V=5)(1 — V=5) = (P P) (P Py).

Tako faktorizacija elemenata u ireducibilne nije jedinstvena, faktorizacija
u proste ideale je.

3.5 Odredivanje O

Sjetimo se da je slobodna Abelova grupa ranga n generirana s {z1,..., 2, }.

Lema 3.5.1

Neka je G slobodna Abelova grupa ranga n s bazom {z1,...,z,}. Pret-
postavimo da je A = (a;;) n X n matrica, s a;; € Z. Tada su elementi

n
Yi = E AijTj, iil,...,n
j=1

baza za G ako i samo ako det A = +1.

Dokaz. Imamo

n
Y = E aij‘%]’, izl,...,n,
Jj=1

pa posto y;-evi ¢ine bazu, imamo i
n
Ty = E bz’jyj, i:l,...,n,
Jj=1

za neke b;j-eve. Neka je B = (b;;). Slijedi

vi = ai; Yy biyk = Y (> aijbik) -
k=1

j=1 k=1 j=1

Dakle imamo AB = I,,, paje det(AB) = det Adet B = 1. Postosudet A,det B €
Z, slijedi det A € {£1}.
Neka je det A € {£1}. Primijetimo da to implicira da su y;-evi linearno
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nezavisni. Vrijedi A=! = (det A)*lfi, te su koeficijenti od A iz Z. Slijedi da su
koeficijenti od A™! iz Z. Neka je B = A~ = (b;;). Imamo da je

n
ri =Y by,
Jj=1

pa slijedi da y;-evi generiraju G (poSto moZemo generirati sve z;-eve.) O

Sjetimo se A({a1,...,an}) = (det(o;(;));;)?. Uzmimo neki skup {81, ... 8}

takav da
n
Br = Z Cik i,
i=1

za neke ¢;;, € K, te neka je C = (¢;;).
Tada vrijedi (ostavljamo dokaz za DZ):

A{B1s..., Ba}) = (det O)2A({ay, ..., an}). (3.1)

Definicija 3.5.2

Diskriminanta Ax od PAB K je A({aq,...,a,}), gdje je {ai,...,an}
baza od Ok kao Z-modula.

Teorem 3.5.3

Neka je G aditivna podgrupa od Ok ranga [K : Q] = n sa Z-bazom
{a,...,a,}. Tada |0k /G|? (ovdje O promatramo kao aditivnu grupu)
dijeli A({aq,...,an}).

Dokaz. Vrijedi (DZ): Postoji baza {1, ... 8n} od Ok takvadaje {u151, ..., pnBn}
Z-baza od G, gdje su pu; € Z. Sada je po (3.1)

A(ar, .. an}) = (1 oo ) 2AUBL -, Ba)) = |Ok JGPAK.

OJ

Sada tvrdnja teorema slijedi iz Ai € Z.

Propozicija 3.5.4

Neka je G C Ok aditivna podgrupa sa Z-bazom {aq,...,a,}. Tada
postoji z € Ok oblika

1
0 75 xr = 5(/\10&1 +-~-/\nan)7

gdie su 0 < X\, < p—1,\ € Z, i p je prost broj takav da
P?lA({a1, ..., an}).
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Dokaz. Ako je G C Ok, slijedi da je |Ok /G| > 1, pa postoji prost p koji dijeli
|Ok /G| ielement G # U € Ok /G takav da pU = G.
Dakle postoji z € iG, pa se on moze zapisati kao

1
x=—(Ara1+ ... \pay).
p

Mozemo (ako je potrebno, nakon dodavanja elemenata iz G) pretpostaviti 0 <

Dokazite da za K = Q(v/5) vrijedi O = Z [1+2\/5} .

Rjesenje:
Posto su generatori od Z {1'*'2‘/5] cijeli algebarski brojevi, o¢ito je da O 2
Z [—Hf].

Treba samo provjeriti da Z

—

1+2\/5] nije strogo manji od Ok.
1

Baza za Z {#5] (nad Z) je {1, +T\/g}, te je
+

(p57)-

(ovdje smo rac¢unali diskriminantu preko traga). Posto je A ({1, 1+2‘/5}) kva-
dratno slobodan, slijedi O = Z [#ﬂ .

2 1

=5
1 3

Primjer 3.5.6

Odredite O za K = Q(V/5).

RjeSenje: Neka je § = /5. Ocito je {1,6,0?} Z-baza od Z[V/5], koji je
ranga [K : Q]. Imamo 3 ulaganja o; : K — C, zai = 0, 1,2, gdje je 0;(0) = (',
gdje je € tredi korijen iz jedinice.

Sada imamo

16 e 11 1l
A{L6,02)) =11 ¢o ¢0?| =) )1 ¢ | =53 -¢)? =35
1 ¢%0 (¢o? 1 ¢ ¢

Dakle, zakljuéujemo [O : Z [V/5]] € {1,3,5,15}.
Ako Z[V/5] # O tada postoji a € Ok gdje vrijedi jedna od sljedeéih mo-
gucnosti:
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(1) 0# a= %A+ X0 + A\30%), gdje su 0 < \; < 2, ili

(2) 0#a=

Pokazimo da (2) nije moguée, dok (1) ostavljamo za DZ. Posto je 1+(+(? =
0 slijedi da je T'(a) = 3/5\; € Z, pa slijedi A; = 0. Ra¢unamo N (af + b§?) =
... = 5a> + 25b3. Dakle imamo

1
3
%()\1 + X2 + A362), gdje su 0 < \; < 4.

_AB+5M

N(a) 25

Z.
Slijedi
A3 +5X3 =0 (mod 25). (3.2)
Primijetimo
A =0 (mod5) <= A3=0 (mod?5),

i ako je to istina, dobijemo a = 0, pa mozemo ovaj sluc¢aj odbaciti.
Neka je sada A3 £ 0 (mod 5); sada iz (4.4)) slijedi da je

(;\—Z\Q) =5 (mod 25),

pa slijedi

<_/\—)3\2> =0 (mod 5),

Sto je ocito kontradikcija jer implicira Ay =0 (mod 5).

Neka je K = Q((p). Pokazimo da je O = Z[(p).

Rjesenje:
Ocito je Ox D Z[(p). Vrijedi

T((p)=C+C+.. .+ =1
Takoder T'(¢) = T(¢,) = —1 zasve 1 <4 < p—1. Vrijedi (1) = p— 1. Takoder
T(l_Cp):T(l—CZ,)=pzasvelgi§p_1.

Sjetimo se da je

pa slijedi
p=%,1)= [[ -¢)=N(a-¢) (3.3)
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zasve 1 <i<p-—1.
Dovrsit éemo dokaz primjera (do kraja poglavlja) s nekoliko rezultata.

Vrijedi pZ = (1 — ¢,)Ox N Z.

Dokaz. Primijetimo da (1 — ¢,)|p (u Ok) pa je pZ C (1 — (,)Or N Z. Pretpos-
tavimo da ne vrijedi jednakost. Tada posto je (1 — (,)Ox NZ ideal u Z i pZ je

maksimalan u Z, slijedi (1 — (,)Ox NZ = Z.
Dakle 1 € (1 — (,)Ok, to jest postoji @ € O takav da je 1 = (1 — (,)a.
Medutim tada bi moralo vrijediti N (1 — (,) = %1, §to smo vidjeli da ne vrijedi.
O

Korolar 3.5.9

Za svaki o € O vrijedi T((1 — (p)a) € pZ.

Dokaz. Neka su o; takvi da je 0;((p) = ¢}
T((1—=¢p)a) =o01((1 = Gpla) + ...+ op1((1 = Gp)a)
=(1—-¢p)or(a)+(1— Cz)O'g(Oé) +...(1- Cgil)ap_l(a).
Primijetimo da je

1-¢
1-¢
pa (1 —¢)|T((1 - ¢p)a). Dakle, imamo

=1+G+G+...+¢ €Ok,

T((l - Cp)a) € (1 - Cp)OK NZ = pZ.

Propozicija 3.5.10

Z[Cp) = Zlz]/ dp-

Dokaz. Znamo Z[(,] C Ok. Neka je a € Ok. Tada je
a:a0+a1Cp+...+ap_2C£72, a; EQ.
Pomnozimo sve s (1 — (,); dobijemo

a(l=¢) =ao(l—G) +ar(lp — )+ .. apa(E2 =27,
Slijedi

T(o(1 = () = T(ao(1 = () + T(ar1p) — T(a1()) + Tlaz(y) — T(azl))+



POGLAVLJE 3. PRSTENI CIJELIH 52

st T(ap72<£_2) - T(“p*ﬁfj_l)-
Sada posto je T'(a;(}) = T(a;()) za svaki 1 <4 < p — 1, slijedi
T(a(1 = ¢p)) =T(ao(l — (p)) = aoT((1 = (p)) = aop-

Posto je po Korolaru m T(a(1 — ¢p)) € pZ, zakljuéujemo da je ag € Z.
Imamo da je o — ag € Ok, te slijedi

B i=(a— ao)CZjl =(a— ao)(f,’*l =a1+a(p+... a,,,rzgg*i” € Ok

Ponavljanjem istog postupka za 3, tj. promatranjem T'(5(1 — (,)), dobijemo
a1 € Z, i analogno za ostale a;-eve. O



Poglavlje 4

Faktorizacija ideala u poljima
algebarskih brojeva

Zelimo vidjeti kako se (n) faktorizira u Ox za PAB K. Vidjeli smo da se u
Z[\/-5] ideal (6) faktorizira kao (6) = PP, Ps.
Pogledajmo kako se (n) faktorizira u Ok za n € N.. Primijetimo da vrijedi

k
(n) =(p1)---(px) gdjen= sz

(2
Dakle, treba samo odrediti kako se (p;)-evi faktoriziraju. Vidjeli smo na primjer
(5) = (2+14)(2—1) u Z[i]. Moze se i opéenitije promatrati: kako se za prosirenje
PAB L/K faktoriziraju prosti ideali POk u O, tj. koja je faktorizacija u
proste ideale od POy,.

Lema 4.0.1

Neka je K PAB i p prost ideal u Og. Tada postoji prost broj p € Z
takav da je p € ZNp.

Dokaz. Prema Lemi imamo p NZ # {0}. O¢ito jeip NN # {0}. Neka je
n = min pNN. Tvrdimo da je n prost. Pretpostavimo suprotno. Neka je n = ab,
gdje a,b € N\{1}. Posto je n € p, vrijedi da je ab € p, pa posto je p prost,
slijedi da jeilia € p ili b € p. O

Posljedica je da se svaki prosti ideal u nekom Ok moZe nac¢i kao faktor nekog
(p) za p € Z. Dakle, trebamo vidjeti kako se faktorizira pOg.

Pogledajmo sada jednostavniji slu¢aj kada je Ox = Z[a], za neki o € Ok.
Ovo ne mora vrijediti opéenito! Neka je f = f, minimalni polinom od «a.

Imamo

53
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O ———— Ok /pOk
Zlz)/(f) — Z[x]/(p, f) ~ Fp[]/(f)

gdje su vertikalne strelice izomorfizmi, a f oznacava redukciju od f modulo p.
Pogledajmo prvo sluc¢aj kada je f stupnja 2. Onda dakle mora i f biti stupnja

2, jer je f normiran. Polinom f je ireducibilan, ali f ne mora biti. Imamo 3
moguénosti:

1. f je ireducibilan
2. f=gh, gdjesug,he [, [x] stupnja 1, te nisu medusobno asocirani.
3. f=g?% gdje je g € F,[z] stupnja 1.

Pogledajmo sada $to se dogodi u svakom od slucaja:

1) f je ireducibilan <= (f) je maksimalan ideal u F,[z] <= F,[z]/(f) je
polje <= Ok /pOk je polje <= pOk je maksimalan <= pOf je prost.

2) f=gh =

Fpla]/(F) = Fpl]/(g) x Fplz]/(h) ~ Fp x Fy.

Pogledajmo homomorfizam

o+ O = Fylal /() = B[]/ () X F, ]/ (F),
a (z+(f) = (@ +(9),z + (h)).
Vidimo da je jezgra tog preslikavanja pOg. Stavimo ¢(a) = (¢1(a), p2(a)).
Tada ¢e biti ker p; = (p, §(«)) i ker pa = (p, h(«)), gdje su g, h € Z[X] bilo koji
polinomi takvi da su njihove redukcije modulo p jednake g i h. Dakle, imamo

ker ¢ = ker 1 Nker 5. Posto su (p, g(a)) i (p, h(a)) relativno prosti (jer su g i

h), ti. (p, §(@)) + (p, h(@)) = (1), vrijedi

pOx = ker ¢ = ker o1 Nker gy = ker @1 - ker o = (p, §()) - (p, (),

tj. pOxk je produkt 2 razli¢ita prosta ideala.
3) U ovom slu¢aju analogno dobijemo pOf = (p, g(a))?.

Primjer 4.0.2

Pogledajmo faktorizaciju 2,3,5 u Z[i] ~ Z[z]/(2? + 1).
2 +1=(x+1)? (mod?2) = (2)=(2,14i)%=(1+1)2

2?2 + 1 je ireducibilan u F3 = (3) je prost u Z[i].
22+1 = (z—2)(z+3) (mod 5) = (5) = (5,i—2)(5,i—3) = (2+4)(2—1).
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Notacija: K = Q(+/d), gdje je d kvadratno slobodan, O prsten cijelih K,
Ok = Z[a], f = fo je minimalni polinom od a, a f je redukcija polinoma f
modulo p. -

Za prost broj p postoje tri moguce situacije za faktorizaciju f(x):

1. f(z) je ireducibilan, te je tada pOx prost.

2. f(x) = g(x)?, gdje je g linearni polinom, tada pOr = (p, g(a))?.

3. f(z) = g1(z)g2(z), gdje su g; i go linearni polinomi. Tada je pOx =
( 791(04) (p7g2(a))

Definicija 4.0.3

U slucaju (1), kaZemo da je p inertan Ok. U sludaju (2), kaZemo da se p
grana (ili ramificira) u Og. U slucaju (3), kaZemo da se p cijepa u O.

Sjetimo se

22 —d ako je d=2,3 (mod 4),
2’ —z+ 1% akojed=1 (mod 4).

Propozicija 4.0.4

Ako je d =1 (mod 4), tada se p grana u Q(v/d) ako i samo ako p dijeli d.
Ako je d = 2,3 (mod 4), tada se p grana u Q(v/d) ako i samo ako p = 2
ili p|d.

Dokaz. Promotrimo prvo slucaj d = 2,3 (mod 4). Vrijedi da se p grana ako i
samo ako postoji a € F,, takav da je z2—d = (z—a)? (mod p), §to je ekvivalentno
st

2?2 —d=2? - 2ax +a®> (mod p).

Oduzimajuéi 22 s obje strane, dobivamo:

2

2ax —d =a* (mod p).

Ovo je kongruencija polinoma koja je ekvivalentna s
26=0 (modp), a’*=—d (mod p).

Prva jednadzba je zadovoljena ako i samo ako p | 2ilip | a. Za p = 2 ocito

postoji a = a? = —d (mod 2). Ako je p | a, slijedi d = 0 (mod p), dakle p | d.
Obrnuto, ako p|d onda uzmemo 2 —d (mod z)? (mod p), pa se p grana.
Neka je sada d =1 (mod 4) i ozna¢imo s f = f,. Korijeni od f su

1++d

T1,2 = .
2
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Primijetimo da se p grana ako i samo ako su korijeni isti, §to je ekvivalentno s
tim da je vVd =0 u F,. Za p # 2, to je ekvivalentno s d = 0 (mod p), tj. p | d.

Zap =2, f ima linearni ¢lan, pa nije kvadrat (22 +a? = (z +a)? (mod 2)),
dakle 2 se ne grana. O

Propozicija 4.0.5

Neka je K = Q(v/d), gdje je 2 kvadratno slobodan. Tada
a) 2 se grana u Ok ako i samo ako d = 2,3 (mod 4),
b) 2 se cijepa u Ok ako i samo ako d =1 (mod 8),

¢) 2 je inertan u Ok ako i samo ako d =5 (mod 8).

Dokaz. a) slijedi iz prethodne propozijcije. Neka je sada d = 1 (mod 4); tada
je fa=a?—a— %. Neka je 1%461 =t. Tada je

E =z 4+t
Vidimo da je f, ireducibilan ako je ¢t = 1 (5to je ekvivalentno s d =5 (mod 8)),

te da je f, produkt 2 razli¢ita polinoma ako je t = 0 (8to je ekvivalentno s d = 1
(mod 8)), pa se u tom slu¢aju 2 cijepa. O
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Primjer 4.0.6

Neka je d = =5, Ok = Z[v/—5]. Faktorizirajmo prvih nekoliko prostih
cijelih brojeva u Og.

2 4+5=2+1=(z+1)? (mod 2),

— 20k = (2,V/—5+ 1)2 — 2 se grana,

?+5=2"+2=(z+1)(z+2) (mod 3),

= 30k = (2,V=5+1)(2,V=5 +2),

50k = (5,v/=5)? = (V/=5)%,= 5 se grana,

2+ 5=(x+3)(z+4) (mod7).

— 70k = (7,v/=5 +3)(7,V/=5 4+ 4) = 7 se cijep,
Pogledajmo p = 11: 22 4 5 je ireducibilan u Fy1[z], jer:

z (mod11) [0 1 2 3 4 5
2?+5 (mod11)[5 6 9 3 10 8

pa zaklju¢ujemo da x2+5 nema nultocaka u Fy1, pa je ireducibilan. Stoga
je 11 inertan u Og.
Pogledajmo p = 17. Promatramo x? = —5 (mod 17).

Medutim, provjerimo da je (%) = —1, pa je 17 inertan.

Definicija 4.0.7

Neka je p # 2 prost broj. Definiramo Legendreov simbol kao funkciju:

(3> L 7/pZ — {0, +1},
p
gdje vrijedi:

1, ako je a # 0 kvadratni ostatak modulo p,

(9) =<0, ako a =0,
p

—1, inace.

\ J

Cesto pisemo (%) izaa € Z, gdje se onda zapravo uzima kompozicija s

redukcijom modulo p.
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Korolar 4.0.8

Neka je p # 2 prost broj i Ok prsten cijelih nekog kvadratnog polja
K = Q(+/d). Tada vrijedi:

e p se cijepa u Ok <~ (%) =l

d) =1,
p

e pse grana u O < (%) =0.

e p je inertan u O <~

/

Dokaz. Promotrimo d = 2,3 (mod 4). p | d <= p se grana. Ako p{d, tada se
x? — d faktorizira kao produkt linearnih polinoma u F,[z] ako i samo ako 2% = d

(mod p) ima rjeSenje
d
p

Ako je d=1 (mod 4), tada su korijeni od f, jednaki
1++d

x1,2 = .
2

Dakle f, se faktorizira u F,[x] postoji & 12 € F, & Vd € F, & (%) =1. O

4.1 Konacna polja

Definicija 4.1.1

KaZemo da je polje kona¢no ako ima kona¢no mnogo elemenata.

Neka je F' konac¢no polje i neka je f : Z — F homomorfizam prstenova takav
da f(1) = 1. Posto je F kona¢no, f ima netrivijalnu jezgru, dakle ker f = mZ
za neki m € N. Dakle Z/mZ se ulaze u F. Slijedi da Z/mZ mora biti integralna
domena, dakle m mora biti prost. PiSemo p umjesto m da bismo to naglasili.
Dakle vrijedi char F' = p. Dakle F je prosirenje polja F,, := Z/pZ. Dakle F je
vektorski prostor nad F,. Neka je [F : F,] = n. Slijedi |F| = p™.

Teorem 4.1.2

Neka je F, kona¢no polje s ¢ = p" elemenata, gdje je p prost broj, a
n > 1. Multiplikativna grupa Fy =F, \ {0} je ciklicka.

Dokaz. Neka F oznacava multiplikativnu grupu svih nenul elemenata u IF,. Ta
grupa ima ¢ — 1 elemenata jer [F,| = q. Ocito je grupa F) konacna Abelova
grupa.
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Dakle
FX ~Z/miZ x ... x L/mZ,

pa slijedi da je 2™* — 1 za svaki x € F;. Medutim, 2™ — 1 ima najvise my,
nultocaka u F, pa onda vrijedi da je k = 1 [F| = my, tj. F je ciklicka. O

Posljedica je da za kona¢no polje F' karakteristike p vrijedi F' = Fp[a], gdje
je a generator od F*.

Ozna¢imo sa o : F' — F, definiran sa o(z) = zP. Ovo preslikavanje je o¢ito
multiplikativno. Takoder

p—1
i=1

posto je (1;) = 0 u karakteristici p tat=1,...,p — 1. Dakle ¢ je automorfizam
od F, posto je injekcija, i F' je konacan, pa je i surjekcija. o se Cesto naziva
Frobeniusovo preslikavange ili Frobenius.

Sjetimo se da je P = f za svaki 8 € F,, (Mali Fermatov teorem). Takoder
znamo da xP — x ima < p korijena u F'. Zaklju¢ujemo da su nultoc¢ke zP — x, tj.
fiksne tocke od o upravo elementi od F,.

Takoder P"~! = 1zasve B € F*, paje 7" = B, tj. ¢" = id|r. Primijetimo
da 0% za 1l <k <n—1 vrijedi o® # id|p, jer cF(a) = aP* # «, posto je a
reda p" — 1. Takoder o # 07 za 1 < i < j < n — 1, jer bi u suprotnom bilo
oIl = Zd‘F

Dakle imamo

Aut F D {id,0,0%,...0" 1},

Tvrdimo da vrijedi jednakost. Neka je ¢ € AutF. Zbog (1) = 1, vrijedi
@(k) =k za k € F,, dakle g, = id|g,. Primijetimo da su o*(a) nultocke od
fa, te da su sve razlicite, t;j.

n—1

Jale) = T[] (@ - o'(a)).

=0

S druge strane () je takoder nultotka od f,, dakle mora biti p(a) = o*(«) za
neki 1 <i <n — 1. Posto a generira F¥, slijedi da je ¢ = o°.

Slijedi

Aut F = Gal(F/F,) = (o) ~ Z/nZ. (4.1)
Napomena: Svi rezultati koje smo dokazivali iz Galoisove teorije vrijedi i za
prosirenja F/F,,.

Primijetimo da to povlaéi da za svaki djelitelj d | n, n = dm, vrijedi da
postoji jedinstvena podgrupa H < Gal(F/F,) reda d, posto je Gal(F/F,) cik-
licka, pa po Galoisovoj teoriji, postoji jedinstveno potpolje K od F' takvo da je
[F: K]=d,tj. |[K|=p™.
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Propozicija 4.1.3

Postoji jedinstveno, do na izomorfizam, polje s p" elemenata.

Oznaka: Polje s p™ elemenata oznacavamo s Fpn.

Dokaz. Neka je f,(x) :=aP" —z € F,[z] i neka je F skup korijena od f,,. Kako
fn nema viSestrukih tocaka, slijedi da F' ima p™ elemenata. Lako se provjeri da
je umnozak i zbroj korijena, te inverz elementa, opet korijen, pa slijedi da je F’
polje (s p™ elemenata).

Primijetimo da je svaki element od F korijen polinoma f(z) = z?" — z, koji
ima najviSe p™ korijena, dakle F' je polje cijepanja od f. Sada tvrdnja slijedi iz
jedinstvenosti polja cijepanja nekog polinoma. O

Primjer 4.1.4

Konstruirajmo polje s 9 elemenata. Zapisat ¢emo ga kao Fg :=
F3[z]/(2? + 1); to mozemo posto je 22 + 1 ireducibilan u F3[x]. Dakle
elementi od Fg su {ax + bla,b € F3}. MnoZenje se radi modulo 22 + 1,
npr. z(z+1)=2>+zx=2+2.

4.2 Dalje o faktorizaciji

Neka je sada K opéenito polje algebarskih brojeva.

Definicija 4.2.1

Ako je p ideal u Ok, te p N Z = pZ, kazemo da p leZi nad p, te p lezi
ispod .

Definicija 4.2.2

-
| S

Neka je p € Z prost. Tada je

pox = [ »®,

pPNZ=pZ

gdje produkt ide po razli¢itim prostim idealima p. Tada se e(p/p) zove
stupanj grananja od p nad p.

Neka je n:= [K : Q].Posto je Ox = Zay + ... + Zay, vrijedi

Ok /pOk ~ OK/p‘f(pl/p) X ... X OK/p;’:(pr/p)
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za neki prirdan broj r. Primijetimo da je za prost ideal p, Ok /p uvijek polje,
pa je |Ok /p| = p"#*/P) | za neki f(p/p).

Definicija 4.2.3

Vrijednost f(p/p) takva da je |Ox /p| = pf®/P) zove se stupanj inercije
od p nad p.

| S

Definicija 4.2.4

Neka je A ideal u Ok . Definiramo normu N g(A) od Akao Nk /g(A) :=
O /Al

Primijetimo da ako je p prost, tada je Ny q(p) = pf(®/p),

Norma ideala je multiplikativna, tj., Ng,o(AB) = Nk /q(A)Nk/q(B).

Dokaz. Ako su A i B relativno prosti, tada tvrdnja odmah slijedi iz
OK/AB ~ OK/A X OK/B
Treba samo dokazati da je

Ngjo(p™) = Nk o)™,

za prost ideal p. Prvo primijetimo da po 3. teoremu o izomorfizmu (za grupe!)
vrijedi
05 /0™ = [Oxc/pl - p/0?] - |p™ 1 /0™,

Sada tvrdimo da je homomorfizam grupa
Ipk /p* Y = |Ok /p| za sve k=1,...m — 1.

Neka je v € p¥\pF*!. Primijetimo da takav v postoji jer p¥ # pF*! zbog
jedinstvene faktorizacije u proste ideale.
Definirajmo za k = 1,...,m — 1 preslikavanje

Ok = pF/p*th, am aly +pht).

Lako se vidi da je ovo surjekcija, te da je jezgra upravo p, te smo dokazali da je

pF/pFtt ~ Ok /p.
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Propozicija 4.2.6

Neka je K PAB, [K : Q] = n, te p prost broj. Neka je

pOy = pr(Pi/P)
i=1

faktorizacija od pOk na proste ideale. Oznacimo s f; = f(pi/p), te
ei == e(pi/p). Tada je Y i_ e f; =n.

\ J

Dokaz. Imamo

p" = Ngg(pOk) = Nijo(J [ p5) = [[ N (i) = [[(0")" = p>i=s Free
=1 =1 i=1

Teorem 4.2.7

Neka je O = Z[a] za neki a € K. Neka je p prost broj, f := f, € Z[x]
minimalni polinom od « i neka je

fi=g1(2) - ga(x)® ... gr(x)°, gi € Fpla]

faktorizacija f na ireducibilne polinome. Tada je

r

POk = [[ (P gi(@))

i=1

faktorizacija od pOk na proste ideale.

Dokaz. Neka je s; = degg;, pa slijedi >\, s;e; = n. Sjetimo se da je
Ok /pi = Z[o]/(p, 9i(a)) = Z[z]/(f(2),p, 9i(2)) = Fylz]/ (f(2), gs(2)) ~
~ Fpla]/(g:(x)).

Primijetimo prvo iz ovoga da je p; prost posto je g;(z) ireducibilan u F,[x].
Takoder slijedi da je pa slijedi da je s; jednak stupnju inercije f(p;/p) od p;.
Promotrimo sada preslikavanje redukcija modulo p

@ OK — OK/pOK.
Ocito vrijedi ker p = pOg, te

Ok /pOx ~ Lol /pZ[a] ~ Z[z]/(p, f(x)) ~ Fplz]/(f(x))
)

~ Fyla]/(g1(x)) x ... x Fplz]/(g,(x)°"). (4.2)
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Neka je 1 sada izomorfizam iz (4.2) zadan s
a— (z,...,x).
gdje oznacavamo s 1; preslikavanje na i-tu koordinatu.

ker flpl = (pv gi(a)ei)7

pa je .
POk =keryy = [[(p, gi()*).
=1
Imamo
(P, 9i(@)% = (0,07 'gila), ..., pgi(@)* ", g:i()*) C (p, gi(@)*)

posto p dijeli sve ¢lanove u izrazu osim g;(a)%. Ideali (p, g;(a)®) su relativno
prosti (jer su g;-evi relativno prosti u F,[z]).
Sada imamo

POk = [ [, gi(e)™) dijeli [](p, gi(c))""

T

Imamo da je Ng/q(pOx) = p", te je [Ty (p, gi(a))® = p=i=r /i = p, posto
je fi =degg; i [lg" = f. Imamo 2 ideala iste norme, gdje jedan sadrzan u
drugom, pa moraju biti jednaki.

Dakle, pokazali smo

POk = keryy = [ [ (. g (@) = [ [ o
i=1

i=1
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Primjer 4.2.8

Neka je « korijen od f(r) = 2® + 22+ 11 K = Q(«). Vrijedi (DZ)
Ok = Z[a]. Faktorizirajmo 20k.
Vrijedi

B2 +1=(x+1D)(z?+2+1) (mod 2),
gdje je drugi faktor ireducibilan, pa slijedi
20k = (2, +1)(2,a% + a + 1).
Neka je
pri=(2,a+1), po:= (2,0 +a+1).
Primijetimo da je
OK/plﬁ]FQ, OK/]JQZIF4

Dakle vrijedi, koristeéi oznake kao i ranije, r = 2, e; = ex =1, f1 = 1,
fa=2.

Faktorizirajmo 30f. Primijetimo da f(z) nema nulto¢ke modulo 3, pa
vrijedi da je O /(3) ~ For, tj. r=1,e=1,f = 3.

Modulo 17, f(z) ima tri nultocke 3,5, 9, te je

170k = (17,a — 3)(17,a — 5)(17, 00 — 9),

pajer=3,¢e,=f;=1,zai=1,23.

Sada prosirujemo definiciju "lezati nad" i na relativna proSirenja (tj. kada
manje polje nije Q).

Definicija 4.2.9

Ako je p ideal u Ok i qideal u O, te N O = p, kazemo da q leZi nad
p, te q lezi ispod p.

. J

Lema 4.2.10

Neka je L/K Galoisovo progirenje i neka je p prost ideal u O. Neka su
Py, ..., P, prosti ideali od L koji leze iznad p. Tada Gal(L/K) djeluje
tranzitivno na ovom skupu prostih ideala; to jest, za sve i,j, postoji
o € Gal(L/K) takav da o(P;) = P;.

Dokaz. Fiksirajmo razlicite proste ideale P i P’ koji leZe iznad p. Pretpostavimo
da o(P) # P’ za svaki ¢ € Gal(L/K). Koristeéi ovu pretpostavku, prema
Kineskom teoremu o ostatku, moZemo pronaéi o € Oy, takav da:

a=0 (mod P’)
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i
a=1 (modo(P)) zasveo € Gal(L/K).
Promotrimo N,k (a) = [l ecair, ) o(@) € Ok. Bududi da a € P', ova
norma mora biti u P’ N Ok = p.

S druge strane, buduéi da je « = 1 (mod o(P)) za sve o, a ¢ o(P). Sada
zapisimo normu kao

Np/k(a) = H o).

oc€Gal(L/K)

Buduéi da niti jedan od faktora nije u P, a P je prost ideal, to implicira da
Np k(o) ¢ P. Imamo Ny x(a) ¢ PN Ok = p, §to je kontradikcija, ¢ime se
dokazuje lema. U

Primijetimo da analogne tvrdnje onima koje smo dokazali za faktorizaciju
pOk, za prost p, vrijede ako imamo prosirenje L/ K te promatramo faktorizaciju
nekog prostog ideala p od Ok u Oy, tj. faktorizaciju od pOyp. Tj. vrijedi

pOL = H qe(ar/e),
i=1

za neke e(q/p). Broj e(q/p) se zovu stupanj grananja od q nad p. Takoder
definiramo stupanj inercije f(q/p) od q nad p s f(q/p) :=[(Or/q) : (Ok/p)] =
cl1/p) . oydje ulazemo i (O, /q) i (O /p) u neko fiksno algebarsko zatvorenje od

e(p/p)’
F,, gdje je p karakteristika oba ova polja.

Korolar 4.2.11

Neka je L/K Galoisovo proSirenje stupnja n, i neka je p prosti ideal od
Ok . Neka je:

pOL :Pfl ...P:"
faktorizacija p u O, i neka je f; = f(P;/p). Tada vrijedi:

h=fo=-=Ff

€] = €9 = -+ = €p.

Takoder vrijedi re; f; = n za sve 1.

. J

Dokaz. Ako je r = 1, korolar je trivijalan, pa pretpostavljamo r > 2. Dokazat
¢emo da e; = ez 1 f1 = fo; opéeniti slucaj je isti. Prema Lemi mozemo
pronaci o € Gal(L/K) takav da o(P;) = P,. Primjenom o na nasu faktorizaciju
i koristeéi ¢injenicu da o(p) = p jer o fiksira K, zakljucujemo da:

pOr =0 (P)0(P)® -+ o(P.)°".
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S obzirom na to da je o(P;) = P, slijedi e; = es.

Takoder primijetimo da je o : Or/P; — Or/Ps, x4+ Py — o(x) + P izomor-
fizam (svaki homomorfizam polja je injektivan, te posto je o automorfizam od
Oy, otito je i surrjektivno), pa slijedi da je Op/P; =~ Op /P, pajei f1 = fo. O

4.3 Karakteri, norma i Hilbertov teorem 90

Definicija 4.3.1

Neka je K/F konafno proSirenje polja tako da je K normalno nad F.
Kazemo da je cikli¢ko/Abelovo prosirenje ako je Gal(K/F) ciklicka/A-
belova grupa.

Definicija 4.3.2

p
| 4

Neka je G grupa, a L polje. Karakter grupe G sa vrijednostima u L je
homomorfizam x : G — L*.

\ J

Lema 4.3.3

Neka su x1, X2, - - -, Xn razli¢iti karakteri grupe G sa vrijednostima u L.
Oni su linearno nezavisni nad L, tj. vrijedi

n
> aixi(g) =0, zasvegeG,
=1

tada jea; =0zasvei=1,...,n.

\ J

Dokaz. Pretpostavimo suprotno i neka je n najmanji takav da postoji n linearno
zavisnih karaktera. Neka je a;x1 +asx2 + ...+ anxn = 0. Ocito je dan > 2, te
moZemo pretpostaviti da je a; # 0. PoSto su karakteri y; medusobno razli¢iti,
postoji g € G takav da x1(g) # xn(g). Sada imamo

a1x1(z) + ...+ apxa(z) =0, Vred, (4.3)
pa vrijedi i
a1x1(9z) + ...+ apxn(gz) =0, VaeG, (4.4)
to jest
arx1(9)xi(x) + ...+ anxn(9)xn(z) =0, Voed. (4.5)

Pomnozimo (4.3 s xn(g) i oduzmimo (4.5)) pa dobivamo
n—1
> ailxn(9) = xi(9)xi(x) =0, Vo eG.
i=1

Bududi da je x»(9) — x1(g) # 01 a; # 0, dobili smo linearnu zavisnost < n — 1
karaktera, $to je u kontradikciji s nasom pretpostavkom. O
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Korolar 4.3.4

Neka su K, L polja i neka su oy,...,0, ulaganja od K u L. Tada su
01,...,0y, linearno nezavisni nad L.

Dokaz. Primijenimo prethodnu lemu na G := K*. O

Neka je K/F kona¢no normalno prosirenje. Tada za svaki o € Gal(K/F)

ia € KX imamo

MES

Dokaz.
N ("?) _ 1 N(o(a)) N (;) _ 1« N(o(a)) = N(a)
= Il retn= ]I -
T€Gal(K/F) Te€Gal(K/F)
§to ocito vrijedi. O

Teorem 4.3.6: Hilbertov teorem 90

Neka je K/F kona¢no ciklicko prosirenje, Gal(K/F) = (o). Tada za svaki
B € K* takav da je N(8) =1 postoji a € K takav da je

Dokaz. Neka je n:=[K : F] =|Gal(K/F)| = |o|. Definirajmo ¢ : K — K s

_z o) o?(x) o 1()
Y =5t BByt B BB T T Bo(B) o 1B
Zbog linearne nezavisnosti id, o, ...,0" ! vrijedi ¢ # 0. Dakle, postoji 6 takav
da je ¢(f) # 0. Neka je a := ¢(6). Tvrdimo da je § = 2.
Vrijedi
oo 4 n o(0) n a%() P o 1(9)
B Ba(B)  Ba(B)o(B) T Ba(B)...a""HB)

te

_a(0) a*(0) a(0) a"(0)
A e Rl 1) P ) R ey el e ) B 1 NP ) P
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Primijetimo sada da je zadnji ¢lan ove sume jednak 6 zbog o™ = id i jer je
nazivnik jednak N(8) = 1. Podijelimo ovu jednakost s /3, pa dobijemo

o) ol0) . o%0) () 0
5~ Bod) | BoB)o2(B) | BeB2(B)(B) B ™
o) _
@

Neka je p prost, ¢, primitivni p-ti korijen iz 1, te , ¢ F. Tada je F((p)
normalno prosirenje i Gal(F((,)/F) < (Z/pZ)* ~Z/(p — 1)Z.

Dokaz. Analogno kao i za F = Q. O

Primijetimo da je opéenito K (Cn,,Cny) = K(CNzv(ning)), te da je

Gal(Q(¢n)/Q) ~ (Z/nZ)*,
a Gal(K(¢,)/K) je podgrupa od (Z/nZ)*.

Teorem 4.3.8: Kummer

Neka je F' polje algebarskih brojeva, n € N i pretpostavimo da je (,, € F.
Tada

a) Neka je K/F normalno prosirenje takvo da je Gal(K/F) ~ Z/nZ.
Tada je K = F({/a) za neki a € F, tj. K = F(«) za neki a € K
takav da je o™ € F.

b) Ako je K = F(%/a) za neki a € F, tada je K/F normalno i
Gal(K/F) ~ Z/dZ za neki d | n.

Dokaz. a) Neka je ¢, € F, N : K — F norma, (o) = Gal(K/F). Bududi da je
Cn € F, slijedi
Nep(G)= [ 7 =¢=1

rEGal(K/G)

o(a)

Po Hilbertovom teoremu 90 slijedi da postoji « € K takav da je (,, =
Dalje slijedi
ola) = alp,
= 0'(a) =" H(o(@) = 0" Hagn) = 0" H @) T (G) = o H @) G =
o 2(0(a))p =02 (lp)n = ... =all, zai=0,...,n—1.
Slijedi da je |[{o'(a) : i = 0,...,n — 1}| = n. Slijedi da posto su svi konjugati
od « razliciti, je deg f, = nidaje K = F(«). Ostaje dokazati da je a™ € F.
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Vrijedi
o(a") = (o(a)" = (agn)" = o™,
pa slijedi o%(a™) = o0t~ (o(a™)) = o' H(a") = ... = a”, dakle a" je iz fiksnog
polja od Gal(K/F), tj. iz F.

b) Neka je b:= /a. Slijedi da

ol —a= (mfb)(x—Cnb)...(szﬁflb),

pa slijedi da su {b¢} : i = 0,...,n — 1} svi konjugati od b. Posto su oni svi u
F(b) = K, slijedi da je K normalno nad F. Definirajmo preslikavanje

¢:Gal(K/F) — Z/nZ, (b Cib) + i.
Lako se vidi da je ¢ homomorfizam grupa, te da je injektivan. Slijedi Gal(K/F') ~
Im ¢ < Z/nZ, pa je Gal(K/F) ~ Z/dZ, za neki d | n. O
4.4 Relativna faktorizacija

Prvo ¢emo izreéi nekoliko lako dokazivih ¢injenica, Cije dokaze ostavljamo za
viezbu.

Propozicija 4.4.1

Neka je L/K prosirenje polja algebarskih brojeva stupnja n i neka je p
nenul prosti ideal od O . Tada vrijedi:

#(OL/pOL) = (#(Ox /p))"

Korolar 4.4.2

Neka je L/K prosirenje polja algebarskih brojeva stupnja n i neka je a
nenul ideal od Ok . Tada

Npq(a0L) = Nk q(a)™.

Korolar 4.4.3

Neka je K polje algebarskih brojeva stupnja n i neka je o u Og. Tada

Nk jo(aOk) = |Nk/g(a)l-

. J

Sada prosirujemo naSe ranije rezultate faktorizacije na proizvoljna prosirenja
polja brojeva. Neka je L/K progirenje polja brojeva stupnja n. Najprije moramo
prosiriti pojam prostog broja iz Op, koji lezi iznad prostog broja iz Ok.
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Lema 4.4.4

Neka je p nenul prost ideal u Ok i neka je B nenul prost ideal u Op.
Sljede¢ih pet uvjeta su ekvivalentni.

[

. P dijeli pOy;
- P 2p0ys;

3. P2p;

4. PN Ok =p;

[\

5. PNK =p.

Nadalje, ako je bilo koji od gornjih uvjeta zadovoljen, tada je p N7Z =
PNZ.

Dokaz ostavljamo za vjezbu.

Ako p 1B zadovoljavaju bilo koji od ekvivalentnih uvjeta iz ove leme, kazemo
da ‘P lezi iznad p i da p lezi ispod *P. Svaki prost iz Op lezi iznad jednog
jedinstvenog prostog iz Ok, i da svaki prost iz Ok lezi ispod najmanje jednog
prostog iz Op. Primijetimo takoder da su prosti ideali koji leze iznad p upravo
oni prosti koji se pojavljuju u faktorizaciji od pOp, na proste ideale.

Sada, neka su p i B kao gore i pretpostavimo da B lezi iznad p. Oznacavamo
s e(PB/p) toénu potenciju od P koja dijeli pOy; ona se naziva indeks grananja
od PB/p. Tako moZemo pisati

PO = H qge(‘B/P).
PNOK=p

Nadalje, neka je p jedinstveni pozitivni racionalni prost sadrzan u p i 3. Tada
su Ok /p i O /P konacna polja karakteristike p. StoviSe, prirodna injekcija
Ok — Op inducira injekciju

OK/p%OL/ma

buduéi da je PN Ok = p prema Lemi Tako je Or /% polje prosirenja od
Ok /p. Definiramo stupanj inercije f(B/p) kao stupanj [Or/PB : Ok /p] ovog
prosirenja. Primijetimo da

Np/0(B) = N sg(p)/ F/P,

Sada mozemo iskazati i dokazati nas temeljni rezultat.

Teorem 4.4.5

Neka je L/K prosirenje polja algebarskih brojeva stupnja n i neka je p
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prost u Ok. Neka je
pOL =P+ BY
faktorizacija od pOy, u proste ideale od Op. Postavimo f; = f(B;/p).

Tada .
Z eifi =mn.
i=1

Dokaz. Uzimajuéi norme ideala s obje strane faktorizacije od pOp, nalazimo da

Nrso(POL) = Npo(B1)® - N1jo(Br)® = N o) -+ N /g (p)er

prema definiciji od f;. Prema Korolaru znamo da N, /o(pOr) = Nk /o(p)",
iz ¢ega teorem sada neposredno slijedi. O

Zavrsimo ovaj odjeljak s nekim dodatnim ¢injenicama i terminologijom.
Prije svega, neka su M/L/K polja algebarskih brojeva, neka je px prost u
Ok, neka je py, prost u Op koji lezi iznad pg, i neka je pps prost u Oy koji
lezi iznad py. Tada ocito pys lezi iznad pg, i neposredno iz definicija slijedi da
imamo

e(pm/pr) = e(pa/pr)e(pr/vr)

foae/prc) = f(par/pr) f(pr/Prc).

Vratimo se sada na slu¢aj prosirenja L/K stupnja n i neka je p prost u Ok.

Neka je
pOL = P B

faktorizacija od pOy, u proste od Or. Postavimo f; = f(PB;/p). Ako bilo koji
od e; nije jednak 1, kazemo da se p grana u L/K. (VaZna je ¢injenica da se
samo kona¢no mnogo prostih grana u prosirenju, a koji su to prosti i koliko se
oni jako granaju je bitna invarijanta prosirenja.) Ako je r = 11e; = n (tako da
je f1 =1), tada kazemo da se p potpuno grana u L/K:

pOL =P".

Ako je r = 11ie = 1 (tako da je fi = n), kaZemo da je p inertan ili
ostaje prost u L/K; to je slu¢aj gdje je pOpr jos uvijek prost. Kona¢no, ako je
e; = f; = 1 za sve i, kaZemo da se p potpuno cijepa u L/K:

pOr =P1---Po.

Sljededi rezultat ¢ée nam biti koristan za odredivanje cijepanja prostih ideala
u kompozitumima polja algebarskih brojeva.

Definicija 4.4.6

Neka je p ideal u Ok. Tada je k, := O /p polje ostataka od p.
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Napomena: k, nije tipfeler - malo slovo k£ nema veze s poljem K.

Propozicija 4.4.7

Neka su K7 i K5 polja algebarskih brojeva, L = K7 K> njihov kompo-
zitum, te p prost broj. Neka su f1 i fo stupnjevi inercije broja p u Ki,
odnosno K za fiksirani prost ideal B C Op, (te odgovarajuce ideale p1, po
ispod njega). Tada vrijedi:

1. lem(fy, f2) dijeli fr.
2. fr < fi- fo.

Dokaz. 1. Dokaz donje granice (lem(f1, f2) | fr):
Promatrajmo polja ostataka (kona¢na polja):

Fp C Ok, /p1 € OL/PB

Stupanj prosirenja F,, C Ok, /p1 je po definiciji f1. Iz multiplikativnosti stupnja
progirenja polja slijedi da f; dijeli stupanj fr, = [Or /B : Fp]. Isto vrijediiza fo
promatrajuéi put kroz Ks. Buduéi da fi | fr 1 fo | f, tada i njihov najmanji
zajednicki visekratnik mora dijeliti fy,.

2. Dokaz gornje granice (fr, < f1 - f2):

Za polje ostataka ky = Or/B je kompozitum polja ostataka ky, i kp,
(ostavljamo za DZ):
kg = kpy - Fep,.
Znamo da su ky, i kp, konac¢na polja reda pf1 i pf2. Kompozitum dvaju konaénih

polja reda p/* i p’> unutar nekog fiksiranog algebarskog zatvorenja je jedinstveno
konacno polje reda p'e(/1:/2) " Stoga je stupanj tog kompozituma nad F,, to¢no

lcm(fl, fg)
0

Propozicija 4.4.8

Neka su K7 i Ky dva brojevna polja i neka je L = K7 K5 njihov kompozi-
tum. Neka je p € Z prost broj, te neka su e; i es indeksi grananja broja
p u poljima K7, odnosno Ks5. Tada vrijedi:

1. Najmanji zajednicki visekratnik lem(eq,es) dijeli indeks grananja
er, broja p u polju L.

2. Indeks grananja ey, je manji ili jednak produktu e; - es.

\ J

Dokaz. Sada ¢emo dokazati samo prvi dio, posto dokaz drugog dijela zahtijeva
teoriju lokalnih polja koju ¢éemo raditi kasnije. Dokaz je zapravo analogan do-
kazu prvog dijela prethodnog teorema.
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Promatrajmo toranj prosirenja Q C K1 C L. Ako je B prost ideal u L iznad
pu Ki, apiznad p u Q, tada vrijedi:

e(L/Q) = e(L/ K1) - e(K1/Q)

Buduéi da je e(K1/Q) = e; po definiciji, slijedi da e; dijeli e(L/Q).
Analogno, promatrajuéi toranj Q C Ko C L, dobivamo:

e(L/Q) = e(L/K2) - e(K5/Q)
odakle slijedi da ey dijeli e(L/Q). Bududi da je e(L/Q) zajednicki vigekrat-

nik brojeva e; i es, on mora biti djeljiv i s njihovim najmanjim zajednickim
vigekratnikom lem(eq, es).

O
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Primjer 4.4.9: Dekompozicija prostog broja p

Q(i, v2,v/5)

Promatramo multikvadratno progirenje L = Q(4,v/2,v/5) nad Q. Stu-
panj ovog prosirenja je [L : Q] = 8. Da bismo odredili ponagSanje prostog
broja p = 5, analiziramo ga kroz tri kvadratna podpolja.

Promotrimo prvo ponasanje prostog broja p u kvadratnom polju Q(\/E):

e Q(i): Buduéi da je 5 = 1 (mod 4), broj 5 se cijepa. Indeksi su:
ey = ].,fl = l,gl =2

e Q(+/2): Imamo (%) = —1, pa jeb ovdje inertan. Indeksi su: ey =
].,fg = 2,92 =1.

e Q(v/5): Buduci da 5 dijeli diskriminantu polja, 5 se grana. Indeksi
sw: e3 =2, f3=1,9g3=1.

Po Propozicijama [1.4.7) 1 [4-4.§]

e Ukupni indeks grananja (e): 2 = lem(eq,ez,e3) < e < ej-eg-
€3 = 2.

e Ukupni rstupanj inercije (f): 2 =lem(f1, fo, f3) < f < f1- fo-
fz=2.

Koristedi jednakost e - f - = [L : Q], dobivamo broj prostih ideala g:
2:2.r=8 = r=2

Dakle, u polju L, prost broj 5 se rastavlja na dva prosta ideala, svaki
s indeksom grananja 2 i stupnjem inercije 2.
Faktorizacija ideala (5) u prstenu cijelih brojeva polja L glasi:

(5) = (P1P2)*

gdje su P i Py prosti ideali norme 57 = 52 = 25.

4.5 JoS$ o ciklotomskim poljima

Neka je K = Q(¢) ciklotomsko polje i neka je p racionalan prost broj. Neka
je p bilo koji prosti ideal od O = Z[(,] koji lezi iznad p. Zelimo odrediti
e=ce(p/p)i f= f(p/p). Primijetimo da su, prema Korolaru ovi brojevi
neovisni o izboru prostog ideala p. Drugim rije¢ima, u Fp[z] polinom ®,,(x)
faktorizira se kao

O (z) = (g1(2) -~ gr(2))°
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gdje je degg; = f za svaki i i vrijedi efr = ¢(m).

Zapocinjemo s slu¢ajem kada p ne dijeli m. Buduéi da 2™ — 1 nema ponov-
ljenih faktora u Fp[z], isto vrijedi i za ®,,(x); posebno, mora vrijediti e = 1.
Preostaje nam odrediti f i . Prije nego §to rijesimo opéi slucaj, razmotrimo
poseban slucaj f = 1 kako bismo ilustrirali ideju. Ako je f = 1, tada se ®,,(x)
u potpunosti rastavlja na linearne faktore u F,,[z], §to znaéi da ®,,(z) ima kori-
jene u [F,. To implicira da [, sadrzi primitivne m-te korijene jedinice. No, F
je ciklicka grupa reda p — 1, pa ima elemente to¢no reda m ako i samo ako m
dijeli p — 1, odnosno ako i samo ako

p=1 (mod m).

Vidimo da vrijedi i obrat, pa smo pokazali da se prost broj p potpuno cijepa
u Q(¢n) ako i samo ako p ne dijelimip=1 (mod m).

U opéem slucaju moramo prosiriti polje F,, kako bismo pronasli primitivni
m-ti korijen jedinice. Neka je g(x) jedan od ireducibilnih faktora ®,,(z) u
F,[z]; tada g(x) ima stupanj f. Neka je a korijen polinoma g(z) i definirajmo
F =TF,(a) 2 TF,[x]/(9(x)); ovo je prosirenje polja F, stupnja f. Primijetimo da
je « primitivni m-ti korijen jedinice, buduéi da ponistava g(x), a samim time i
®,,(x). Nadalje, F' je o¢ito najmanje prosirenje F,, koje sadrzi primitivni m-ti
korijen jedinice (jer je jednostavno F, kojem je pridruzen m-ti korijen jedinice),
pa smo pokazali da je f stupanj najmanjeg proSirenja IF), koje sadrzi primitivni
m-ti korijen jedinice.

Sada ¢emo ovo prosirenje odrediti na drugi nacin. Neka je F; jedinstveno
prosirenje polja F, stupnja i. Tada je multiplikativna grupa F;* ciklicka reda
p? — 1, pa sadrzi primitivni m-ti korijen jedinice ako i samo ako m dijeli p’ — 1.
Dakle, najmanje prosirenje od F,, koje sadrzi primitivni m-ti korijen jedinice bit
ée F;, gdje je ¢ najmanji pozitivan cijeli broj takav da vrijedi

p'=1 (mod m).

Drugim rije¢ima, i je red broja p u multiplikativnoj grupi (Z/mZ)*. Kom-
binirajuéi ovo s naSim ranijim argumentima, dobivamo sljedeci rezultat.
Dokazali smo:

Propozicija 4.5.1

Neka je p racionalan prost broj koji ne dijeli m, i neka je p prosti ideal
od Z[(n) koji lezi iznad p. Tada vrijedi:

a) e(p/p) =1,
b) f(p/p) je red broja p u grupi (Z/mZ)*,

c¢) Ukupno postoji ¢(m)/f(p/p) prostih ideala u Z[(,,] koji leZe iznad
P.
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Propozicija 4.5.2

Neka je p racionalan prost broj i n = p* -] ¢;"" faktorizacija od n, gdje
q; # p. Neka je K = Q((,) i neka je p prost ideal od K nad p. Tada je
e(p/p) = o (p*).

Dokaz. Kao i u za Q((p), na isti nacin se dokaze da za L = Q((,x) vrijedi

pOr = (1—(pr )‘p(pk), tj. p se potpuno grana u K. Sada rezultat slijedi primjenom
Propozicije O

4.6 Primjene na kvadratna polja i Gaussov zakon
reciprociteta

Postoje vrlo zanimljive primjene aritmetike ciklotomskih polja na kvadratna
polja. Razmotrimo polje Q(¢,) za neki neparni prost broj p. Podsjetimo da je
ovo Galoisovo prosirenje od Q s Galoisovom grupom izomorfnom (Z/pZ)*, gdje
je automorfizam koji odgovara o, € (Z/pZ)* definiran kao

Ua((p) = C§~

Buduéi da je (Z/pZ)* ciklicka grupa reda p — 1, ona sadrzi jedinstvenu
podgrupu indeksa 2, koja se sastoji od svih kvadrata u (Z/pZ)*. Ovu podgrupu
ozna¢imo s S. Neka je K fiksno polje od S, tj. K je potpolje od Q((,) ¢iji su
svi elementi fiksni pod djelovanjem svih elemenata S. Galoisova teorija nam
govori da je [K : Q] = 2, dakle K je kvadratno polje. Ostaje nam odrediti koje
je to¢no kvadratno polje.

MoZemo to uéiniti razmatranjem ramifikacije. Podsjetimo da je p potpuno
ramificiran u Q(¢,); to jest, postoji jedinstven prosti ideal P od Q((,) koji lezi
iznad p, te vrijedi

(p) =%
Neka je p bilo koji prosti ideal od K koji lezi iznad p. Tada P lezi iznad p
(buduéi da je B jedini prosti ideal od K koji lezi iznad p) i vrijedi

e(B/p) = e(B/p)e(p/p).

Bududi da je e(B/p) = p — 1 i da su ramifikacijski indeksi ograniceni stup-
njevima prosirenja, to implicira da je

e/ =Lt i elo/n) =2

Posebno, p je jedini prosti ideal od K koji lezi iznad p, te je potpuno rami-
ficiran.

Neka je 9 bilo koji drugi prosti ideal od Q((,), neka je q prosti ideal od K
koji lezi iznad njega, i neka je ¢ prosti ideal od Z koji lezi ispod njega. Sli¢an
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argument, koristeé¢i ¢injenicu da je e(Q/q) = 1, pokazuje da je e(q/q) = 1, §to
znadi da g nije ramificiran u K. Zaklju¢ujemo da je p jedini prosti broj iz Z koji
se ramificira u K.

Sada, ve¢ smo odredili ramifikaciju u svakom kvadratnom polju, i jedino
kvadratno polje u kojem se samo p ramificira jest Q(,/2p), gdje je ¢ = £1 takav
da vrijedi

ep=1 (mod 4).

Mozemo uzeti ¢ = (—1)®~1/2. Time smo dokazali sljede¢u netrivijalnu
¢injenicu.

Propozicija 4.6.1

Polje Q((p) sadrzi kvadratno polje Q(,/ep), gdje je € = (_1)(1771)/2.
Posebno, ,/ep moZe se napisati kao racionalna linearna kombinacija p-tih
korijena jedinice.

Teorem 4.6.2: Gaussov kvadratni zakon reciprociteta

Neka su p i ¢ razli¢iti, pozitivni neparni prosti brojevi. Tada vrijedi

(8) (3) ==

\ J

Dokaz. Pokazali smo iznad da /ep € Q({,). Oznadimo taj element s 7. Razmo-
trimo automorfizam o, € Gal(Q({,)/Q); on je definiran s 0,(¢,) = (. Bududi
da su konjugati od 7 jednostavno +7, moramo imati

o4(T) = £7.

Nadalje, neka je S podgrupa od Gal(Q((,)/Q) definirana sa o(7) = 7 ako
i samo ako o € S. (To je zato $to je Q(7) fiksno polje od S po definiciji.)
Pod identifikacijom Gal(Q((,)/Q) i (Z/pZ)*, S odgovara podgrupi kvadrata;
kombinirajuéi sve ovo, vidimo da je o4(7) = 7 ako i samo ako je ¢ kvadrat u
(Z/pZ)*; odnosno,

Sada neka je q prost ideal u Ok iznad ¢. Zapi§imo 7 = ag + a1(p + -+ +
ap—2Ch~? gdje su a; € Z. (Primijetimo da je 7 ocito algebarski cijeli broj.)
Koristeci da je 04(¢,) = (1 i a? = a za sve a € F,, nalazimo da je

O'q(T) =ag + algg + CLQng + -+ ap_QCI()P*mq (
= af + i)+ a3+ ap o(PTYT (modq)
= (ao +a1Cp + GQCI? + -+ ap72C£_2)q (mod q) (
=77 (mod q). (
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Kombinirajuéi ovo s naim drugim izrazom za o4(7) dobivamo

(Z) r=79 (mod g).

Buduéi da je g prost i o€ito imamo 7 ¢ ¢, moZemo skratiti 7 modulo g;
zakljuéujemo da

(2) = = 7 (ot )

Prema Eulerovom kriteriju, ovo pokazuje da

(£)=(2) o

PO deﬁnlCli, tO Znaéi da
p q

buduéi da su (%) i (%) cijeli brojevi, ta razlika je zapravo sadrzana u qNZ =
q7. Zapravo, (%) i (%) su samo =+1, pa je razlika sigurno manja od +q. Iz
toga slijedi da zapravo imamo jednakost

)-)

< _ 1)1/ p1g—
Cinjenica da je (g) = (%) = (—1)TITI dovrsava dokaz.

O

4.7 Natrag na ciklotomska polja

Dokazimo jos nekoliko rezultata o ciklotomskim poljima. DokaZimo prvo neke
opcée rezultate.

Definicija 4.7.1

Neka je f(z) = [[(z—«a;) € K(z), gdje su a; € K. Tada je diskriminanta
A(f) od f jednaka

A(f) = [ [l = ay)*.

i<j

Propozicija 4.7.2

Neka je O = Z[a]. Tada je Ag = A(fa).
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Dokaz. Neka je K stupnja n. Po pretpostavci {a‘|i =0,...n — 1} &ne bazu od
Ok, pa je po definiciji

Ag =det(1,q,...a" 1) = det[o;(a’1));; = H(Ui(a) —0;(a)? = A(fa),

gdje predzadnja jednakost vrijedi posto je [o;(a?~1)];; = [0i(a)?];; Vander-
mondeova matrica.
O

Propozicija 4.7.3

Neka je Ok = Z[a]. Tada se u Ok granaju samo prosti brojevi € Z koji
dijele Ag.

Dokaz. Neka je f, minimalni polinom od a, p € Z prost i pOx = [];_, pj’,
pi #pj za i # j. Ovo je ekvivalentno sa fo(z) = [[i_, gi(2), gi # gj za i # j.

Kad bi bio neki e; > 1, to bi znaéilo da se neki korijen od f, (u F,) ponavlja.

Ovo je ekvivalentno sa tim da je A(f,(z)) = 0, §to je ekvivalentno sa
A(f(x)) = 0 (mod p), sto je po prethodnoj propoziciji ekvivalentno sa p|Axk.
O

Propozicija 4.7.4

Neka je K stupnja n, O = Z[a] i f, minimalni polinom od «. Tada je
n(n—1)

Ag = (=1)"7 Ng/o(fola)).

Dokaz. Neka su ag, ..., konjugati od a. Vrijedi

fa(x) =

%

(@—ai), fa@)=) | [[(z—a)

1 J=1 \i#J

Slijedi da je

pa je
n
Nijg (File;) = [T (faley)) = [ (e — cw).
j=1 i#]

Pogledajmo koliko se puta za fiksni 4,5, ¢ # j javlja u Ak, a koliko u
Nijo(fh(a): u Ak se kao faktor javlja (c; — o;)?, dok se u N q(fl())
javlja (o — o) (0 — @) = —(oy — a;)?. Vidimo da se u Ng ([} (a)) pojavi
ukupno (Z) minusa, $to dokazuje nasu tvrdnju. O

Propozicija 4.7.5

Ag,) = (1) pr2.
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Dokaz. Po prosloj propoziciji imamo da je

(p—1)(p—2)
Agee,) = (=1)7 2 N(®,(¢))-

Vrijedi
p_1 , — DpzP~1 — (2P — 1
2, = Tt — () = )p(g;_ 1)2(”5 )
, (G — D)p¢e=t  pept
= (I)P(Cp) = p(Cp — 1)[; = Cpp_ 1

Slijedi da je

V(o)) = D L e

O

primijetimo da smo opet na drugi nacin dokazali da je p jedini prost broj
koji se grana u Q(¢p).

4.8 Dekompozicijska i inercijska grupa

Neka je K polje algebarskih brojeva, te neka je L/K kona¢no Galoisovo pro-
Sirenje od K stupnja n. Neka je p fiksan prost ideal od Ok i neka je njegova
faktorizacija u Oy,

pOL = (PB1--PBr)",

gdje svi P;-ovi imaju isti stupanj inercije f. Sjetimo se da vrijedi ref = n, te
da grupa Gal(L/K) djeluje na skup {91, - ,PB,}. To djelovanje je tranzitivno,
tj. za svaki P, 1 PB; postoji o € Gal(L/K) takav da je o(P;) = PB;.

Kada grupa djeluje na skup, tada se ¢esto promatra stabilizatorska podgrupa
nekog elementa, tj. podgrupa elemenata grupe koji trivijalno djeluju na taj
element skupa.

Definicija 4.8.1

Uz notaciju kao i prije, definiramo dekompozicijsku grupu D(;/p) ele-
menta P,

D(PBi/p) = {0 € Gal(L/K) | o(B;) = P} < Gal(L/K).

Primijetimo sljedece: neka su B; 1P, takvi da je o(P;) = P,. Tada se lako
provjeri da je

D(%;/p) = oD(Ri/p)o .
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Dakle, sve dekompozicijske grupe su konjugirane. Posto je D(*B;) po definiciji
stabilizatorska podgrupa elementa P;, te je djelovanje grupe tranzitivno (tj.
orbita od J; je duljine r), po teoremu o orbiti i stabilizatoru da je

#D(Pi/p) =n/r = ef.

Primjer 4.8.2

Promotrimo prosirenje Q(¢15)/Q; to je prosirenje stupnja ¢(15) = 8, vri-
jedi Gal(Q((15)/Q) ~ (Z/15Z)*. Elemente Gal(Q((15)/Q) prikazujemo
kao 0;(C15) = (i, gdje je i € (Z/15Z)*. Takoder, vrijedi da je prsten
cijelih brojeva u Q(¢15) jednak Z[(;5].

Promotrimo faktorizaciju elemenata 2,3,5 1 31 u Z((15). Neka su

p2 = (2,5 + G5 + 1),
ps = (3,{fs + (35 + (F5 + G5 + 1),
ps = (5,(Fs + Cis + 1)

p31 = (31,(15 +3)

Prikazimo u sljede¢oj tablici vrijednosti r,e i f za navedene proste bro-

jeve.
r e f
P2 2 1 4
p3 1 2 4
Ps 1 4 2
pa |8 1 1

Izra¢unajmo sada dekompozicijsku grupu svakog od ovih prostih eleme-
nata. O¢ito je D(ps/3) = D(p5/5) = Gal(L/K), posto su p3 i p5 jedini
prosti brojevi iznad 3 i 5. Takoder, o¢ito vrijedi #D(p31/31) =n/r = 1.
Dakle, jedini zanimljivi slucaj je D(p2/2). To je grupa reda ef = 4.
Promotrimo preslikavanje

Z[15) = Z[Cis)/p2 = Falz]/(z* + 2 + 1),
koji Salje (15 u x. Vrijedi
7i((2,Cls + Cis + 1)) = (2,0(Chs + G5 + 1) = (2,G5 + (s + 1)

Zakljuéujemo da ée o biti u D(p2/2) ako i samo ako je (i +Cis +1 u pa,
ili ekvivalentno, da z%+z+1 dijeli 2% + 2% +1 u F3[z]. Sada eksplicitnim
ra¢unom mozemo provjeriti da je

D(p2/2) = {01?02704708}~
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Dekompozicijska grupa nam je vazna jer fiksira polje ostataka. Neka je B
prost broj iznad p, te neka je o € D(B/p). Posto je o(P) = P, slijedi da o
inducira automorfizam polja O /PB. Ovaj automorfizam svakako fiksira O /p,
te slijedi da smo dobili preslikavanje

D(B/p) = Gal((OL/B)/(Ok /p)), (4.10)

koje lako provjerimo da je homomorfizam.

Definicija 4.8.3

Inercijska grupa I(B/p) je jezgra preslikavanja (4.10)), tj.

I(¥/p) = ker (D(R/p) = Gal((Or/P)/(Ok /p))) -

Eksplicitnije, vrijedi da je
I(B/p) ={c € D(BP/p)|lo(a) =a (mod P) za sve a € O }.

Po definiciji inercijske grupe i prvom teoremu o izomorfizmu grupa, slijedi
da je
D(B/p)/1(B/p) ~ Gal((OL/B)/(Ok /p)).
Kao i za dekompozicijske grupe, inercijske grupe prostih ideala koje leze nas
istim prostim idealom od Ok su medusobno konjugirane, te se lako vidi da je
#I(B/p) = e. Drugim rijecima, inercijska grupa I(B/p) je trivijalna ako i samo
ako je B/p nerazgranat.

Primjer 4.8.4

Izrac¢unajmo inercijske grupe iz prethodnog primjera. O¢ito su I(p2/2) i
I(p31/31) trivijalne. Grupa I(p3/3) je reda 2. Promotrimo preslikavanje

Z[Cis)/p3 = Fsfz]/(z* + 23 + 22 + 2 +1).

Element o; iz D(p3/3) ¢e biti u I(p3/3) ako i samo ako je 0;((15) = (15
posto je o¢ito o;(1) = 1, a 1 i (15 su generatori od Z[(15], pa time i
Z[(15]/p3. To je ekvivalentno da je

oi(z) =2 =2 (mod z* + 2% + 2% + 2+ 1).
Drugim rije¢ima, pitamo se kada z* + 23 + 22 + = + 1 dijeli z* — 2.
Vidimo da je to istina za i = 11, te onda posto je I(p3/3) grupa reda 2,
zakljuujemo da je

I(p3/3) = {01,011}

Analogno moZemo izra¢unati

I(ps/5) = {01,04,07,013}.
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Definicija 4.8.5

Pretpostavimo da je Gal(L/K) Abelova. Definiramo inercijsko polje L'
od B /p kao fiksno polje od I(B/p), te dekompozicijsko polje LY od B/p
kao fiksno polje od D(/p).

Teorem 4.8.6: Teorem o slojevima

Neka je p netrivijalni ideal od O, gdje je K/F Abelovo prosirenje. Tada
se p potpuno cijepa u K| te ideali iznad p ostaju inertni u K!/KP, te
se potpuno granaju u K/KP.




Poglavlje 5

Grupa klasa ideala

5.1 Razlomljeni ideali

Ideali prstena cijelih brojeva ne ¢ine grupu, jer nemaju inverze. Razlomljeni
ideali, s druge strane, tvore grupu; odnos izmedu razlomljenih ideala i obi¢-
nih ideala vrlo je slican odnosu izmedu polja brojeva i njegovog prstena cijelih
brojeva.

Neka je K polje brojeva s prstenom cijelih brojeva Ok . Neka je t neprazan
podskup od K koji je Ox-modul; odnosno, t je zatvoren na zbrajanje i mnoze-
njem elementima iz Ok. Za takav v kazemo da je razlomljeni ideal ako postoje
Y1, ---5Ym € 1 takvi da je

t:{al'yl+"'+am7m‘aieoK}§

odnosno, t je generiran nad Ok pomocu ;. (Kljuéna stvar ovdje je da je ¢
konac¢no generiran nad Og. Nisu svi Ox-podmoduli od K takvi).

Postoje dva osnovna primjera razlomljenih ideala. Prije svega, svaki nepra-
zan ideal a od Ok takoder je razlomljeni ideal: a je Ox-modul po definiciji i
ima konaé¢ni skup generatora jer je Og Noetherin. Da bismo izbjegli zabunu,
od sada ¢emo ideale od Ok nazivati cjelobrojnim idealima.

Druga vrsta primjera su razlomljeni ideali oblika YOk za neki v € K*.
(Lako se provjeri da je yOx Og-modul, i ima samo jedan generator -.) Takav
razlomljeni ideal naziva se glavni razlomljeni ideal. Primje¢ujemo da su glavni
ideali od Ok upravo cjelobrojni glavni razlomljeni ideali.

Opcenitije, neka je a bilo koji ideal od O i neka je v bilo koji element iz
K*. Tada je va razlomljeni ideal. (ya ima kona¢ni skup generatora jer ako
a1, ...,y generiraju a, onda yayq, . .., yay, generiraju va.) I obrat ove tvrdnje
vrijedi.

84
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Neka je v Og-podmodul od K. Tada je t razlomljeni ideal ako i samo

ako postoji v € K* takav da je vt cjelobrojni ideal. (Zapravo, moZe se
uzeti da je «y racionalni cijeli broj.)

Dokaz. Vidjeli smo gore da ako je a cjelobrojni ideal i v € K*, onda je ~va
razlomljeni ideal. Obratno, ako je t razlomljeni ideal, moZzemo pisati

t:{(11’71+~-~+am7m|04i€0K}

za neke v1,...,vm € t. Po ranije dokazanom postoje a1,...,a,, € Z takvi da
je a;v; € Ok. Lako se provjeri da je aj - - - amt cjelobrojni ideal, $to dokazuje
lemus~y=ai - am. O

Oznadit ¢emo s Ix skup svih razlomljenih ideala od K. Ako su v,s € I,
definiramo produkt vs kao Og-modul generiran svim produktima parova eleme-
nata iz v i 5. Primijetimo da ako je v generiran s 7yy,...,%v, 1§ je generiran s
01,...,0k, onda je ts generiran produktima ;0;. Posebno, ts je takoder razlom-
ljeni ideal.

Skup Ix je Abelova grupa pod mnoZenjem razlomljenih ideala.

Dokaz. Vidjeli smo gore da je Ik zatvoren pod mnozenjem. Jasno je da je ovo
mnoZenje komutativno i asocijativno. Lako se provjerava da je jedini¢ni element
jedini¢ni ideal Ok . Preostaje pronadi inverze. Dakle, neka je t razlomljeni ideal
i odaberimo v € K* takav da je vt cjelobrojni ideal. Prema Propoziciji [3.4.3]
postoji cjelobrojni ideal b takav da je ytb glavni, recimo generiran s o € O;.
Uzmimo s = 1b. Tada je s razlomljeni ideal, i imamo

th
s = r = 0Og.
(0%

Tako je s inverz od v u k. O

primijetimo da je iz dokaza Propozicije jasno da ako je v razlomljeni
ideal, onda je njegov inverz dan s

vl ={y € K" |yt C Ok}.

Takoder mozemo karakterizirati razlomljene ideale u smislu jedinstvene fak-
torizacije ideala.
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Propozicija 5.1.3

Svaki razlomljeni ideal v moze se zapisati kao

— €1 €er
T =Py Py

gdje su p; razli¢iti prosti ideali od Ok i e; su cijeli brojevi. (Primijetimo
da dopustamo da e; budu negativni.) Ovaj izraz je jedinstven do na
promjenu redoslijeda faktora. Dakle, Ik je slobodna Abelova grupa na
skupu

{p | p je prost ideal od Ok }.

Konac¢no, t je cjelobrojni ideal ako i samo ako je svaki e; nenegativan.

Dokaz. Neka je v razlomljeni ideal i odaberimo nenul racionalni cijeli broj a €
Z takav da je at cjelobrojni ideal. Tada moZemo pisati (jedinstveno do na
promjenu redoslijeda i dodavanje faktora s nul eksponentom)

aOk = pi* - py
av=py" P
ovdje dopustamo da neki e} i e/ budu nula. Tako, buduéi da je I grupa,

"__ "
el" €. €

T = pil . pr7 .
Ovo pokazuje da t ima takav izraz; ¢injenica da je on jedinstven slijedi iz ¢inje-
nice da su faktorizacije od aOg i at jedinstvene. Cinjenica da je t cjelobrojni

ideal ako i samo ako je svaki e; pozitivan jasna je iz jedinstvene faktorizacije
ideala. O

Primijetimo da je ova dekompozicija razlomljenih ideala u smislu prostih
ideala potpuno analogna dekompoziciji racionalnih brojeva u smislu racionalnih
prostih brojeva.

5.2 Grupa klasa ideala

Neka je K polje brojeva s prstenom cijelih brojeva Ok . Vidjeli smo da O mo-
7da nije domena jedinstvene faktorizacije, iako ¢e imati jedinstvenu faktorizaciju
ideala. Takoder smo vidjeli da je Og DJF ako i samo ako je DGI; odnosno, ako
i samo ako je svaki ideal glavni. Nadalje, ¢ak i kad Ok nije DGI, Cesto je korisno
znati kada su ideali glavni.

Ove ¢injenice sugeriraju da bi bilo korisno imati neki na¢in da se odredi je li
ideal glavni. Iako je to u praksi Cesto prili¢no tesko, mozemo apstraktno dosta
toga dokazati. Definirajmo Py kao podgrupu od Ix koja se sastoji od glavnih
razlomljenih ideala. Primijetimo da su cjelobrojni ideali u Px upravo glavni
ideali od O.
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Definicija 5.2.1

Definiramo grupu klasa ideala C'x od K kao kvocijent

CK = IK/PK.

Grupa Ck ¢e nam biti korisna za promatranje ranije postavljenih pitanja.
Prije svega, C'x je trivijalna grupa ako i samo ako je Ix = Pg; odnosno, ako
i samo ako je svaki razlomljeni ideal od K zapravo glavni. Bududéi da su cjelo-
brojni ideali u Px upravo glavni ideali, ovo je ekvivalentno tome da je Ok DGI,
Sto je pak ekvivalentno tome da je Ox DJF. Odnosno, Ck je trivijalna ako i
samo ako je Ok DJF. Drugo, primijetimo da je razlomljeni ideal v glavni ako i
samo ako se preslikava u 0 u Ck.

Zvat ¢emo elemente od C'i klasama ideala; tako je klasa ideala A jednostavno
koskup od Pg. Po definiciji Cx, dva razlomljena ideala a i b leze u istoj klasi
ideala ako i samo ako postoji neki v € K* s

vya =b.

Pisat ¢emo ovu relaciju kao a ~ b.
Sljedeca reinterpretacija Leme [5.1.1] pokazuje da razlomljeni ideali zapravo
nisu esencijalni za definiciju grupe idealnih klasa.

Neka je A klasa ideala. Tada postoji cjelobrojni ideal a u koskupu A.

Dokaz. Neka je t bilo koji razlomljeni ideal u A. Tada postoji v € K* takav da
je vt cjelobrojni ideal. Buduéi da je yOk € Pk, imamo vt € A, §to dokazuje
lemu. O
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Primjer 5.2.3

Uzmimo K = Q(v/—5) i razmotrimo ideale
p1 = (271* V*5), P2 = (371+ V*5)7 p3 == (3,1* V*5)‘
MoZemo direktno izracunati da je (2,1 — +/—5) = (3,1 + v/=5) gdje je

v=>5 1
T=T73 —1—3.

Dakle, (2,1 —+/=5) ~ (3,1++/=5). Takoder, moZemo primijetiti i da je
(6) == pipaps, pT = (2), pab3 = (3), prp2 = (14+V/=5), pips = (1-v/=5),
pa zaklju¢ujemo da je

p1 ~ P2 ~ p3, teje [p1] reda 2.

5.3 Konacnost grupe klasa ideala

Cinjenica da je grupa klasa ideala konacna pokazuje da jedinstvena faktoriza-
cija nikada ne "propada previse" u prstenima cijelih brojeva polja algebarskih
brojeva i mozda je najvaznija ¢injenica u algebarskoj teoriji brojeva. U ovom
¢emo odjeljku dati iznenadujuce jednostavan dokaz.

Teorem 5.3.1

Neka je K polje algebarskih brojeva. Postoji broj A\g, koji ovisi samo
o K, takav da svaki nenul ideal a od Ok sadrzi nenul element a sa
svojstvom:

[Nk /q(e)] < Ak Nk jg(a).

Dokaz. Neka je aq,...,q, integralna baza za O i neka su o1, ..., 0, ulaganja
polja K u C. Pokazat ¢emo da mozemo uzeti

n

Ak = H > loi(ey)]

n
i=1 \j=1

Neka je a nenul ideal od Ok i neka je m jedinstven pozitivni cijeli broj takav
da vrijedi

m" < Nigjo(®) < (m+1)".

Razmotrimo skup od (m + 1)" elemenata:
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n
ijaj’OSmjgm,ijZ
j=1

Buduéi da kvocjentni prsten Ok /a ima manje od (m + 1)" elemenata, dva
gore navedena elementa moraju biti kongruentna modulo a. Oduzimanjem ta
dva elementa dobivamo element

n
_E: o
o= mjajeu
j=1

sa svojstvom |m/| < m. Racunamo sada normu:

Nigja(@)] = [Tlov(o)

= m”)\K < )\KNK/Q(CI).

Neka je A klasa ideala u C'x. Tada A sadrzi integralni ideal norme < Ag.

Dokaz. Neka je b neki integralni ideal u A~!. Po prethodnom teoremu moZemo
pronadi 8 € b takav da vrijedi

INk/o(B)] < Ax Nk jg(b).

Glavni ideal SOk sadrzan je u b, a ranije smo dokazali da onda mora pos-
tojati integralni ideal a takav da vrijedi ab = fOg. Bududéi da je Ok glavni
ideal, imamo a € A, te ra¢unamo
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Grupa klasa ideala C' je konacna.

Dokaz. Prema prethodnom korolaru svaka klasa ideala sadrzi ideal norme naj-
viSe Ag. Postoji samo kona¢no mnogo ideala s normom < Mg, $to znadi da
svaka klasa ideala sadrzi jedan od konac¢nog skupa ideala. Konkretno, C'x mora
biti konacna. O

5.4 Teorija Minkowskog

Pocet ¢emo s nekim osnovnim pojmovima iz linearne algebre koji na prvi po-
gled mozda ne djeluju povezano s nasom temom. No, strategija je primijeniti
linearne algebarske koncepte, posebno pojam reSetke, na ideale Dedekindovih
prstenova kako bismo dobili osjeéaj za "veli¢inu" ideala. To ¢e nam omoguéiti
da ograni¢imo veli¢inu ideala i kona¢no dokazemo da je broj klasa konacan.

Definicija 5.4.1

Neka je V' n-dimenzionalan R-vektorski prostor. ReSetka u V' je podskup
oblika
FZZ’Ul —|—Z’U2—|—"'+Z’Um,

gdje su vy, ...,v, linearno nezavisni vektori u V. Skup {v1,...,vm}
naziva se baza reSetke, a skup

O ={z1v1+  +TpUm |z, e R0< 2; < 1}

naziva se fundamentalna domena reSetke. ReSetka je potpuna ako je
m=n.

\ J

Buduéi da radimo u Euklidskom prostoru, imamo na raspolaganju pojam
volumena. Ako su vy, ...,v, bazni vektori reSetke, tada je volumen temeljnog
paralelopipeda definiran kao

vol(®) = | det 4|,

gdje je A matrica promjene baze od ortonormirane baze od R™ do vy,...,v,.
Oznacimo vol(T") := vol(®).

Sada smo spremni izreé¢i i dokazati Minkowskijev teorem o to¢kama na re-
Setci.
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Teorem 5.4.2: Minkowskijev teorem o toc¢kama na reSetci

Neka je I' potpuna resetka u Euklidskom vektorskom prostoru V', a neka
je X centralno simetri¢an (oko ishodista) i konveksan podskup od V' za
koji vrijedi

vol(X) > 2" vol(T").
Tada X sadrzi barem jednu to¢ku 0 # vy € T'.

\ J

Dokaz. Pretpostavimo prvo da postoje v1,7v2 € I' takvi da je
1 1
<2X + 71) N (2X + 72) # 0. (5.1)
Dakle postoje x1, x5 € X takvi da

Y= %331 +m = %xz + 2.
Tada slijedi da je
1
=72 = 5(332 — 1),

pa je v1 — 72 poloviste duzine izmedu x5 i —x1. Posto je X centralno-simetri¢an
oko ishodista, imamo da je —z; € X, te posto je X konveksan, slijedi da v, — 2
pripada skupu X. Buduéi da su v i 2 elementi reSetke I' (koja je grupa),
razlika 1 — 72 takoder pripada I'. Time smo dokazali da je (y1 —72) € 'N X.

Ostaje dokazati da postoje 71,72 € I' koji zadovoljavaju .

Pogledajmo kolekciju skupova

1
{2X+77€F}.

Pretpostavimo da su svi ti skupovi medusobno disjunktni. Tada to vrijedi i
za njihove presjeke ® N (3X + 7) s fundamentalnom domenom ® od I'. Dakle

imamo vol(®) > 3 vl (<I> N (;X + 7))

yel

Translacija skupa ®N (%X + ’y) za — daje skup (CIDf'y)ﬁ%X istog volumena.
S druge strane, skup
{©—v[yeTl}

prekriva cijeli prostor V', pa i %X . Dakle, mi dobivamo

vol(®) > > "ol ((cp s ;X) = vol @X) = 2% vol(X),

yel’

§to je kontradikcija s naSom pretpostavkom.
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Sada ¢emo primijeniti teoriju reSetki na polja algebarskih brojeva K/Q stup-
nja n. Razmatramo preslikavanje

j:K—)KC:ﬁC,
i=1

koje svakoj vrijednosti x € K pridruzuje njen niz ulaganja

j(@) = (r(x),..., ().

Iako je K¢ vektorski prostor nad C, sto nam daje pojam udaljenosti, pri-
liécno ga je tesko geometrijski vizualizirati. Bilo bi mnogo "bolje" kada bismo
mogli preslikati K u Euklidski prostor bez gubitka informacija iz kompleksnih
ulaganja. Da bismo to uéinili, moramo primijetiti tri stvari: Prvo, realna ulaga-
nja veé¢ preslikavaju K u R, tako da trenutno moZzemo zanemariti ta ulaganja.
Drugo, kompleksna ulaganja mogu se promatrati kao ulaganja u R? razdvaja-
njem ulaganja na njihov realni i imaginarni dio. Kona¢no, kompleksna ulaganja
dolaze u parovima kompleksnih konjugata. Dakle, ako imamo samo polovicu
kompleksnih ulaganja, odnosno jedan iz svakog para kompleksnih konjugata, ne
gubimo nikakve informacije. To nas dovodi do opisa prostora Minkowskog:

Svako ulaganje od K u C je ili realno ili kompleksno. Neka su pi,...,p.
realna ulaganja. Kao §to je upravo spomenuto, kompleksna ulaganja dolaze u
parovima. Neka su 01,071, ...,0s,0s kompleksna ulaganja. Od sada nadalje ¢e
nam 7 biti broj realnih ulaganja, a 2s broj kompleksnih ulaganja. Iz svakog para
kompleksnih ulaganja, odabiremo jedno fiksno ulaganje. Zatim dopustamo da
p varira preko realnih ulaganja, a o preko odabranih kompleksnih ulaganja.

Definicija 5.4.3

Prostor Minkowskog Ky definiran je kao
Kr ={(2-) € Kc | 2p € R, 25 = Z, },

gdje 7 varira kroz svih n ulaganja polja K u C, te gdje su p realna
ulaganja, a o kompleksna.

\ J

primijetimo da je j(K) C Kgr. Na taj na¢in mozemo polje K interpreti-
rati kao n-dimenzionalni Euklidski prostor, a njegove prstenove cijelih brojeva
i ideale kao resetke u prostoru Minkowskog.

Da bismo prostor Minkowskog zamislili geometrijski, moramo ga uloziti u
R™. Sljededi rezultat se lako dokazuje (ostavljamo za vjezbu).
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Propozicija 5.4.4

Preslikavanje

f:Kp— [[JR=R"?, (5.2)

dano s (z;) — (z,), gdje je
Tp =25 Zo=Re(2,), x7=Im(z,), (5.3)

je izomorfizam. Ovaj izomorfizam pretvara kanonsku metriku (-,-) u
skalarni produkt

<.T, ?J> = Z a‘rxTy_T7
T

gdje je a = 1 ako je 7 realan, a o, = 2 ako je 7 kompleksan.

Moze se dosta jednostavno pokazati da je vol(X) = 2° volpehesgue f(X)
Da bismo ilustrirali ovaj koncept, predstavljamo jednostavan primjer.

Primjer 5.4.5

Neka je K = Q[v/2]. K/Q je proSirenje stupnja 3. Stoga postoje tri
kanonska ulaganja od K u C, koja ¢emo oznaciti 71, 7o i 73. Preslikavanja
su jedinstveno definirana njihovim djelovanjem na /2, pa pisemo

(VB) = VB, m(i5) = V3 (-% \ @) (D)= 3 <_1 VB,

Vidimo da je 71 realno ulaganje i da je 75 = 73. Stoga, koristeéi gornji
izomorfizam, tri nova ulaganja u R3 su

o1(V2) = V2, "2(%):‘? og(e/i)z‘g/z\/g.

Definicija 5.4.6

Neka je a ideal u Og. Definiramo diskriminatu A(a) od a kao
Alay,...,ap), gdje je aq, ..., a, baza od a kao Z-modula.

Sada kada mozemo razmisljati o K kao n-dimenzionalnom euklidskom pros-
toru, mozemo tumagciti prsten cijelih brojeva od K i njegove ideale kao resetke
u prostoru Minkowskog K, koristeéi sljedeé¢u lemu.
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Neka je K konacno proSirenje QQ, a a nenul ideal prstena Og. Tada

je I' = j(a) potpuna reSetka u Ky kojem fundamentalna domena ima

volumen

VOI(F) = 4/ |AK|[OK 5 Cl].

Dokaz. Neka je aq,...,q, Z-baza od a. Tada je I' = Zj(a1) + -+ + Zj(a).
Neka su 71,73, ...,7, ulaganja od K u C. Definiramo matricu

(o) me(ar) - Th(on)

A: ’7'1(0[2) TQ(OZQ)

Tl(an) Tn(an)

Ako su b C b’ dva nenul konac¢no generirana Og-podmodula od K, tada je
[b” : b] konacan i A(b) = [b’: b]>A(b’) (prema ranije dokazanom).
Stoga imamo

Afa) = Alay, ..., a,) = (det A)? = [Ok : a?A(Ok) = [Ok : a]*Ak.

Sada imamo
VOl(F) = |detA| =/ ‘AKHOK : Cl],

Sto je i trebalo dokazati. O

Teorem 5.4.8

Neka je K/Q kona¢no proSirenje, i neka je a # 0 ideal od Ok. Neka je
¢ > 0, za 7 ulaganje K u C, realan broj takav da je ¢, = c7 i

HCT > AlOk : a],

gdje je A= (2/7)°/|AKk|. Tada postoji nenul « € a takav da

|7(0)] < ¢r za sve T € Hom(K, C).

\ J

Dokaz. Neka je

X ={(z7) € Kr | |2-] < ¢r}.

Ovaj skup je centralno simetri¢an, bududi da je |z;| = | — 27|, i konveksan je jer
ako je |z;], |Jw,| < ¢r, tada je

1 1
< clerl + —— |wr| < max{|z ], w- [} < e

P 1—¢

1 1
t 1-1¢
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Izra¢unavamo volumen koristeéi preslikavanje (5.2)). Ispada da je 2° puta
volumen slike

£6) = {m) e TIR el < cpa? 442 < }
Ovo daje
vol(X) = 2°vol(f(X)) = 2° [ [(2¢,) [[(wc2) = 27 n* [ ] e
P T

o

Sada imamo
vol(X) > 2778 (727) VIAk|[Ok : a] = 2"vol(j(a)).

Nejednakost slijedi iz pretpostavke, a jednakost iz Leme [5.4.7]
Dakle, prema Minkowskom teoremu o tocki resetke, postoji toc¢ka reSetke
jla) e X, a#0, a € a. Tojest, |7(a)| < ¢, Sto je i trebalo dokazati. O

Lema 5.4.9

U svakom idealu a # 0 od Ok postoji a € a, a # 0, takav da

[N ()] < ()\/ITN

Dokaz. Za svaki € > 0, mozemo odabrati pozitivne realne brojeve ¢, za 7 €
Hom(K,C) takve da ¢, = ¢7 i

I - (i) JIARIN(@) + ¢

Tada prema Teoremu nalazimo element « € a, a # 0, koji zadovoljava
|7(v)| < ¢r. Stoga

[Miate)| =TT e () BrIN(@) + <.

Bududi da je [Nk /()| pozitivan cijeli broj, te tvrdnja vrijedi za svaki € > 0
ocito slijedi da postoji a € a, a # 0, takav da

Vigole)] < (2) ViaxIN ).

Sada smo spremni dokazati kona¢nost broja klasa.
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Teorem 5.4.10

Neka je K/Q polje algebarskih brojeva. Tada je broj klasa od K (ili od
Ok), hk := [Ik : Pk] konacan.

Dokaz. Kao sto smo komentirali i ranije, postoji samo konacan broj ideala od
Ok s ograni¢enom apsolutnom normom N (a) < M.
Stoga ¢ée biti dovoljno pokazati da svaka klasa ideala [a] iz C'x sadrzi ideal

a; od Ok takav da
2 S
N(ay) <M= <7T> VIAK].

Da bismo to pokazali, biramo proizvoljnog predstavnika klase a i nenul ele-
ment v € Ok takav da je b = ya~! C Og. Prema Lemi mozemo nadi
nenul element o € b takav da

N (ab™) =N ((a)b™!) = [Ng/g(a)| N(b) ™' < M.

Primijetimo da N (b)|N(«), pa slijedi da je ab™! cijeli ideal, po§to mu je norma
cjeloborjna. Dakle, ideal ab™! = ay~!a € [a] ima Zeljeno svojstvo. O

Vazna Cinjenica iz dokaza koju ¢emo zapisati kao posebnu propoziciju je
sljedeca:

Propozicija 5.4.11

Svaka klasa iz C'x sadrzi ideal a; od Ok takav da

N(a) <M = (i) VIBk]-

Najbolja ograda koja se moZe dobiti za opéeniti n je sljedeca (i koju mi
ne¢emo dokazivati):

Teorem 5.4.12: Minkowski

Neka je ux = v/|Axk]| (%)S ;—i, gdje je [K : Q] = n. Tada postoji inte-
gralni ideal I u svakoj klasi u Ck takav da je N(I) < pg.




POGLAVLJE 5. GRUPA KLASA IDEALA

97

Primjer 5.4.13

Neka je K = Q(+/—5). Buduéi da je —5 = 3 (mod 4), znamo da je
Ok = Z|V/—-5] i 6k = —20. Prema Propoziciji znamo da svaka
klasa ideala sadrzi ideal a takav da

N(a) < (%) V20 ~ 2.85.

Stoga moramo naéi sve ideale s apsolutnom normom 2. Pretpostavimo
da je a ideal takav da je N(a) = 2. Ranije smo komentirali da se prosti
ideal norme p* mora naci u faktorizaciji od pOf.

Takoder smo vidjeli da je 20k = b2, gdje je b = (/=5 + 1,2). Poka-
zat ¢emo da b nije glavni, i stoga da nije u isto] klasi ideala kao (2).
Pretpostavimo da je b glavni, tako da je b = (b) za neki b € Z[/-5].
Tada

Ni/q(b) | Nk/o(2) =4

Nk/a(®) | Ngo(V=5+1) = (1 +V=5)(1 - v=5) =6
Stoga je N /g(b) = 2. Pa ako je b = = + yv/—5, onda
NK/Q(b) =22+ 5y2 S8

Nema cjelobrojnih rjeSenja za x i y, pa b ne moZe biti glavni.
Pokazali smo da sve klase ideale imaju predstavnika norme < 2, te smo
vidjeli da postoji jedinstveni ideal norme b koji nije glavni. Zaklju¢ujemo

hix =2, te Cx = {[(1)], [6]}

Neka je K = Q((5). Pokazali smo da je Ax = 53. Imamo

4\ 2 41
pK = ( ) \/1254—4 ~ 1.669921.

T
Zaklju¢ujemo da svaka klasa ima u sebi ideal (1), dakle hx = 1. Dakle
K je domena jedinstvene faktorizacije.

Primjer 5.4.14
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Primjer 5.4.15

Neka je K = Q(+/—7). Imamo

™

2 1
UK = (-) V7~ 1.861,

pa zaklju¢ujemo kao i prije da je hx = 11i da je K domena jedinstvene
faktorizacije.

Primjer 5.4.16

Neka je K = Q(¢7). Imamo

3
4 6!
pr = (=) Vi~ ~4.120.
T 66

Dakle, ako postoji klasa ideala koja nije glavna, onda se ona mora naéi
u faktorizaciji od ideala 20k i 30
Element 2 je reda 3 u (Z/7Z)*, pa slijedi da je

20k = p1pa,

gdje je N(p;) = 8.
Element 3 je reda 6 pa je 30 prost i norme 3°. Zaklju¢ujemo da je
hx =11 K je domena jedinstvene faktorizacije.
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Primjer 5.4.17

Neka je K = Q(v/—14). Imamo

~ 4.76.

4+/56
i

HE =

Dakle, treba samo promotriti faktorizaciju od 2 i 3. Imamo
20K = (2,V—14)?,
30k = (3,14+v—14)(3,2+ v—14).

Dakle svakako imamo hg < 4.
Prvo Zelimo vidjeti je li po = (2,4/—14) glavni. Dakle pitamo se je li
postoji a € Ok takav da a|2 ay/—14. Dakle

N()|(N(2), N(v=14)) = (4,14) = 2.

Neka je a = = + y/—14. tada bi moralo biti 22 + 14y? = 2, §to je o¢ito
nemoguce. Dakle po nije glavni.

Neka je a = (3,1 + /—14). Analogno kao i gore, pokaZemo da a? nije
glavni. Dakle [a] je reda > 4. Zaklju¢ujemo da je

hi =4, Cx ~Z/AZ, Cx ={[()], [p2], [a], [a"]}.

Neka je K = Q(+/—163). Dobijemo px ~ 8.127. Ra¢unamo

() - (22) - ()

Dakle, pOg su inertni za p = 3,5, 7. Dakle ne postoje ideali norme 3,5, 7
u Og. Ostaje odrediti faktorizaciju od 20k.

Sjetimo se da je Z {H— V;lﬁ?’} , te je minimalni polinom od +¥Y=163 V2_163 jednak
22 —x+41. Taj polinom je ireducibilan modulo 2, pa slijedi da je 2 inertan

u K. Dakle 20 je jedini pravi ideal norme < pg, te je on oc¢ito glavni.
Slijedi da je hx = 1.

Primjer 5.4.18

Recimo malo i o povijesti prou¢avanja broja klasa imaginarnih kvadratnih
polja. Gauss je izrekao slutnju (bila je zato poznata kao Gaussova slutnja) da

hg(y=a) = o0 kako d — co. To je dokazao Heilbronn 1934. godine.

Postoji samo 9 imaginarnih kvadratnih polja K s hx = 1. To su Q(v/d) za

de{-1,-2,-3,-7,—11,-19,—43, —67, —163}.

Ovo je dokazao Stark 1967. godine, koristec¢i prethodne rezultate Bakera i Heeg-
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nera. Vazno otvoreno pitanje je postoji li beskona¢no mnogo realnih kvadratnih
polja K = Q(v/d), d > 0s hxg = 1. Slutnja je da postoji.
Nastavimo sada promatrati K = Q(v/—163).

Lema 5.4.19

Neka je p < 37 prost broj. Tada je p inertan u K = Q(v/—163).

Dokaz. Pretpostavimo da nije, da se neki pOg cijepa za p < 37. Neka je
a = /163 V;wg. Posto je hx = 1, slijedi da je
pOx = (a)(b), zaneke a,b, € O

Tada je a = ¢ + yo, z,y € Z takav da je N(a) = p. Medutim, imamo

N(a) N<<x+g) + <x+@>) = <x+%)2+$y2.

Posto mora biti a ¢ Z, mora biti y # 0, pa slijedi N(a) > 182, §to je kontradik-
cija. O

Ova ¢injenica ima jednu vrlo zanimljivu posljedicu.

Propozicija 5.4.20

Neka je f(z) = 22 —z +41. Tada je f(zo) prost za sve prirodne brojeve
zo € g < 40.

Naravno, ova propozicija se lako ra¢unski dokaZe, ali mi éemo dati ljepsi
dokaz.

Dokaz. Neka je xy kao u pretpostavkama propoziciji. Neka je p neki prosti
djelitelj od % — ¢ + 41. Tada je

2 —20+41=0 (mod p),

— (220 — 1)? = —163 (mod p)

()

za p # 163. Kada bi to bilo istina za p < 37, tada bi se taj p cijepao u Q(+/—163),
a vidjeli smo da je to nemoguce.

Ako uvrstimo f(40) = 1601 < 412, pa slijedi da kada f(zo) ne bi bio prost
za neki rg < 40, tada bi imao prostog djelitelja < 41, §to smo vidjeli da je
nemoguce. U
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Primjer 5.4.21

Neka je K = Q(v/82). Pokazimo da je grupa klasa ciklicka grupa reda 4.

RjeSenje: Ovdje je n = 2, ro = 0, disc(K) = 4 - 82, pa je Minkowskijeva
ograda ~ 9.055. Pogledajmo proste ideale koji dijele 2, 3, 51 7.

Sljedeca tablica opisuje kako se (p) faktorizira iz nacina na koji se T2 — 82
faktorizira modulo p.

‘ T? — 82 mod p ‘ (p)

T p3
(T=1(T+1) | psps
ireducibilno prost

N Ot w o

ireducibilno prost

Dakle, grupa klasa od Q(v/82) je generirana s [po] i [p3], gdje su p3 = (2) ~
(1) ips~pst

Bududi da je Ng /(10 + V82) = 18 = 2- 32, i 10 4 /82 nije djeljivo s 3,
(10 ++/82) je djeljivo samo s jednim od p3 i ps. Neka je p3 taj prosti ideal, tako
da je (10 4 1/82) = pap3. Stoga pa ~ p3 2, pa je grupa klasa od K generirana s
[p3] i imamo formule

o] =1, [ps]® = [pa).

Dakle, [p3] ima red koji dijeli 4.

Pokazat ¢emo da ps nije glavni ideal, tako da [p3] ima red 4, i stoga K ima
grupu klasa ([ps]) = Z/47Z.

Ako je po = (a + bv/82), onda je a®> — 820 = +2, tako da je 2 ili —2
= O mod 41. Ovo nije kontradikcija, jer je 2 = 172 mod 41. Potrebna nam je
drugacija ideja.

Ideja je koristiti poznatu ¢injenicu da je p3 glavni ideal. Ako je po = (a +

bv/82), onda je (2) = p2 = ((a + bV/82)?), tako da je
2 = (a + bV/82)2u,

gdje je u jedinica.

Uzimajuéi norme ovdje, N(u) mora biti pozitivna, pa je N(u) = 1. Grupa
jedinica od Z[v/82] je +(9++/82)%, a 94+/82 ima normu —1. Stoga su pozitivne
jedinice norme 1 integralne potencije od (9+1/82)2, koji su svi kvadrati. Kvadrat
jedinice moze se apsorbirati u izraz (a + b\/8_2)2, pa moramo modi rijesiti 2 =
(a + b\/@)2 u cijelim brojevima a i b. Ovo je o¢ito nemoguce: implicira da je
V2 u Z[/82], §to je neto¢no. Dakle, po nije glavni ideal.

Primjer 5.4.22

Neka je K = Q(v/—30). Pokazimo da je grupa klasa produkt dvije ciklicke
grupe reda 2.
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Rjesenje: Ovdje je n =2, ro = 11 disc(K) = —120. Minkowskijeva ograda
je = 6.97, pa je grupa klasa generirana prostim idealima koji dijele 2, 3 1 5.

Sljede¢a tablica prikazuje kako se ti prosti brojevi faktoriziraju u proste
ideale.

p | T? +30 mod p ‘ (p)
2 T P>
3 7 p3
5 r? P3

Za a,b € Z, Ngg(a+by/—30) = a? + 3002 nikada nije 2, 3 ili 5. Stoga pa, P3
i ps nisu glavni, pa njihove klase ideala imaju red 2 u grupi klasa od K. Stovise,
buduéi da je Ng/q(v/—30) =30 =2-3-5, slijedi da je (v/—30) = pap3ps. Stoga
je papsps ~ 1 u grupi klasa, pa [pso] i [p3] generiraju grupu klasa.

Relacija papsps ~ 1 u grupi klasa moze se zapisati kao

[p2]ps] = [ps] " = [ps).

Buduéi da p5 nije glavni ideal i [p2] 1 [p3] imaju red 2 u grupi klasa, [p2] # [ps].
Stoga je grupa klasa od K ([po], [ps]) = ([p2]) x ([pa]) = Z/22 x Z/22.

Primjer 5.4.23

Neka je K = Q(+/2). Pokazat ¢emo da je grupa klasa ideala trivijalna.

RjeSenje: Bududi da je Ox = Z[¥/2] i r, = 1, Minkowskijeva ograda je
(6/27)(4/7)/108 ~ 2.94,

stoga trebamo faktorizirati (2) u proste ideale u Q. Imamo (2) = (¥/2)3, sto
znadi da je (\3/5) prost ideal norme 2, tako da je jedini prosti ideal norme manje
od 2.94 glavni, pa je h(K) = 1.

Primjer 5.4.24

Neka je K = Q(+/3). Pokazat ¢emo da je grupa klasa ideala trivijalna.

RjeSenje: Bududi da je O = Z[V/3] i o = 1, Minkowskijeva ograda je
(6/27)(4/7)v/243 ~ 4.41,
stoga trebamo faktorizirati ideale (2) i (3) u proste ideale u Ok.

p‘ T3 —3 mod p ‘ (p)
2| (T+1)(T?>+T+1) | pape
3 7’ p3
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Prema tablici, postoji jedan prosti ideal norme 2 i jedan norme 3. To su ideali
(=14 ¥/3) i (¥/3) buduéi da —1 + ¥/3 ima minimalni polinom (7 + 1)% — 3 =
T3 +3T2 43T —2 s konstantnim ¢lanom —2, a /3 ima minimalni polinom 7° —3
s konstantnim ¢lanom —3 (sjetimo se, konstantni ¢lan minimalnog polinoma
jednak je normi). Kako je (2) = paop, gdje je p2 glavni ideal, p} je takoder
glavni. (Eksplicitno, p, = (1 + /3 + V/9).) Stoga su svi prosti ideali norme
manje od 4.41 glavni, pa je h(K) = 1.

Pokazimo sada kako mozemo iskoristiti grupe klasa ideal za rjesavanje Di-
ofantskih jednadzbi:

Primjer 5.4.25

Nadimo sva rjeSenja od

2 +19=9y3 =zyecZ

RjeSenje: Zapisimo
(z+V=19)(x — V-19) = y*

Neka je K = Q(v/~19), tada je Ox = Z[*4=] i |Ag| = 19. Racunamo
Minkowskijevu ogradu:

4 21 2
p={(2) = .vi9=2.V19<5
) 22 s

Polinom f = 22 + x + 5 je minimalni polinom od ¥=19 V2_19.

(z? + 2+ 1) je ireducibilan modulo 2 = 20k prost,

(#? + £ +2) je ireducibilan modulo 3 = 30 prost.

Dakle hg = 1.
Dokazimo da su elementi (x ++/—19) i (x — v/—19) relativno prosti. Pret-

postavimo da 7 | z + /=19 i 7 | x — /—19.
7|2z, 7|2vV—-19
Ako je x neparan (a time y paran) = 22 = 1 (mod 8)
=22 +19=1+3=4=4 (mod 8).

S druge strane y*> = 0 (mod 8), pa smo dogli do kontradikcije.
Dakle z je paran, x = 2t, t € Z. Kada bi v/—19 | z u O = 19| z.

22 4+19=19 (mod 19%) = y* =19 (mod 19?),

sto je kontradikcija. Zaklju¢ujemo da 71 +/—19.
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Pretpostavimo da 7|2. Posto je 20k prost, slijedi da je 7 = 2. Medutim,
posto 2 1+1/—19, te 2|z, ocito slijedi da 2 4 (z £ /—19).

Dakle
(x+V-19,2 —vV-19)=1= (z +v/—19) =a®

3
14+v-1
=>z4+vV/-19=u (c+d(+29>) , u€0f, abe’
ZapiSimo zbog jednostavnosti

(o) (24),

gdje a, b moraju biti iste parnosti. Imamo
3
bv—19 1
(G‘LQ> = g(af” + 3a%byv/—19 — 57ab? — 196>/ —19).

= a® —57ab® =8z, 3a’b— 1963 =8.

Primijetimo da vrijedi
b(3a® —19v°) =8 = b= =£1,2,4,8,

te da je 3a® — 19b? djeljivo s 4, posto su a i b iste parnosti, dakle b = +1, +2 su
jedine moguénosti Za b = +1 dobijemo

3a% — 19 = 48,

Ovo nam daje rjeSenje a = £3,b = 1. UvrStavanjem u drugu jednadzbu dobi-
vamo

a® — 57ab? = £27 F 171 = +144 = 8z.

Dakle, dobivamo rjeSenje x = £18. Ra¢unamo
182 419 =324 + 19 = 343 = 73,

pa je x = £18, y = 7 zaista rjeSenje.
Za b = £2 dobijemo
362 —19-16 = +4,

Ovo nam daje rjeSenje a = £10,b = —2. UvrStavanjem u drugu jednadzbu
dobivamo
a® — 57ab* = £1000 F 2280 = +1280 = 8.

Dakle dobivamo rjesenje x = £160. Medutim

1602 + 19 = 25619
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nije kub, tako da tu ne dobivamo rjesenja.

Primjer 5.4.26

Nadimo sva rjeSenja u Z jednadzbe 3 = y? + 5.

Rjesenje:

Zapo¢nimo s provjerom parnosti. Ako je z paran, tada je y> = —5 = 3
(mod 8), ali 3 modulo 8 nije kvadrat. Stoga je x neparan, pa je y paran.

Primijetimo da su x, y relativno prosti, jer bi inace njihov najveéi zajednicki
djelitelj morao dijeliti 2 — y? = 5. Kad bi najveéi zajednicki djelitelj bio 5,
dolazimo do kontradikcije modulo 125, tj. dobili bismo —25t2 = 5 (mod 125),
§to je o¢ito nemoguce.

Zapisimo jednadzbu kao

¥ =y’ +5=(y+V=5)(y — V-5). (5.4)

Neka je K = Q(y/—5). Kada bi bilo da je hxg = 1, mogli bismo provjeriti
da su y + /=5 i y — v/—5 relativno prosti i njihov produkt je kub, pa su
oni oboje kubovi (jedinice u Z[v/—5] su +1, koje su oboje kubovi). Medutim,
imamo hx = 2, tako da ne mozemo to napraviti. Medutim, mozemo promotriti

faktorizaciju ideala

(2)° = (y+V=5)(y - V-5).
Dokazimo prvo da su ideali (y ++/—5) i (y — v/—5) relativno prosti. Pretposta-
vimo da p C Ok dijeli (y ++v—5) i (y — v—5). To znadi da su

y+vV->5€p, y—Vv-5¢€p.

Slijedi da su 2y i ¥ +5 = 2 takoder u p. Neka je p prost broj takav da pZ lezi
ispod p. Tada su 2y, x> € pZ, sto smo vidjeli da je nemogude,

Zaklju¢ujemo da je
v+ V) =1

za neki ideal I u Og. Primijetimo da je [I3] = [I], poSto je hx = 2 (pa je
[I?] = [Ok] za svaki ideal I). Posto je I® glavni, slijedi da je i I glavni.

Dakle
y+vV=5=(m+nv-5)> (5.5)

za neke cijele brojeve m i n, pa je
y=m>—15mn? = m(m? — 15n?), 1 =3m?n —5n° =n(3m? —5n?). (5.6)

Iz druge jednadzbe, n = +1. Akojen = 1, tada 1 = 3m2—5, pa 3m? = 6, §to
nema cjelobrojnih rjesenja. Ako je n = —1, tada 1 = —(3m? — 5), pa 3m? = 4,
Sto takoder nema cjelobrojnih rjesenja. Dogli smo do zakljucka da y? = z3 — 5
nema cjelobrojnih rjesenja.

Napomenimo ovdje bitnu ¢injenicu koju smo koristili: ako imamo izraz
X™ =Y - -Z u Ok, gdje su ideali (V) i (Z) relativno prosti, te je (hx,m) =1,
tada su Y i Z zapravo m-te potencije u Og.



Poglavlje 6

Fermatov posljednji teorem za
regularne proste brojeve

6.1 Teorem

Neka je p neparan prost broj i K = Q((,). Pisat ¢emo ¢ umjesto ¢, za ovo
poglavlje.

Pocetkom 19. stolje¢a primijeéeno je da je ovo polje usko povezano s Fer-
matovim posljednjim teoremom. Specifi¢no, ako postoji rjeSenje jednadzbe

P 4+ yP = 2P (6.1)
gdje su x,y, z € Z, moze se koristiti faktorizacija

P +yP = (x4 y)(z+Cy)(x+Cy) - (z+ Py

kako bi se zakljucilo da je

(z+y)(@+ Cy)(@+ Cy) - (x4 P ry) = 2P

Odavde se pokazuje (uz odgovarajuée uvjete za x,y, z) da su faktori s lijeve
strane medusobno relativno prosti. Ako je Ox DJF, slijedi da je svaki x + ('y
p-ta potencija u Ok, buduéi da im je umnozak takav. Odavde se moze lako
dobiti kontradikcija koja pokazuje da Fermatova jednadzba nema netrivijalno
rjeSenje u ovom slucaju.

Ovaj dokaz je prvi uspjesno proveo Kummer sredinom 19. stolje¢a. Shvatio
je da njegov dokaz vrijedi ne samo za one p kod kojih je Z[(,] DJF, veé i za
puno veéu klasu prostih brojeva. Kljuéno svojstvo se pokazalo da p ne dijeli
broj klasa hg(c,). Kummer je takve proste brojeve nazvao regularni; ako prost
broj nije regularan, onda se kaze da je iregularan.

Dokazati ¢emo Kummer-ov teorem s dodatnom pojednostavljujuéom pret-
postavkom da p ne dijeli zyz; ovo se klasi¢no naziva Slucaj 1. Slucaj I sadrzi
veéinu zanimljivog sadrzaja opéeg slucaja i ima prednost da je tehnicki puno
jednostavniji.

106
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Teorem 6.1.1: (Kummer)

Neka je p > 5 regularan prost broj. Tada jednadzba
2P 4 yP = 2P

nema rjeSenja s x,y, 2z € Z i p koji ne dijeli zyz.

Dokaz. Za pocetak, lako vidimo da mozemo bez smanjenja opéenitosti pretpos-
taviti da = i y nisu kongruentni modulo p. Naime, prvo primijetimo da mozemo
pretpostaviti da su x,y, z u parovima relativno prosti, inace ih sve podijelimo
s najveéim zajednickim djeliteljem, pa dobijemo u parovima relativno prosta
rjeSenja iste jednadzbe. Dakle, ne mogu i x i y biti kongruentni 0 modulo p.
Pretpostavimo sada daje 0 # z =y (mod p). Tada je z = 2z (mod p)iz # —x
(mod p) (jer bi inace bilo y =0 (mod p)). Sada uz zamjenu varijabli ¢y’ = —z i

z' = —y imamo jednadZzbu

o+ () = ()

takvu da je x Z 3’ (mod p).
Neka je sada K = Q({,). Pretpostavimo da postoji rjeSenje a? + y? = 2.
Kao i prije, pisemo

(z+y)(xz+Cy) - (x+ Cpfly) — P,

Najprije ¢emo pokazati da glavni ideali (z + ('y) i (2 + (/y) nemaju zajed-
nic¢kih faktora za i # j. O

Pretpostavimo P + y? = zP i p ne dijeli xyz. Tada su ideali (:E + Ciy)
medusobno relativno prostiza¢=0,...,p — 1.

Dokaz. Neka su i i j razli¢iti cijeli brojevi izmedu 0 i p — 1 i pretpostavimo
da postoji neki prost ideal q od Ok koji dijeli i (x + Ciy) i (Jc + ij). Tada ¢
takoder dijeli glavne ideale:

((@+¢'y) = @+ ) = (¢ =) v)

(4 ¢y) =7 (e +Py) = ((1-¢77) ).
Napomena: (7 (x + ij) generira isti ideal kao = 4+ ¢(Yy buduéi da je ¢*~7
jedinica.
Sjetimo se da, bududi da i # j, ¢! —¢7 = ¢* (1= ¢F7%) i 1 — ("7 su oboje
asocirani (generiraju isti ideal) broju 1 — ¢. Zaklju¢ujemo da q dijeli ideale

(1=0 (@) i(1=0(y):
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Medutim, buduéi da su z i y relativno prosti u Z, slijedi da ne moze postojati
prost ideal u Ok koji ih oboje dijeli; stoga je jedina moguénost ¢ = (1 — ).

Pretpostavimo dakle da (1 — ¢) dijeli (Jc + C’y) i (x + (jy) kao ideale. Ovo
odmah implicira da 1 — ¢ dijeli x + "y i = 4+ (?y kao elemente od O . Dakle:

r+¢y=0 (mod1—).
Takoder vrijedi ¢! =1 (mod 1 — ¢), tako da zaklju¢ujemo:
x4+y=0 (modl-—).

Medutim, x + y je racionalni cijeli broj, tako da ako je djeljiv s 1 — (, onda
mora biti djeljiv s p, posto je (1 — ) NZ = pZ.
Sada imamo da p dijeli x + y u Z. Bududi da

P +y?=z+y (mod p),

slijedi da p dijeli 2P + yP, i stoga da p dijeli z. Ovo je kontradikcija nasoj
pretpostavci da p ne dijeli zyz (ili naSoj pretpostavci da su x i y relativno
prosti), pa zaklju¢ujemo da su (;v + (i) i (;v + (jy) relativno prosti ideali, kao
§to smo i tvrdili. O

Neka je (z) = q7* - - qP'~ faktorizacija ideala (z) u Ok. Jednakost ideala

(Z+y)(@+Cy) - (z+y) = (2)F

pokazuje da (z +y)(z +Cy) -~ (z + P~ 1y) = i - - g2"r.

Buduéi da su ideali (z + ¢'y) u parovima relativno prosti, svaki g; mora
se pojaviti u faktorizaciji to¢no jednog od njih. Kako se svaki q; pojavljuje s
eksponentom djeljivim s p, slijedi da se svaki prosti faktor od (z+(%y) pojavljuje
s eksponentom djeljivim s p. Drukéije receno, svaki (x + ('y) je p-ta potencija
nekog ideala a; od Ok: (z + ('y) = af.

Sada koristimo hipotezu da je p regularan kako bismo zakljucili da su svi a;
glavni. Konkretno, primijetimo da je a? trivijalan u Ck jer je to glavni ideal
(x + C'y). Buduéi da p ne dijeli red od Cf, to implicira da a; sam mora biti
trivijalan u Ck (jer ako bi Ck imao element reda p, onda bi njegov red bio
djeljiv s p), pa je stoga glavni. Dakle, mozemo pisati a; = («;) za neki «; € Ok,
i imamo jednakost glavnih ideala

(z 4 C'y) = ()"

Ovo implicira da _
x4+ 'y = ua?

za neki u € OF. Sljededi korak je dobiti malo viSe informacija o jedinici w.

Neka je K polje algebarskih brojeva s kompleksnim ulaganjima o, ... o,.

Neka je @ € K cijeli algebarski broj takav da |o;(«)] = 1 za sve i =
1,...,n. Tada je « korijen iz jedinice.
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Dokaz. Definirajmo S kao skup svih o € Ok takvih da o;(a) ima apsolutnu
vrijednost 1 za svaki i. Prvo primijetimo da je S zapravo grupa s obzirom na
mnozenje; to je zato $to, ako su a, 8 € S, tada je

loi(ap)| = loi(a)] - [oi(B)] = 1,

pa je aff € S. Zatvorenost S s obzirom na inverz dokazuje se na isti nacin.
Pokazat ¢emo da je S konacan; to ¢e implicirati da svi elementi u S imaju
konacan red, i stoga su korijeni jedinice.

Neka je f(x) € Z[z] karakteristi¢ni polinom bilo kojeg 5 € S. (f(x) ima
cjelobrojne koeficijente jer je § algebarski cijeli broj.) Imamo

f(@)=(z = 01(B)) - (& = on(B)).

n—1

Razmotrimo koeficijent a,_1 uz x u f(z). To je cijeli broj, jer je f(x) €

Z[z]. Takoder ima izraz
an—1=—(01(8) + -+ on(B)).
Bududi da svaki o;(f) ima apsolutnu vrijednost 1, to implicira da
lan—1] < mn.

Na isti nacin, pokazuje se da za bilo koji k,

jax < (Z)

Dakle, postoji samo kona¢no mnogo moguénosti za svaki ag, jer je svaki cijeli
broj u ograni¢enom rasponu.

Posebno, to znac¢i da postoji samo kona¢no mnogo moguéih izbora za f(x),
jer postoji samo kona¢no mnogo izbora za svaki koeficijent od f(x). (Primije-
timo takoder da je stupanj od f(z) fiksan na n.) Svaki takav f(z) ima najvise
n korijena, pa sve zajedno moze postojati samo konac¢an broj korijena polinoma
koji bi mogli biti karakteristi¢ni polinomi elemenata iz S. Posebno, sam S mora
biti konacan, kao $to smo i tvrdili. O

Lema 6.1.4

Neka je u € OF. Tada je u/u = ¢’ za neki b, gdje je @ kompleksno-
konjugirana vrijednost od w.

Dokaz. Neka su o1, ...,0,_1 kompleksna ulaganja od Q(¢), poredana na uobi-
Cajeni nac¢in. Primijetimo da za svaki o € Q({) vrijedi

0i(@) = 0i(0_1 () = o_1(03()) = 04(ev),

zbog o_1(a) = @ i komutativnosti Galoisove grupe. Posebno, svaki konjugat
od a/a imat ¢e apsolutnu vrijednost 1, buduéi da kompleksan broj i njegov
kompleksni konjugat imaju istu apsolutnu vrijednost.
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Kada je u jedinica, u/u je takoder algebarski cijeli broj, jer je u jedinica.
Sada moZemo primijeniti Lemu kako bismo zakljuéili da je u/w korijen

jedinice. Dakle
L (6.2)

za neki k. Moramo pokazati da je predznak zapravo +. Pretpostavimo da je
u/u = —C* za neki k. Napisimo

u=ag+al+--+a,_o(P2 (6.3)

Tada
u=ap+a+---+ap—2 (mod1l—). (6.4)

Sli¢no, buduéi dasu 1 — (il — ¢ =1— (P! asocirani, vrijedi
u=ap+ar+---+ap_2 (modl—{). (6.5)
Stoga,

u=—C"u=-u (mod1-Y). (6.6)

£l
Ii

Zbog toga 2u € (1 — ¢); bududi da je (1 — ¢) prost ideal i 2 nije u tom idealu,
to implicira da @ € (1 — ¢). No to je nemoguce, jer je T jedinica, a ovo nije
jedini¢ni ideal. Time dobivamo Zeljenu kontradikciju.

O

Neka je u jedinica od Ok. Tada se u moze napisati kao (%e gdje je e
jedinica maksimalnog realnog potpolja od K.

Dokaz. Prvo moZemo primijeniti Lemu i zakljuciti da je u/@ korijen jedi-
nice. Prema Lemi to znaci da je

= ¢t

el e

za neki b.
Sada odaberimo a € Z takav da je 2a = b (mod p) i neka je ¢ = (~%u. Tada
jeu=_%1i

tako da je € realan i stoga lezi u maksimalnom realnom potpolju od K. O

Nastavljamo dokaz Kummerovog teorema. Sjetimo se da smo dokazali da je
r+(Cly = ua? za neki u € Of. Sada uzmimo ¢ = 1; prema dokazanom do sada,
mozemo pisati

x+ Cy = (*ea®
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za neki cijeli broj a, neku realnu jedinicu € i neki @ = a; € Ok . Pokazimo da
je aP = b (mod p) za neki racionalni cijeli broj b. Neka je

o = agp —+ CLlC + ...+ ap_24p72,

za neke a; € Z. Tada je

o = (ap+arC+...+ ap,Q(p_Q)p (mod p)
ag+a1P+...+ ap_zgp(pfz) (mod p)

=ap+a1+...+ap_2, (modp)

kao sto smo i tvrdili.
Zaklju¢ujemo da
x4 Cy=(%b (mod p).

Buduéi da su e, bi p svi realni, uzimanjem kompleksnih konjugata dobivamo
r+ (T ly=(¢"%b  (mod p).
Kombinirajuéi ove jednadzbe, zaklju¢ujemo da

Tz +Cy) =C¢z+(y)  (mod p)

Sto se pojednostavljuje na
T4y -y — =0 (mod p).

Mozemo koristiti ovu kongruenciju da dobijemo nasu Zeljenu kontradikciju.
Pretpostavimo prvo da su 1, ¢, (2471 i (2@ svi razli¢iti. Buduéi da je p > 5, to
implicira da su ovi elementi dio integralne baze za Ok . Sada ¢injenica da je

x4+ Cy o C?afly o C2am

djeljivo s p u Ok implicira da x i y moraju biti djeljivi s p u Z; ovo proturjeci
nasoj pretpostavci da p ne dijeli xyz, §to zavrSava ovaj slucaj.

To ostavlja slucajeve gdje su neki od 1, ¢, ¢2¢~ 1, ¢2¢ jednaki. Moguénosti
su:

(1) 1 = ¢?*71. Tada je ¢ = (%, pa nalazimo da

(—y)+(y—2)(=0 (mod p).

Ovo povladi da p dijeli (z — y)(1 — ¢). Kako smo pretpostavili da x i y nisu
kongruentni modulo p, x — y je relativno prost s p; buduéi da takoder p ne dijeli
1 — ¢ (oni nisu relativno prosti, ali to nije vazno), ovo implicira da p ne moze
dijeliti (2 — y)(1 — ¢); to je Zeljena kontradikcija.

(2) 1 = (2% Tada je ¢~ = (7!, pa se kongruencija reducira na

Cy—('y=0 (mod p).
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Ovo implicira da p dijeli y(¢ — (1) = —y¢ 1 (1 —¢?); ¢injenica da p ne dijeli
y sada daje kontradikciju kao u prethodnom sluc¢aju.
(3) ¢ = ¢?*7L. Tada je (** = ¢? i kongruencija se reducira na

(1-¢Hz=0 (mod p).

Ovaj put p dijeli (1 —¢?); ¢injenica da p ne dijeli = sada daje kontradikciju.
Ovo zavrsava dokaz. O

Napomenimo da smo mi Kkoristili ¢injenicu da p ne dijeli xyz na bitan nacin;
Kummer je uspio progiriti teorem na slucaj p|zyz.

6.2 Regularni prosti brojevi

Jos§ nismo dali nikakve metode za odredivanje je li neki prost broj regularan. U
ovom odjeljku ¢emo navesti neke Kummerove rezultate koji daju lako izracun-
ljive kriterije za regularnost.

Definiramo Bernoullijeve brojeve B,, € R formulom:

t = But"
et—l_z n!

n=0

Moze se pokazati da je B,, = 0 ako je n > 1 neparan. Takoder, vrijedi formula

z (-

k=0

koja ih ¢ini lagano izrac¢unljivima i takoder pokazuje da su zapravo u Q.
Kummer-ovi glavni rezultati o regularnim prostim brojevima su sljedeéi te-

oremi. Neka je h, broj klasa od Q(¢,) i h; broj klasa maksimalnog realnog

potpolja Q(¢p + ¢, *). Vrijedi da hf dijeli hy, i definirajmo h, = hy,/hif.

Teorem 6.2.1: Kummer

Neka je p neparan prost broj. Tada p dijeli h, ako i samo ako p dijeli
brojnik nekog Bernoullijevog broja B; gdje je j =2,4,...,p— 3.

Teorem 6.2.2: Kummer

Ako p dijeli hf, onda p dijeli h,, .

Tako postoji beskona¢no mnogo prostih brojeva za koje p dijeli 2, , ne postoje
poznati p za koje p dijeli h;‘ . Vandiver je izrekao slutnju da se ovo nikada ne
dogada, iako ova slutnja nije univerzalno prihvacena.
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Korolar 6.2.3: Kummer

p dijeli h,, ako i samo ako p dijeli brojnik nekog Bernoullijevog broja B;
gdjejej=2,4,...,p—3.

Koristeci ove rezultate, nalazimo da je 37 prvi iregularni prost broj; on dijeli
numerator od Bss. Sljedeéi nekoliko iregularnih prostih brojeva su 59, 67, 101,
103, 131, 149 i 157.

Mozemo dati heuristi¢ku argumentaciju za postotak prostih brojeva koji su
iregularni. Definiramo indeks iregularnosti i(p) kao broj Bernoullijevih brojeva
B;j gdje je j = 2,4,...,p — 3 za koje p dijeli brojnik od Bj;; dakle i(p) = 0
ako i samo ako je p regularan. Pretpostavljajuéi da su Bernoullijevi brojevi
nasumicno distribuirani modulo p (8to znaci da p dijeli B; s vjerojatnoscéu 1/p),
vjerojatnost da je i(p) = k za neki k jest:

_3 P=3_ L k
(B0 G
k p p
Kako p raste, ovo se priblizava Poissonovoj distribuciji:

(1 /2)k e—1 /2
k! '
Uzimajuéi k£ = 0, nalazimo da bi udio regularnih prostih brojeva trebao biti

e~1/2, &to je priblizno 60,65%. Ovaj rezultat se jako poklapa s numerickim
izrac¢unima.

Korolar 6.2.4: Kummer

Postoji beskonaéno mnogo iregularnih prostih brojeva.




Poglavlje 7

p-adski brojevi

7.1 Inverzni limes

Definicija 7.1.1

Inverzni sistem je niz objekata (npr. skupova/grupa/prstena) (A4,)
skupa sa nizom morfizama (npr. funkcija/homomorfizama) (f,)

n 2 1

~-—>An+1f—>An—>~-f—>A2—>A1.

Definicija 7.1.2

Inverzni limes A = @An inverznog sistema skupova (A,), (f,) defini-
ranog kao gore je skup A ¢iji elementi su beskona¢ni nizovi (a,,), gdje je
an € A, za svaki n > 0, te koji zadovoljavaju fy,(ant1) = an, za svaki
n > 0.

Napomena 7.1.3

p
| 4

Ako su A, grupe i f,, homomorfizmi grupa, tada je inverzni limes takoder
grupa. Ako su A, prsteni i f, homomorfizmi prstenova, tada je A,
prsten.

~

114
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7.2 Prsten cijelih p-adskih brojeva

Definicija 7.2.1

Neka je p fiksan prost broj. Prsten cijelih p-adskih brojeva Z,, je inverzni
limes

L, = @ Z/p"Z
inverznog sistema prstenova (Z/p"Z) s homomorfizmima prstenova (fy,),
gdje je f, redukcija modulo p™.

Napomena 7.2.2

p
| 4

Multiplikativna jedinica u prstenu je 1 = (1,1,...), gdje je n-ta 1 ozna-
¢ava 14+p"Z. Preslikavanje koje 8alje x € Z u (,Z, . . .), je homomorfizam
prstenova koji o¢ito ima trivijalnu jezgru. Dakle vidimo da se Z ulaze u
Z,, pa vidimo da Z, ima karakteristiku 0, te moZemo smatrati Z potpr-
stenom od Z,. Medutim, prsten Z, je puno ve¢i od Z.

,

J

Elemente prstena Z, ¢emo neformalno pisati kao nizove (aq,as,...), gdje
cijeli broj a; € [0,p" — 1] reprezentira a; + p'Z.

Primjer 7.2.3

U Z-; imamo

2=1(2,2,2,2,2...),
2002 = (0,42, 287, 2002, 2002, . . .),
—2 = (5,47,341, 23999, 16805, . . .),
1
5 = (4,25,172,1201,8304, ..,
V5= (3,10,108, 2166, 4567, .. .)
(4,39,235,235,12240, .. .)
V2 = (4,46,95,1124, 15530, .. .)

Zadatak 7.2.4

Dokazite da postoji ¥/2 u Z7 za svaki p > 7.
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Definicija 7.2.5

Sjetimo se da je niz homomorfizama grupa egzaktan ako je za svaku
grupu u nizu slika ulaznog homomorfizma jednaka jezgri izlaznog homo-
morfizma. Za kratki egzaktan niz

0-aLBLS oo,

to znaci da je f injektivan, g surjektivan, te da je im f = ker g. Po prvom
teoremu o izomorfizmu grupa, takoder vrijedi B/im f ~ C.

Propozicija 7.2.6

Za svaki cijeli broj m, niz

02, 2Lz, = 7/pZ — 0

je egzaktan, gdje je [p™] mnoZenje s p™, te je m,, projekcija na Z/p™Z,
tj. preslikavanje koje salje niz (a,) u ap,.

Dokaz. Dokazimo prvo da je mnoZenje s p u Z, injektivno. Pretpostavimo
suprotno, tj. da je a = (a,) u jezgri. Tada je pa = 0, pa je pa,, = 0 za svaki n.
Posebno, pa, 41 = 0 u Z/p"T1Z. To sada znadi da je api1 = p"Ypi1 u Z/p" 7
za neki y, 1 € Z/p"T17Z. Sada slijedi da je a, = f(any1) = p"f(Yns1) =01
Z/p™Z. Kako ovo vrijedi za sve n, slijedi a = 0.

EGZAKTNOST s LIJEVA: Posto je mnozenje s p injektivno, vrijedi da je
komporzicija tog preslikavanja sa samim sobom m puta (tj. mnoZenje s p™)
injektivno.

EGZAKTNOST S DESNA: Zapisimo 8 € Z/p™Z kao b + p™Z. Tada ¢e 7,
preslikati element (b,b,0,0,...) u S.

EGZAKTNOST U SREDINI: Ako je a € Zy, tada je mp,(p™a) = p"rm(a) =0
u Z/p™Z. Dakle slika ulaznog preslikavanja je u jezgri izlaznog preslikavanja.
Dokazimo suprotnu inkluziju. Neka je a = (a,) u jezgri od m,. Dakle vrijedi
da je a,, = 0. Dakle za svaki n > m, imamo a,, € p™Z/p"Z. Dakle postoji
jedinstveni b,,_,, koji se preslikava u a,, pod djelovanjem izomorfizma

Z)p" "L X p™ L p" L.
Niz tih b,,_,,-ova je kompatibilan, poSto su a,-ovi kompatibilni, te postoji ele-

ment b = (b,) takav da je p™b = a, dakle a je u slici od mnoZenja s p™.
O

Za svaki prirodan broj m vrijedi Z,/p™Z, ~ Z/p™Z.
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Propozicija 7.2.8

Element & € Z, je invertibilan ako i samo ako « ¢ pZ,. Drugim rije¢ima,
Zy je Zy\PZy,.

Dokaz. Ako je a = (a,) € Z, djeljiv s p, tada je a1 = 0, pa a o¢ito ne moze biti
invertibilan. Ako a nije djeljiv s p tada za svaki n vrijedi a,, € b,, + p"Z za neki
by, € Z, te taj b, nije djeljiv s p. Slijedi da a,, ima inverz ¢, u Z/p™Z. Takoder,
niz (c,) mora biti kompatibilan, te je ¢ = (¢, ) inverz od a. O

Propozicija 7.2.9

Svaki element x € Z,, se moZe na jedinstven nadin zapisati kao p™u, gdje
jeu€eZy.

Dokaz. POSTOJANJE ZAPISA: Ako je 0 # a = (a,), tada postoji najveéi n
takav da je a, = 0. Za taj n, po Propoziciji vrijedi @ = p"u za neki
u € Zy. StoviSe, u ne moze biti djeljiv s p, poSto bi tada bilo u,1 = 0, pa je po
prethodnoj propoziciji u invertibilan.

JEDINSTVENOST ZAPISA: Pretpostavimo p™u; = p™us. Ako je m = n,
tada zbog injektivnosti mnozenja s p” imamo u; = us. U suprotnom mozemo
bez smanjenja opcenitosti pretpostaviti da je n > m. Tada je ug = p" "uy
invertibilan, Sto je kontradikcija s prethodnom propozicijom. O

Korolar 7.2.10

Prsten Z, je integralna domena.

Dokaz. MnoZenjem dva nenul elementa p™u; i ppus dobivamo p?T™uqus, &ija
je (n +m + 1)-ta komponenta razli¢ita od nule. O

Definicija 7.2.11

Neka je a = (ay,) € Z,, gdje je po obi¢aju a,, cijeli broj iz [0, p™ — 1]. Niz
(bo, b1, ...) za kojeg vrijedi bg = a1 1 by, = (an41 —an)/p" se zove p-adska
ekspanzija od a.

Dakle svaki a € Z, se moZe zapisati kao formalni red

o0
a= Z bip'.
i=0

Iz definicije odmah slijedi:
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Propozicija 7.2.12

Svaki element u 7Z, ima jedinstvenu p-adsku ekspanziju i svaki niz
(bo, b1, -..), gdje je b; € [0,p — 1] je p-adska ekspanzija nekog elementa iz
Ly,

Dakle, postoji bijekcija izmedu Z, i nizova cijelih brojeva s elementima iz

Definicija 7.2.13

Za svaki 0 # a € Z,, p-adska valuacija od a, s oznakom v,(a) je najveéi
cijeli broj m za koji je a u p™Z,. Ekvivalentno v,(a) je za a = > ;= b;p’
najmanji prirodan broj m takav da je b,, # 0. Takoder, ekvivalentno,
ako zapiSemo a = p"u, gdje je u € Z, tada je v,(a) = m. Definiramo
vp(0) = +o0.

| S

Propozicija 7.2.14

Svaki ne-nul ideal u Z, je oblika (p™) za neki prirodan broj m.

Dokaz. Neka je I ne-nul ideal u Z, i neka je m = inf{v,(a) : a € I'}. Posto je
I # (0), tada je m < oo, te za svaki a € I vrijedi a € p™Z, = (p™). S druge
strane, postoji a € I takav da je a = p™u. Slijedi da je u='a = p™ € I, iz Cega
slijedi da je (p™) C I. O

Korolar 7.2.15

Prsten Z, je domena glavnih ideala (a time i prsten jedinstvene faktori-
zacije) s jedinstvenim prostim idealom (p) (te jednim prostim elementom

p
| ’B
~

§

Propozicija 7.2.16

Uz konvenciju da je n + oo = oo za svaki cijeli broj n, p-adska valuacija
zadovoljava sljedeéa svojstva:

1. vy(a) = oo ako i samo ako je a = 0.
2. vp(adb) = vp(a) + vp(b).
3. vp(a+b) > min(vy(a), vy(D)).

. J

Dokaz. Prvo svojstvo slijedi iz definicije. Drugo i trece svojstvo su ocito zado-
voljena ako su a ili b jednaki 0. Pretpostavimo a,b # 0. Neka je vp(a) = m i
vp(b) = n.
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Da bismo dokazali drugu tvrdnju zapisimo a = p™u; i b = p"us, gdje su
uy,up € Z,\. Tada je ab = p"* " uyug, pa je vy(ab) = m +n.
U trec¢oj tvrdnji moZemo bez smanjenja opcéenitosti pretpostaviti da je m <
n. Slijedi da je p"Z, C p™Zy,, pasuia,b & p™Zy,, iz ega slijedi da je a +b €
P Ly, te je vp(a+b) > min(vp(a), vp(b)).
O

p-adska valuacija je primjer diskretne valuacije.

Definicija 7.2.17

Neka je R komutativni prsten. Diskretna valuacija (na R) je funkcija
v: R — Z U{oo} koja zadovoljava svojstva iz propozicije [7.2.16

Definicija 7.2.18

Prsten diskretne valuacije je domena glavnih ideala koja sadrzi jedins-
tveni maksimalni ideal, te nije polje.

Mozda je ova definicija na prvi pogled neobi¢na, poSto se ne spominje valu-
acija, medutim za svaki prsten diskretne valuacije se moze na analogan nacin
definirati diskretna valuacija.

Prsten diskretne valuacije je "najblize" §to komutativni prsten moze biti
polje, a bez da je zaista polje.

7.3 Polje p-adskih brojeva

Sjetimo se da se polje razlomaka nekog prstena R definira kao skup uredenih
parova (a,b) € R?, koji se obi¢no zapisuje kao a/b gdje vrijedi da je a/b ~ c/d
kad god je ad = bc.

Definicija 7.3.1

Polje p-adskih brojeva Q,, je polje razlomaka od Z,.

Posto je a € Q, po definiciji a = (p™uy)/(p"uz) = p™ "ujuy ', mozemo
svaki element iz Q, zapisati kao up® za u € Zy, k € Z. Sada moZzemo progiriti
definiciju od v, na Q, tako da za a = up”*, u € Zy, k € Z vrijedi vp(up®) =k,
te je kao i prije v,(0) := +o0.
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Napomena 7.3.2

Primijetimo da sada moZemo Z, identificirati kao podskup od Q, sa
elementima ne-negativne valuacije, te Z, moZemo definirati kao podskup
Qp elemenata s valuacijom 0.

Vrijedi Q C Q,, te vrijedi za svaki z € Q, je ili z € Z,, ili je 27! € Z,,.

Ovo je jedan od dva nacina definiranja polja QQp. Promotrimo sada drugi
nacin, preko apsolutnih vrijednosti.

7.4 Apsolutne vrijednosti

Definicija 7.4.1

Neka je k polje. Apsolutna vrijednost na k je funkcija ||| : £ — Rx>g sa
sljede¢im svojstvima:

(1) ||z|| = 0 ako i samo ako je z = 0,
2) [lzyll = [l - lyll-

®3) lle+yll < llzll + llyll-

Apsolutne vrijednosti se nekada nazivaju i "norme", ali mi ¢emo koristiti
izraz norme za nesto drugo, te éemo koristiti naziv "apsolutna vrijednost" kako
bismo izbjegli zabunu.

Neke norme zadovoljavaju jace svojstvo

(3) Nz +yll < max{[|z], lyll}-

se zovu nearhimedske apsolutne vrijednosti, a one koje ne zadovoljavaju se zovu
arhimedske.

Definicija 7.4.2

Definiramo p-adsku apsolutnu vrijednost | |, na Q, s

|2, :p—vp(m)_
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Napomena 7.4.3

primijetimo da posto je Q C Q,, ovo daje definiciju apsolutne vrijednosti
| |p na Q. Spomenuti alternativni na¢in definicije od Q, je da definiramo
Q, kao upotpunjenje od Q (tj. Q skupa s svim limesima nizova iz Q) s
obzirom na apsolutnu vrijednost | |,. Dosta knjiga definira Q, upravo na
ovaj naéin. Tada se Z, definira kao

Zp={z€Qy:|z[, <1},

ili kao upotpunjenje od Z s obzirom na | |,.

-
«

Napomena 7.4.4

Naziv prsten cijelih brojeva u Q, moZe biti zbunjujuéi. Naime, Z, nije
integralno zatvorenje od Z u Q,. To moZemo vidjeti promatranjem kardi-
naliteta tih skupova. Integralno zatvorenje od Z u Q, je prebrojiv skup,
(posto postoji prebrojivo mnogo polinoma s cjelobrojnim koeficijentima)
dok je Z, ocito neprebrojiv skup. Medutim, istina je da je Z, integralno
zatvoren u Q,, te Z, sadrzi integralno zatvorenje od Z u Q.

Definicija 7.4.5

Dvije apsolutne vrijednosti || || i || ||/ na polju k su ekvivalentne ako
postoji a € R takav da je

" = [l]*

za svaki x € k.

Sljedeéi teorem, koji neéemo dokazivati, nam govori koje su sve apsolutne
vrijednosti, do na ekvivalenciju, na Q. Oznafimo s | |« uobi¢ajenu apsolutnu
vrijednost.

Opcenito u p-adskoj apsolutnoj vrijednosti, "mali" su brojevi koji su djeljivi
velikim potencijama broja p.

Teorem 7.4.6: Ostrowski

Svaka ne-trivijalna apsolutna vrijednost na Q je ekvivalentna s | |, za
neki prost broj p ili | |so.

Na Z, i Q, se moze definirati p-adska topologija preko apsolutne vrijednosti.
U p-adskim brojevima su a, b € Q, promatrani kao elementi od Q, "blizu", ako
je u brojniku od a — b velika potencija od p. Na primjer, niz 2,4,8,16,32, ...
konvergira u 0 u Zs.

p-adska analiza nam je ¢esto vrlo korisna, medutim trebamo biti vrlo pazljivi
s intuicijom kada radimo s p-adskim brojevima.
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Primjer 7.4.7

Neka su b,c € Q, te neka je p prost broj. Tada postoji niz racional-
nih brojeva a; koji konvergira u b u standardnoj (realnoj) topologiji, te
konvergira u ¢ u p-adskoj topologiji. Dokazimo ovu tvrdnju. Neka je

" 1
:pn+1 en:pn+1'

n

U standardnoj topologiji d,, konvergira u 1, a e, konvergira u 0, dok u
p-adskoj topologiji d,, konvergira u 0, a e, = 1 — 17% konvergira u 1.
Dakle vidimo da ¢e niz (a,,) = (bd,, + ce,) konvergirati u b u standardnoj
topologiji, te u ¢ u p-adskoj.

Prikazimo sada jednu primjenu p-adskih brojeva i jednostavne p-adske ana-
lize.

Primjer 7.4.8

Dokazimo da ako prost p dijeli nazivnik od koeficijenata od (1+41¢)%, onda
p dijeli nazivnik od a.
Na primjer,

1 b)

. 55 935
1+t)s =1+t — t2 3 —
(1+1) e T et o 2735

4.

Vidimo da se u nazivnicima nalaze samo potencije od 2 i 3, tj. prostih
djelitelja od 6. Tvrdimo da, za a € Q, k € N, se u nazivniku od

(Z) _a(a—l)(a—23€i..(a—k+1))

nalaze samo potencije prostih brojeva koje dijele nazivnik od a.
Dokazimo tvrdnju obratom po kontrapoziciji: ako p ne dijeli nazivnik od
a, tada p ne dijeli nazivnik od (}). Posto a nema faktore od p u nazivniku,
tada je a € Z,,. Dakle, zaklju¢ujemo da je a = (a,,) limes niza (b, ), gdje je
b, € Z, npr. uzmimo da je b; i-ti ¢lan p-adske ekspanzije b; = >, _, axp".
Opéenitije Z, je upotpunjenje od Z u p-adskoj topologiji, pa ova tvrdnja
vrijedi za svaki r € Zj,.

S druge strane, polinomijalna funkcija  — (7) € Q[z] je neprekidna u
p-adskoj topologiji, pa zbog a = lim;_, ., b;, imamo

() = ()

Posto je b; € Z, slijedi da je (IZ) € Z. Posto je (Z) limes elemenata iz Z,
slijedi da je (}) € Zp, tj. p ne dijeli nazivnik od (§).
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7.5 Rjesenja polinomijalnih jednadzZbi

Neka je (S,,) inverzni sistem kona¢nih nepraznih skupova s kompatibilnim
preslikavanjem f, : Sp,4+1 — S,. Tada je ].iLnSn neprazan.

Dokaz. Ako su svi f, surjektivni, tada lako konstruiramo element (s,,): izabe-
remo bilo koji s; € S, te za n > 1 izaberemo s,,4+1 € f,, }(s,). sada nam je cilj
op¢i slucaj reducirati na ovaj.

Neka je T}, ,, = S, i za m > n neka je T,, , slika od S, u Sy, tj.

Tm,n = fn(fnJrl( e fmfl(Sm) ce ))
Tada za svaki n imamo niz inkluzija
7g Tm,n g Tmfl,n g Tn,n g Sn

Svaki T}, je konacan neprazan skup, pa slijedi da je za sve osim konac¢no
mnogo inkluzija, ta inkluzija zapravo jednakost. Dakle za svaki n, je F, =
NmTm,n neprazan podskup od S,. Restringirajuéi preslikavanje f, tako da
definira preslikavanje F,, ;1 — FE, dobivamo inverzni sistem (FE,) nepraznih
skupova takvih da su sva preslikavanja surjekcija, kao §to smo i htjeli. O

Propozicija 7.5.2

Neka je f € Z,[z]. Tada su sljedece tvrdnje ekvivalentne:
(1) Jednadzba f(z) = 0 ima rjeSenja u Z,.
(2) Jednadzba f(z) =0 ima rjeSenja u Z/p"Z za svakin € N

Dokaz. Neka je S,, skup rjesenja u Z/p"Z. Tada je @Sn - @Z/p”Z =Zyp
skup rjesenja u Z,. Sada imamo @Sn # () ako i samo ako su svi S,, neprazni

po Lemi O

Henselova lema ¢e nam reéi da je nesto Sto je "blizu" rjeSenja polinomijalne
jednadzbe moze "popraviti" do egzaktnog rjesenja.

Teorem 7.5.3: Henselova lema

Neka je f, € Z,[z]. Pretpostavimo da je f(a)
(mod p). Tada postoji jedinstveni b € Z,, b
1) =0.

0 (mod p) i (a) # 0
a (mod p) takav da je

Dokaz. Neka a1 = a i definiramo za n > 1

Ap41 = Gp — f(an)/fl(an)-
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Dokazujemo indukcijom da za svaki n > 1 vrijedi
f'lan) Z0  (mod p), (7.1)

f(an) =0 (mod p"). (7.2)

Primijetimo da osigurava da je f'(a,) € Z,', pa je a,41 dobro definiran
element iz Z,,. Definicija od a,+1 skupa s i osiguravaju da je an41 =
a, (mod p™), §to znaci da niz (¢, mod p™) definira element b € Z, za koji
vrijedi f(b) =01b=a; =a (mod p).

Za n = 1 tvrdnja ocito vrijedi, pa pretpostavimo da i vrijede za
ayn. Tada ap11 = a, (mod p"), pa je f'(ant1) = f'(an) Z 0 (mod p). Dakle
je zadovoljen za sve n € N. Da bi pokazali , napravimo Taylorov
razvoj od f oko ap:

f@) = flan) + f'(an)(z — an) + (z — an)*g(@),
za neki g(x) € Z,[x]. Uvrstavajuéi x = a1, dobivamo
flany1) = flan) + fl(an)(an+1 —an) + (Ang1 — an)29(an +1).

Iz definicije apy1 imamo f'(ay)(an+1 — an) = —f(an), pa je
flant1) = (ans1 — an)zg(anJrl)'

Pogto je any1 = a, (mod p"), slijedi da je f(a,+1) = 0 (mod p"*t1), pa
vrijedi za ayn41.

Posto f(x) = 0 ima jedinstveno rjeSenje u Z/p"Z kongruentno s a modulo p
(jer povladi da je f'(a,) Z 0 (mod p™), pa je a, jednostruka nultocka od
f (mod p™)), slijedi da niz (a,) definira jedinstveno rjesenje u Z,. O

7.6 Struktura od Z;j

Restrikcija projekcije 7, : Z, — Z/p"Z na Z, definira surjektivni homomorfi-
zam

Z, — (Z/p"Z)*.
Jezgra ovog preslikavanja je U, := 1 + p"Z,. Dakle, vrijedi
Ly, [Un ~ (Z/p"Z)",

pa je
2 =~ lm(Z) /U,) = lim(Z/p"Z)*

primijetimo da je (U,) padajuéi niz podgrupa od Z,:

-~-cU3cU2cU1CZ§.
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Vrijedi:

(1) Z; /Uy ~ (Z/pZ)*.

(2) Up/Uns1 ~ Z/pZ.

Dokaz. Prvu tvrdnju smo veé¢ dokazali. Za drugu, promotrimo preslikavanje

U, — Z/pZ,
1+ p"z+— (z mod p).

O

To preslikavanje je surjekcija, te je jezgra Uy, 41.

Korolar 7.6.2

Grupa U, /U, ima p"~! elemenata.

Propozicija 7.6.3

Neka je p,—1 skup rjeSenja jednadzbe 2P~1 = 1 u Zy. Tada je p,—1 s
operacijom mnoZzenja grupa izomorfna s (Z/pZ)*, te je Z; = Uy X pip—1.

\ J

Dokaz. Skup pip—1 je jezgra homomorfizma potenciranja na (p—1)-vu potenciju
sa Z, u Z,, pa je grupa. Neka je f(z) = 2P~ — 1. Po Malom Fermatovom
teoremu, svaki element # 0 iz Z/pZ je korijen ovog polinoma, te vrijedi f'(x) #£
0 (mod p) za sve x € {1,2,...,p — 1}. Sada po Henselovoj lemi, za svaki
z € {1,2,...,p— 1} postoji jedinstveni a € Z, takav da je f(a) = 0. Takoder,
ne postoji element iz 1,1 koji je kongruentan 0 modulo p. Slijedi da je redukcija
modulo p izomorfizam p,_1 — (Z/pZ)*.

Primijetimo sada da je Uy N pup—1 = {1}, posto je 1 o¢ito rjesenje, a po
Henselovoj lemi, rjeSenje kongruentno 1 mod p je jedinstveno. Takoder, vrijedi
da je Uy - pp—1 = Z,, posto se bilo koji element a € Z); moze podijeliti s
elementom iz p,—1 koji je kongruentan s a modulo p da bi dobio element iz U;.
Slijedi da je direktan produkt Uy X p,—1 izomorfan Z. O

Lema 7.6.4

Neka je p prost broj. Ako je p # 2, neka je n > 1, a ako je p = 2, neka
jen > 2. Ako je x € Uy\Up+1, tada je 2 = Upy1\Upaa.

Dokaz. Neka je x € U,\Up41, dakle x = 1 4 p"k, za neki k koji nije djeljiv s p.
Tada je

P =1+ (f) kp™ + (g) K2p2 4 - kPp™ =1+ kp™TL (mod p"t2).
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Slijedi da je zP € Up41\Un+o. O

Propozicija 7.6.5

Ako je p # 2, tada je Uy ~ Z,. Ako je p =2, tada je Uy = {£1} x Us, te
je Us ~ Zs.

Dokaz. Neka je prvo p # 2, te neka je a = 1 + p € Uy \Us. Koristeéi prethodnu
lemu, zaklju¢ujemo da je af' € U;+1\U;t2. Neka je «, slika od a u Uy /U,.
Tada je a?" " # 1, ali je a?" ' = 1, pa onda « ima red tono p"~'. Dakle
U1 /U, je ciklicka grupa generirana s . Slijedi da imamo izomorfizam inverznih
sistema

D — I —— TP ——s -

l I

e d Ul/Un+1 — Ul/Un —_—
Nakon $to primijetimo da je @(Ul/Un) = Uy, slijedi da je Uy ~ Z,,.
Za p = 2, isti argument s izborom a = 1 + 4 dokazuje da je Uy ~ Zs.
Koristeéi da {£1} i Uy imaju trivijalan presjek (tj. —1 ¢ Uz, te poSto njihov

produkt generira Uy (jer je [U; : Us] = 2), slijedi da je {1} x Us. O
Teorem 7.6.6
Vrijedi:

(1) Grupa Z) je izomorfna s Z/(p —1)Z x Zy za p # 2, te s /27 X L
za p = 2.

(2) Grupa Q) je izomorfna s Z x Z/(p — 1)Z x Z, ako je p # 2, te s
Z X 7/27 x Zy ako je p = 2.

\ J

Dokaz. Tvrdnja (1) slijedi iz Propozicije i

Da bismo dokazali (2), promotrimo preslikavanje

Zx Ly — Q

(n,u) = p"u,

te primijetimo da je to izomorfizam grupa. Koristenjem (1), tvrdnja slijedi. [

Propozicija 7.6.7

Za p # 2 i prirodan broj m postoji primitivni m-ti korijen iz jedinice u
Q) (tj. element reda m) ako i samo ako m[p — 1, te su u Q; elementi
—111 jedini korijeni iz jedinice.
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Dokaz. Neka je prvo p # 2. Da postoje m-ti korijeni iz jedinice kada m|p — 1
smo vidjeli u Korolaru S druge strane, kada bi za m [p — 1 postojao m-ti
korijen iz jedinice (,,, tada bi ji,, = {1,(m, 2, - - -, (% g} Enili podgrupu reda
m od Z,;, $to je u kontradikeiji s Teoremom (2).
U Zs je ocito da su £1 korijeni iz jedinice. Iz strukture od Z5 opisane u
Teoremom vidimo da su to jedini elementi kona¢nog reda u Q.
O

Korolar 7.6.8

Neka su p i ¢ razli¢iti prosti brojevi. Tada polja Q, i Q, nisu izomorfna.

Dokaz. Tvrdnja direktno slijedi iz prosle propozicije, posto polja imaju korijene
jedinice razli¢itog reda. O

Neka je p neparan. Tada ¢e se element —1 nalaziti u podgrupi p,—1, koja
je ciklicka reda p — 1, te je —1 reda 2. Element —1 ée dakle biti kvadrat
u Q) ako i samo ako u j;,—1 postoji element reda 4, tj. kada je p =1
(mod 4).
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