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Poglavlje 1

Uvod

Glavna motivacija za algebarsku teoriju brojeva nam je rješavanje Diofanstkih
jednadžbi, kao što su npr. y2 + 3 = x3, x2 + y2 = z2, xn + yn = zn, itd. Ideja
je ovakve jednadžbe faktorizirati :

(y +
√
−2)(y −

√
−2) = x3, (x+ iy)(x− iy) = z2,

(x− y)(x− ζny)(x− ζ2ny) . . . (x− ζn−1
n y) = zn, ζn = e

2πi
n .

Iako tražimo rješenja nad Z, faktorizacija se odvija nad proširenjima od Z.
Faktoriziramo u Z ⊂ O, gdje je O red(ili poredak, eng. order), veći prsteni koji
sadrži Z.

Pojmovi grupa, prstena, ideala s kojima ste se susretali u algebri i algebar-
skim strukturama zapravo imaju povijesnu motivaciju iz teorije brojeva. Alge-
barsku teoriju brojeva možemo smatrati teorijom brojeva "u proširenjima od
Z". Vrijedit će sljedeće analogije:

Z←→ Z ⊆ O − red
Q←→ Q ⊆ K − polje algebarskih brojeva, tj. konačno proširenje od Q

a | b←→ a | b u O znači ∃c ∈ O t.d. b = ac,

{±1} = Z× ←→ O× − obično beskonačna grupa,

prosti brojevi←→

{
prosti elementi, 0 ̸= p /∈ O×, p|ab⇒ p|a ili p|b
ireducibilni elementi, 0 ̸= p /∈ O×, q|p⇒ q ∈ O× ili q = up i u ∈ O×.

Osnovni teorem aritmetike (jedinstvena fakt. na proste br.)←→? (općenito ne vrijedi).

Predznanje za koje se pretpostavlja da ga znate na kolegiju: gradivo iz Al-
gebarskih struktura, Algebre 1 i 2; grupe, prsteni, ideali (prosti, maksimalni),
domene glavnih ideala, domene jedinstvene faktorizacije, Kineski teorem o os-
tacima, proširenja polja, Galoisova teorija (iako ćemo nju ponoviti).
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1.1 Uvod u faktorizaciju

Definicija 1.1.1

Definiramo da je prsten D Euklidova domena ako postoji funkcija φ :
D \ {0} → N takva da:

(i) φ(z) ≥ 0, ∀z ∈ D \ {0},

(ii) za sve a ∈ D i b ∈ D \ {0}, postoje g, r ∈ D takvi da a = gb + r,
gdje je r = 0 ili r ̸= 0 i φ(r) < φ(b).

Propozicija 1.1.2

U integralnoj domeni D, svaki prost element je ireducibilan.

Dokaz. Pretpostavimo da p ∈ D nije ireducibilan. Po definiciji to znači da
možemo p napisati kao:

p = ab,

gdje su a, b ∈ D, a niti a niti b nisu invertibilni elementi u D.
Budući da je p prost, ako p | ab, tada prema definiciji imamo:

p | a ili p | b.

Bez smanjenja općenitosti, pretpostavimo da p | a. To znači da postoji element
d ∈ D takav da je a = pd. Uvrstimo a = pd u p = ab:

p = (pd)b = p(db).

Budući da smo u integralnoj domeni i p ̸= 0, možemo podijeliti obje strane s p,
što daje:

1 = db.

Dakle, d i b su invertibilni elementi u D, što je kontradikcija s neinvertibilnošću
od b.

Sjetimo se karakterizacije prostih/ireducibilnih elemenata.

Teorem 1.1.3

Neka je D integralna domena i 0 ̸= x /∈ D×.

1. x je ireducibilan ako i samo ako je (x) maksimalan u skupu glavnih
ideala. Ideal (x) je maksimalan (u skupu svih ideala) ako i samo
ako je D/(x) polje.

2. x je prost ako i samo ako je (x) prost, ako i samo ako je D/(x)
integralna domena.
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Dokaz. Dokazano na Algebarskim strukturama.

Definicija 1.1.4

Prsten R se naziva Noetherin prsten ako zadovoljava jedno od sljedeća
tri ekvivalentna svojstva:

1. Svaki ideal u R je konačno generiran.

2. Svaki uzlazni lanac ideala u R stabilizira se. To znači da za svaki
niz ideala I1 ⊆ I2 ⊆ I3 ⊆ . . . postoji indeks n takav da za sve
m ≥ n vrijedi In = Im.

3. U svakom skupu ideala postoji maksimalan (u tom skupu), tj. ideal
koji nije sadržan ni u jednom drugom.

Primjer prstena koji nije Noetherin: polinomi u beskonačno mnogo varijabli.

Definicija 1.1.5

Noetherin prsten koji je integralna domena zove se Noetherina domena.

Propozicija 1.1.6

Ako je D Noetherina domena, svaki ne-nul element se može napisati kao
produkt ireducibilnih elemenata.

Dokaz. Pretpostavimo suprotno, te promotrimo skup S glavnih ideala (y), gdje
se y ne može faktorizirati kao produkt ireducibilnih. Neka je (x) maksimalan
ideal u tom skupu (takav postoji jer je D Noetherin)

Sada x nije ireducibilan, pa se može zapisati kao x = a · b, gdje su a, b
neinvertibilni, te se barem jedan od njih (bez smanjenja općenitosti a) ne može
zapisati kao produkt ireducibilnih. Međutim sada imamo

(x) ⊊ (a), a ∈ S,

što je kontradikcija s maksimalnošću od (x).

Primjer 1.1.7

U integralnoj domeni D postoji jedinstvena faktorizacija na ireducibilne
ako i samo ako je svaki ireducibilan element prost u D.

Dokaz. Pokažimo samo jedan smjer, drugi ostavljamo za DZ. Neka je π ∈ R
ireducibilan. Razmotrimo glavni ideal (π). Ako je (π) ⊆ (a) za neki a, onda
vrijedi π = ar za neki r. Budući da je π ireducibilan, ili je a jedinica ili je r
jedinica; stoga vrijedi (a) = (π) ili (a) = R. Dakle, (π) je maksimalan (nenul)
ideal, a samim time i prost. Prema tome, π je prost element.
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Propozicija 1.1.8

Vrijedi:

(a) Svaka Euklidova domena je DGI (domena glavnih ideala),

(b) Svaka DGI je DJF (domena jedinstvene faktorizacije).

Dokaz. (a) Neka je D Euklidova domena s pripadajućom funkcijom φ, te pret-
postavimo da I ̸= 0 ideal u D. Odaberimo x takav da je φ(x) jednak minimumu
skupa {φ(a) : a ∈ I\{0}}. Očito je da (x) ⊆ I.

Pokažimo obrnutu inkluziju. Neka je a ∈ I. Tada postoje g, r ∈ D takvi da
a = gx + r, gdje je r = 0 ili r ̸= 0 i φ(r) < φ(x). Kako je r = a − gx ∈ I,
očito je da druga mogućnost nije moguća jer bi φ(r) bila manja od φ(x), što je
u suprotnosti s definicijom od x. Dakle a = gx ∈ (x), dakle I ⊂ (x).

(b) Postojanje faktorizacije na ireducibilne faktore slijedi iz prethodne pro-
pozicije.
Dokažimo jedinstvenost rastava. Da su ireducibilni elementi prosti slijedi iz pret-
hodnog primjera, a kad su svi ireducibilni elementi prosti, standardni argument
za jedinstvenost faktorizacije vrijedi: ako

u · p1p2 · · · pn = v · q1q2 · · · qm

gdje su u, v invertibilni i svi pi, qj ireducibilni (dakle prosti), tada zbog svojstva
prostosti možemo, nakon moguće permutacije i zamjene elemenata asociranim,
spariti svaki pi s nekim qj . Stoga su faktorizacije jedinstvene do reda i asocira-
nosti.

Kombinirajući (i) i (ii) zaključujemo da je svaka DGI DJF.

1.2 Gaussovi cijeli brojevi
Proučavamo jednadžbu x2 + y2 = z2, gdje su x, y, z ∈ Z. Promotrimo polje
Gaussovih racionalnih brojeva

Q[i] = Q+ iQ = {x+ iy | x, y ∈ Q} .

Za bilo koja dva Gaussova racionalna broja x1+iy1

x2+iy2
, rezultat je:

x1 + iy1
x2 + iy2

=
x1x2 + y1y2 + i(x2y1 − x1y2)

x22 + y22
.

Prsten Gaussovih cijelih brojeva je definiran kao

Z[i] = {x+ iy | x, y ∈ Z}.

Funkcija norme N : Z[i] → Z definirana je s N(x + iy) = x2 + y2 = |x + iy|2.
Neka je α ∈ Q[i], tada je norma N(α) = α · ᾱ, i vrijedi:
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N(ab) = N(a)N(b), a, b ∈ Q[i]

Vrijedi i N(Z[i]) ⊆ Z.

Lema 1.2.1

Vrijedi:

(i) Za x ∈ Z[i], vrijedi x ∈ Z[i]× ⇔ N(x) = 1.

(ii) Z[i]× = {±1,±i}.

Dokaz. (i) Ako x ∈ Z[i]×, tada postoji y ∈ Z[i] tako da x · y = 1. Prema tome:

N(x · y) = N(x)N(y) = N(1) = 1.

Norme N(x) i N(y) su nenegativni cijeli brojevi, stoga mora vrijediti N(x) = 1.

Obrnuto, Ako je

1 = N(a+ bi) = a2 + b2 = (a+ bi)(a− bi),

zaključujemo da je (a+ bi)−1 = a− bi.
(ii) Očito je da {±1,±i} ⊆ Z[i]×. Dokažimo obratnu inkluziju: iz (i) vrijedi
N(a+ bi) = 1

⇒ a2 + b2 = 1 a, b ∈ Z ⇒ (a, b) ∈ {(±1, 0), (0,±1)}
⇒ a+ bi ∈ {±1,±i}

Propozicija 1.2.2

Z[i] je Euklidova domena.

Dokaz. Očito je da je N(z) = |z|2 ≥ 0 za sve z ∈ Z[i]. Ako su a, b ∈ Z[i] i b ̸= 0,
tada vrijedi:

a

b
∈ Q(i)⇒ ∃g ∈ Z[i] takav da

∣∣∣Re a
b
− Re g

∣∣∣ ≤ 1

2
i
∣∣∣Im a

b
− Im g

∣∣∣ ≤ 1

2
.

⇒
∣∣∣a
b
− g
∣∣∣2 =

∣∣∣(Re a
b
− g
)
+ i Im

(a
b
− g
)∣∣∣2

=
∣∣∣Re a

b
− Re g

∣∣∣2 + ∣∣∣Im a

b
− Im g

∣∣∣2
≤ 1

4
+

1

4
=

1

2
(množimo s |b|2)

⇒ |a− gb|2 ≤ |b|
2

2
, tj. N(a− gb) ≤ N(b)

2
.
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Označimo a− gb = r. Sada imamo a = gb+ (a− gb) = gb+ r, gdje je r ∈ Z[i].
Ako r ̸= 0, tada vrijedi N(r) ≤ N(b)

2 < N(b) (vrijedi N(b) > 0 jer je b ̸=
0).

Korolar 1.2.3

Z[i] je domena jedinstvene faktorizacije.

Rješenje jednadžbe x2 + y2 = z2, gdje su x, y, z ∈ Z (cijeli brojevi) nazivamo
Pitagorinom (ili Pitagorejskom) trojkom. Primijetimo

NZD(x, y, z) = 1⇔ NZD(x, y) = NZD(x, z) = NZD(y, z) = 1.

Ako je najveći zajednički djelitelj od x, y i z jednak 1, tada kažemo da je
Pitagorina trojka primitivna.

Promotrimo svojstva Pitagorinih trojki. Primijetimo da kvadrat bilo kojeg
broja pri dijeljenju s 4 daje ostatak 0 ili 1. Zbog toga, ako su x i y različite
parnosti, tada je z neparan.

Jednadžba (x+yi)(x−yi) = z2 faktorizira se u Z[i] (Gaussovi cijeli brojevi),
tako da su Gaussovi cijeli brojevi prirodno mjesto za promatranje Pitagorinih
trojki.

Neka je (x, y, z) primitivna Pitagorina trojka:

x2 + y2 = z2, tj. (x+ iy)(x− iy) = z2, (x, y) = (y, z) = (x, z) = 1,

Neka je ((x+ iy), (x− iy)) = π.

⇒ π|2x, π|2iy
⇒ N(π)

∣∣4x2, N(π)
∣∣ 4y2

⇒ N(π) | 4

Također, N(π) | N(z) = z2, što je neparno.

⇒ N(π) | 1 ⇒ N(π) = 1

⇒ ((x+ iy), (x− iy)) = 1

⇒ x+ iy = v(m+ iu)2,m, u ∈ Z, v ∈ Z[i]× = {±1}
⇒ x+ iy = v

(
m2 + 2mui− u2

)
⇒ {x, y} =

{
±
(
m2 − u2

)
,±2mu

}
⇒ z = ±

(
m2 + u2

)
, (m,u) = 1.

1.3 Neki primjeri u drugim prstenovima

Primjer 1.3.1

Dokažite da prsten Z[
√
−5] nije DGI (domena glavnih ideala).
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Rješenje: Vrijedi 6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5). Ako pokažemo da

su 2, 3, 1 ±
√
−5 ireducibilni, to znači da postoji više različitih faktorizacija u

ireducibilne u Z[
√
−5].

Definirajmo normu N : Z[
√
−5]→ Z sa:

N(a+ b
√
−5) = a2 + 5b2.

Tvrdnja: N(xy) = N(x)N(y) za sve x, y ∈ Z[
√
−5].

Dokaz: Računski, DZ.
Primjeri:

N(2) = 4, N(3) = 9, N(1 +
√
−5) = N(1−

√
−5) = 6.

Tvrdnja: x ∈ Z[
√
−5]× ⇐⇒ N(x) = 1 i Z[

√
−5]× = {±1}.

Dokaz: Neka je: x = a+ b
√
−5.

⇐= Iz definicije vrijedi:

a2 + 5b2 = 1 ⇐⇒ (a+ b
√
−5)(a− b

√
−5) = 1

Dakle, ako N(x) = 1, tada je x multiplikativno invertibilan i pripada Z[
√
−5]×.

=⇒ Neka je x ∈ Z[
√
−5]×

=⇒ ∃y ∈ Z[
√
−5]×t.d.N(xy) = N(x)N(y) = N(1)

=⇒ N(x) = 1 jer N(x), N(y) ∈ N0.

Odmah zaključujemo da su jedini elementi s normom 1 upravo ±1.
Tvrdnja: 2, 3, 1±

√
−5 su ireducibilni elementi.

Dokaz: Pretpostavimo suprotno, tj. 2 = ab, gdje a, b /∈ Z[
√
−5]×. Sada imamo:

N(2) = 4 = N(a)N(b),

što implicira da N(a) = N(b) = 2. Neka je a = x1 + y1
√
−5, tada:

x21 + 5y21 = 2

No, rješavanje ove jednadžbe mod 5 pokazuje da nema rješenja jer x21 ≡ 2
(mod 5) nije moguće. Analogno se dokaže i za 3, 1±

√
−5.

Primijetimo da 2, 3, 1±
√
−5 nisu prosti elementi u Z[

√
−5]: Pretpostavimo

da je 2 prost. Vrijedi

2 | 6 = (1 +
√
−5)(1−

√
−5) =⇒ 2|(1 +

√
−5) ili 2|(1−

√
−5)

=⇒ 4 = N(2) | N(1±
√
−5) = 6.⇒⇐

.
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Definicija 1.3.2

Neka je R prsten, te neka su a1, a2, . . . , an ∈ R. Najveći zajednički djeli-
telj elemenata a1, a2, . . . , an u prstenu R je element d ∈ R, koji zadovo-
ljava:

(a) d | ai za sve i.

(b) Ako neki element c ∈ R dijeli svaki element ai, tada vrijedi c | d.

Primjer 1.3.3

Elementi 6 i 2 + 2
√
−5 u prstenu Z[

√
−5] nemaju najveći zajednički

djelitelj.

Rješenje:

N(6) = 62 = 36, N(2(1 +
√
−5)) = N(2) ·N(1 +

√
−5) = 4 · 6 = 24.

Pretpostavimo da d = gcd(6, 2(1+
√
−5)) postoji, tj. da je d najveći zajednički

djelitelj elemenata 6 i 2(1 +
√
−5)) u Z[

√
−5]. Tada bi po (a) vrijedilo da d | 6

i d | 2(1 +
√
−5). Vrijedi

2 | 6, 2 | 2(1 +
√
−5) (b)

==⇒ 2|d,

(1 +
√
−5) | 6, (1 +

√
−5) | 2(1 +

√
−5) (b)

==⇒ (1 +
√
−5)|d.

Napišimo d = ±y(1 +
√
−5), gdje y|2. Lako vidimo, promatrajući normu, da je

2 ireducibilan, pa zaključujemo da je y = ±1 ili ±2. Pošto 2|d, vidimo da je
y ̸= ±1, jer 2 ∤ (1 +

√
−5).

Pretpostavimo sada da je d = ±2(1 +
√
−5).

=⇒ 2(1 +
√
−5) | 6 =⇒ 24 = N(2(1 +

√
−5)) | N(6) = 36⇒⇐ .

Primjer 1.3.4

Z[
√
3]× je beskonačna.

Rješenje: Definiramo normu kao:

N(a+ b
√
3) = (a+ b

√
3)(a− b

√
3) = a2 − 3b2.

Lako se dokaže, kao i prije da je element invertibilan ako i samo ako njegova
norma iznosi 1, tj. N(a + b

√
3) = 1 (lako se vidi da je N(a + b

√
3) = −1

nemoguće). Pellova jednadžba x2 − 3y2 = 1 ima beskonačno mnogo rješenja.
Generalna rješenja Pellove jednadžbe su:

xn + yn
√
3 = (x1 + y1

√
3)n,
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gdje je (x1, y1) = (2, 1) prvi član. Vrijedi

N(x1 + y1
√
3)n = (x1 + y1

√
3)n(x1 − y1

√
3)n = 1,

pa je (x1 + y1
√
3)n ∈ Z[

√
3]×.

Može se pokazati i više, tj. da je Z[
√
3]× = ⟨−1, 2 +

√
3⟩ ≃ Z/2Z× Z.

Primjer 1.3.5

Odredite koji su od elemenata 1+i, 2−7i, 5, 7 i 12i ireducibilni u prstenu
Z[i].

Rješenje:

• Element 1 + i:
N(1 + i) = 12 + 12 = 2.

Norma 2 je prosta. Dakle, 1 + i je ireducibilan.

• Element 2− 7i:

N(2− 7i) = 22 + (−7)2 = 4 + 49 = 53.

Norma 53 je prosta. Dakle, 2− 7i je ireducibilan.

• Element 5:
N(5) = 52 + 02 = 25.

Možemo napisati 5 = (2+ i)(2− i), što pokazuje da 5 nije ireducibilan, jer
su oba faktora neinvertibilna. Dakle, 5 je reducibilan.

• Element 12i:
N(12i) = 02 + 122 = 144.

Norma 144 nije prosta (jer 144 = 12 ·12). Slično kao i prije, možemo pisati
12i = (3)(4i), gdje su oba faktora neinvertibilna. Dakle, 12i je reducibilan.

• Element 7:
N(7) = 72 + 02 = 49.

Pretpostavimo da 7 nije ireducibilan. Tada je 7 = z1z2, gdje je N(zi) = 7
i zi = ai + bi za i = 1, 2. Međutim tada bi bilo N(zi) = a2i + b2i = 7, što
je nemoguće modulo 4. Dakle 7 je ireducibilan. Općenitije, vrijedi da je
prost prirodan broj p ≡ 3 (mod 4) ireduciblan u Z[i].

Primjer 1.3.6

Riješite (u Z) jednadžbu y2 + 4 = z3.
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Rješenje: Faktorizirajmo desnu stranu: (y + 2i)(y − 2i) = z3. Neka je π =
gcd((y+2i)(y−2i)). Tada π|(y+2i) i π|(y−2i), pa π|2y i π|4i. Dakle N(π)|4y2,
N(π)|16, te N(π)|(y2+4). Ako je y neparan, onda je ovaj zadnji izraz neparan,
pa mora biti gcd((y + 2i)(y − 2i)) = 1.

Riješimo prvo slučaj kada je gcd((y + 2i)(y − 2i)) = 1 .
Slijedi

y + 2i = u(a+ bi)3, y + 2i = v(a− bi)3, za neke a, b ∈ Z, u, v ∈ Z[i]×.

Primijetimo da je Z[i]× ≃ Z/4Z, pa slijedi da su u i v kubovi u Z[i]×, tj. možemo
samo zapisati

y + 2i = (a+ bi)3, y − 2i = (a− bi)3

⇒ y + 2i = a3 + 3a2bi− 3a2b− b3i, y − 2i = a3 − 3a2bi− 3ab2 + b3i

(oduzmemo ove dvije jednadžbe i pogledajmo imaginarni dio)

⇒ 2 = 3a2b− b3 = b
(
3a2 − b2

)
⇒ b = ±1 ili b = ±2.

Pogledajmo prvo slučaj b = ±1⇒ 2 = ±1
(
3a2 − 1

)
. Primijetimo da 3a2 − 1 =

−2 nema rješenja, pa slijedi a = ±1. Uvrštavanjem dobijemo i b = 1 i dalje

y = a3 − 3ab2 = ±1∓ 3⇒ y = ±2

⇒ (y, z) = (±2, 2) .

Promotrimo sada b = 2. Slijedi 3a2 − 4 = 1, tj. 3a2 = 5, što je nemoguće.
Ostaje slučaj b = −2. Slijedi 3a2 − 4 = −1. Imamo

3a2 = 3⇒ a = ±1⇒ y = ±1∓12 ∈ {−11, 11} ⇒ z = 5⇒ (y, z) = (±11, 5) .

gcd((y + 2i)(y − 2i)) > 1

Kao što smo već pokazali, y mora biti paran, pa imamo y = 2t, pa slijedi
4t2+4 = z3; zaključujemo da je z paran, tj. z = 2u. Slijedi 4t2+4 = 8u3, dakle
t2 + 1 = 2u3. Faktorizirajmo lijevu stranu:

(t+ i)(t− i) = 2u3.

Neka π | (t± i); slijedi
π | 2t, π | 2i

⇒ π|2⇒ π ∈ {u, u(1 + i), u · 2} za neki u ∈ Z[i]×.

Primijetimo sada da 2 ne dijeli t+ i, jer bi u suprotnom bi bilo 2(a+ bi) = t+ i,
što je nemoguće za a, b ∈ Z.

Ostaje jedino mogućnost gcd(t+ i, t− i) = 1+ i (sjetimo se da je gcd dobro
definiran do na asociranost).
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⇒ t+ i = (1 + i) · (a+ bi)3, t− i = (1− i)(a− bi)3

⇒ t+ i = (1 + i)
(
a3 + 3a2bi− 3ab2i− b3i

)
= a3 + 3a2bi− 3ab2i− b3i+ a3i− 3a2b+ 3ab2 + b3

(pogledajmo imaginarni dio)

⇒1 = 3a2b− 3ab2 − b3 + a3 = (a− b)3 +
(
6ab2 − 6a2b

)
= (a− b)3 − 6ab(b− a)

= (a− b)
(
a2 − 2ab+ b2 + 6ab

)
= (a− b)

(
a2 + 4ab+ b2

)
.

Pogledajmo prvo slučaj a− b = 1, to jest a = b+ 1.

1 = 1 ·
(
(a+ b)2 + 2ab

)
= (2b+ 1)2 + 2b(b+ 1)

= 4b2 + 4b+ 1 + 2b2 + 2b = 6b2 + 6b+ 1

⇒ b(6b+ 6) = 0 ⇒ b = 0,−1.

Ako b = 0, tada a = 1, pa y = 2 i z = 2, što je rješenje koje smo već dobili.
Analogno b = −1 da je y = −2 i z = 2, koje također već imamo.

Pogledajmo sada a − b = −1, to jest a = b − 1. Imamo −1 = 6b2 − 6b + 1,
te lako vidimo da to nema rješenja za b ∈ Z.



Poglavlje 2

Proširenja polja

Definicija 2.0.1

Element α se naziva algebarski nad poljem K ako:

∃f(x) ∈ K[x] takav da f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

gdje su a0, a1, . . . , an ∈ K i an ̸= 0, a f(α) = 0.
U suprotnom, ako ne postoji takav polinom, onda se α naziva transcen-
dentan nad K.

Primijetimo da je ekvivalentna definicija: α je algebarski ako je skup {α, α2, . . .}
linearno zavisan nad K.

Ako kažemo samo da je α algebarski (bez specifikacije polja), uvijek mislimo
algebarski nad Q. Proširenje polja L ⊃ K je algebarsko ako je svaki element
u L algebarski nad K.

Propozicija 2.0.2

Neka su F ⊃ L ⊃ K proširenja polja. Ako je L algebarsko nad K i F
algebarsko nad L, tada je F algebarsko nad K.

Dokaz. DZ.

Sljedeći teorem nećemo dokazivati.

Teorem 2.0.3

Neka je R domena jedinstvene faktorizacije. Tada je R[x] domena jedins-
tvene faktorizacije.

14
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Korolar 2.0.4

Neka je K polje. Prsten polinoma K[x1, . . . , xn] je domena jedinstvene
faktorizacije.

Primijetimo da K[x1, x2] nije DGI, te je ovo jednostavan primjer DJF koji
nije DGI.

Neka je sada α algebarski nad K, te neka je g ∈ K[x] t.d g(α) = 0. Fakto-
rizirajući g na ireducibilne dobijemo normiran ireducibilan polinom fα ∈ K[x]
takav da je fα(α) = 0. Taj polinom zovemo minimalni polinom od α (nad
K).

Propozicija 2.0.5

Neka je α algebarski nad K. Tada je njegov minimalni polinom nad K
jedinstven.

Dokaz. Neka je 0 ̸= h ∈ K[x] t.d. h(α) = 0 i fα ∤ h. Pošto je fα ireducibilan,
to znači da su fα i h relativno prosti, tj. postoje g, k ∈ K[x] takvi da je

fαg + hk = 1.

Međutim, sada imamo

0 = fα(α)g(α) + h(α)k(α) = 1,

što je očito kontradikcija.

Definicija 2.0.6

Neka je fα minimalni polinom od α (nad K). Korijeni od fα se zovu
konjugati od α (nad K).

Neka je n = deg fα. Vrijedi

K(α) ≃ K[x]/(fα),

te je {1, α, . . . αn−1} baza od K(α) nad K.

Definicija 2.0.7

Neka je K polje. Polinom f(x) ∈ K[x] je separabilan ako su svi njegovi
korijeni u K različiti, odnosno ako ne postoje dva ista korijena.
Proširenje L/K je separabilno ako su minimalni polinomi svakog ele-
menta u L separabilni polinomi nad K.
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Primjer 2.0.8

Neka je
K = Fp(t)

polje racionalnih funkcija u jednoj varijabli t nad konačnim poljem Fp,
gdje je p prost broj. Promotrimo element

α = t1/p.

Onda je α korijen polinoma

f(x) = xp − t ∈ K[x].

Derivacija polinoma je

f ′(x) = pxp−1 = 0,

jer smo u karakteristici p. Dakle, f(x) nema različite korijene, tj. svi
njegovi korijeni su višestruki. Polinom f(x) je ireducibilan u K[x], jer t
nije p-ta potencija u K. Dakle, proširenje

L = K(α) = Fp(t
1/p)

je neseparabilno proširenje stupnja [L : K] = p.

Neka su K, L polja, te neka je f : K → L homomorfizam prstena. Tada je
ker f ideal u K, a jedini ideal u K je (0), pa zaključujemo da je f injektivan.
Zato se homomorfizmi polja obično nazivaju ulaganja polja.

Definicija 2.0.9

Konačno proširenje K/Q (tj. K je konačno-dimenzionalni vektorski pros-
tor nad Q) se zove polje algebarskih brojeva (PAB).

Lema 2.0.10

Svi korijeni (u C) ireducibilnog polinoma f ∈ K[x], gdje je K polje
algebarskih brojeva su različiti.

Dokaz. Pretpostavimo suprotno, tj. da f ima barem dvostruki korijen β. Tada
je f(β) = f ′(β) = 0. Vrijedi deg f ′ ≤ deg f − 1, pa (f ′) ̸⊆ (f). Pošto je (f)
maksimalan slijedi (f ′) + (f) = K[x], pa postoje g, k ∈ K[x] takvi da je

fg + f ′k = 1.

Međutim, sada imamo

0 = f(β)g(β) + f ′(β)k(β) = 1,
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što je očito kontradikcija.

Dakle sva proširenja PAB su separabilna. Pretpostavimo od sada nadalje da
je Q ⊂ K ⊂ C. Sljedeći teorem je dokazan na Algebri.

Teorem 2.0.11

Neka su K ⊆ L potpolja od C. Tada se ulaganje σ : K ↪→ C može
proširiti na ulaganje L ↪→ C na točno [L : K] načina.

Definicija 2.0.12

Ulaganje od L u C koje fiksira K se zove K-ulaganje od L u C.

Korolar 2.0.13

Postoji [L : K] K-ulaganja L u C.

Definicija 2.0.14

Neka je K ⊆ L. Ako vrijedi L = K(α), kažemo da je L/K prosto
proširenje, te kažemo da je α primitivni element tog proširenja.

Primijetimo da je [K(α) : K] = deg fα.

Teorem 2.0.15: Teorem o primitivnom elementu

Neka su K ⊆ L PAB. Tada je L = K(α) za neki α ∈ L.

Dokaz. Indukcijom po stupnju proširenja n = [L : K]. Baza n = 1 je očita.
Pretpostavimo da tvrdnja vrijedi za sva proširenja svakog PAB stupnja < n.

Neka je α ∈ L. Ako je L = K(α), gotovi smo. Pretpostavimo L ̸= K(α).
Vrijedi

[L : K] = [L : K(α)][K(α) : K].

Po pretpostavci L/K(α) je prosto proširenje, pa slijedi L = (K(α))(β), tj.
L = K(α, β). Neka je a ∈ K× proizvoljan. Neka je γ = α + aβ. Ako je
L = K(γ), gotovi smo.

Pretpostavimo K(γ) ⊊ L. Neka su σi, i = 1, . . . , n različita K-ulaganja
od L u C. Neka je f minimalni polinom od γ (nad K). Tada je deg f < n.
Promotrimo skup

{σi(γ), i = 1, . . . , n}.

Vrijedi
f(γ) = 0, pa je σi(f(γ)) = f(σi(γ)) = 0
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(ovdje koristimo da je f ∈ K[x]). Zaključujemo da postoje i ̸= j takvi da je
σi(γ) = σj(γ), tj.

σi(α) + σi(aβ) = σj(α) + σj(aβ) =⇒ σi(α)− σj(α) = a(σj(β)− σi(β)).

Mora vrijediti σi(α) ̸= σj(α) ili σj(β) ̸= σi(β), jer bi u suprotnom K-ulaganja
σi i σj bila identična. Međutim, ako vrijedi jedna nejednakost, vrijedi i druga.

Dakle
a ∈ S :=

{
σi(α)− σj(α)
σj(β)− σi(β)

, 1 ≤ i, j ≤ n, i ̸= j

}
.

Zaključujemo da za b ∈ K×\S vrijedi da je K(α+ bβ) = L, što uvijek možemo
izabrati, pošto je S konačan, a K× beskonačan.

Definicija 2.0.16

Kažemo da je L normalno proširenje od K ako zadovoljava sljedeće:
ako je α ∈ L korijen nekog f ∈ K[x] tada su svi konjugati od α nad K
sadržani u L.

Primjer 2.0.17

Polja Q(i), Q(ζn) su normalna proširenja od Q, međutim Q( 3
√
2) nije.

Sljedeći rezultati su dokazani na Algebri.

Teorem 2.0.18

Ekvivalentno je:

1. L/K je normalno proširenje,

2. Svako K-ulaganje L ↪→ C je automorfizam od L,

3. L ima točno [L : K] automorfizama koji fiksiraju K.

Dokaz. 1) =⇒ 2) : Neka je L ⊇ K normalno i ϕ : L ↪→ C K-ulaganje. Tvrdimo
ϕ(L) = L. Za α ∈ L, neka je fα minimalni polinom od α. Vrijedi

0 = ϕ(0) = ϕ(fα(α)) = fα(ϕ(α))

pošto ϕ djeluje kao identiteta na koeficijente of fα Slijedi da je ϕ(α) korijen od
fα, pa pošto je L normalno slijedi da je ϕ(α) ∈ L.

Slijedi ϕ(L) ⊆ L, te onda pošto je dimK ϕ(L) = dimK L, slijedi ϕ(L) = L.
Dakle ϕ je automorfizam.

2) =⇒ 1) : Pretpostavimo da je svako K-ulaganje L ↪→ C automorfizam od
L. Neka je α ∈ L, te β konjugat od α nad K.
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Neka je ϕ K-ulaganje ϕ : K(α) ↪→ C takvo da je ϕ(α) = β. Po ranije
dokazanom teoremu, to ulaganje možemo proširiti na ulaganje ϕ̃ : L ↪→ C. Po
pretpostavci vrijedi ϕ̃(L) = L. Vrijedi

β = ϕ(α) = ϕ̃(α) ∈ L.

2) =⇒ 3) : Znamo da postoji [L : K] K-ulaganja L u C. Dakle postoji
barem [L : K] automorfizama od L koji fiksiraju K. S druge strane ako kom-
poniramo svaki taj automorfizam sa nekim fiksnim ulaganjem L u C, dobijemo
neko ulaganje L u C, te su sva takva različita. Dakle, ima točno [L : K] auto-
morfizama od L koji fiksiraju K.

3) =⇒ 2) : Kad bi imali neko K-ulaganje koje nije automorfizam, imali bi
≥ [L : K] + 1 ulaganja L ↪→ C, što je kontradikcija s ranijim teoremom.

Teorem 2.0.19

Neka je L = K(α1, . . . , αn) i neka L sadrži sve konjugate nad K od
(α1, . . . , αn). Tada je L normalno proširenje od K.

Dokaz. Neka je σ : L ↪→ C K-ulaganje. Tada je

σ(L) = K(σ(α1), . . . , σ(αn)) ⊆ L,

pošto su svi σ(α1), . . . , σ(αn) ∈ L. Sada tvrdnja slijedi iz Teorema 2.0.18.

Propozicija 2.0.20

Neka su F ⊃ L ⊃ K proširenja polja. Ako je F normalno nad K. Tada
je F normalno nad L.

Dokaz. Neka je ϕ : F ↪→ C L-ulaganje. Slijedi da je ϕ i K-ulaganje. Po Teoremu
2.0.18 je ϕ automorfizam od F , pa je opet po Teoremu 2.0.18 F normalno i nad
L (pošto je svako L-ulaganje automorfizam).

Primjer 2.0.21

Neka su F ⊃ L ⊃ K proširenja polja. Ako je L normalno nad K i F
normalno nad L, tada ne mora vrijediti da je F normalno nad K.
Kontraprimjer je npr. Q ⊆ Q(

√
2) ⊆ Q( 4

√
2).

Da bi to vidjeli primijetimo da je minimalni polinom od 4
√
2 nad Q(

√
2)

jednak x2 −
√
2, te su njegovi korijeni ± 4

√
2 sadržani unutar Q( 4

√
2).

S druge strane minimalni polinom od 4
√
2 nad Q je x4−2, te su konjugati

(nad Q) od 4
√
2 jednaki ik 4

√
2, k = 1, . . . 4, koji nisu svi sadržani u 4

√
2 ⊆ R.
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Korolar 2.0.22

Ako je L ⊇ K, tada postoji proširenje M ⊇ L takvo da je M normalno
nad K.

Napomena: Primijetimo da će M iz korolara biti normalan i nad L.

Dokaz. Neka je L = K(α), takav α postoji po teoremu o primitivnom elementu.
Neka su α1, . . . , αn konjugati od α. Neka je M = K(α1, . . . , αn). Po Teoremu
2.0.19 slijedi da je M normalan nad K.

Definicija 2.0.23

Neka je L ⊇ K. Najmanji M ⊇ L koji je normalan nad K se zove
normalno zatvorenje od L nad K.

Napomena: Mi pretpostavljamo cijelo vrijeme da radimo sa separabilnim
i konačnim proširenjima!

Definicija 2.0.24

Neka je L/K normalno proširenje. Grupa od K-automorfizama od L se
zove Galoisova grupa od L nad K i označava s Gal(L/K).

Napomena: Primijetimo da raniji teorem kaže |Gal(L/K)| = [L : K].

Definicija 2.0.25

Za H ≤ Gal(L/K) definiramo fiksno polje od H, s oznakom LH kao

LH = {α ∈ L | σ(α) = α, ∀σ ∈ H}.

Sada ćemo iskazati bez dokaza (pošto je već dokazano na Algebri) glavne
rezultate Galoisove teorije.

Teorem 2.0.26

Neka je L/K normalno proširenje i G = Gal(L/K). Tada je K fiksno
polje od G i K nije fiksno polje niti jedne druge podgrupe od G.

Teorem 2.0.27: Osnovni teorem Galoisove teorije

Neka je L/K normalno proširenje i G = Gal(L/K). Tada postoji bijek-
cija između podgrupa od G i međupolja K ⊆ F ⊆ L. Ta bijekcija u
jednom smjeru šalje podgrupu H u fiksno polje od H, a u drugom šalje
međupolje F u Gal(L/F ).
Nadalje, međupolje F je normalno nad K ako i samo ako je Gal(L/F )
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normalna u Gal(L/K).

Dakle imamo:

{F polje: K ⊆ F ⊆ L} ←→ {H : H ≤ G}
F 7−→ Gal(L/F ) ≤ G

LH ←− [ H ≤ G

Teorem 2.0.28

Neka je L/K normalno proširenje, te neka je E ⊇ K bilo koje proširenje.
Označimo s EL polje generirano s E ∪ L. Tada je EL ⊇ E normalno i
Gal(EL/E) se ulaže u Gal(L/K) restringirnajem na L. Ta restrikcija je
izomorfizam ako i samo ako je E ∩ L = K.

2.1 Ciklotomska polja

Definicija 2.1.1

Za pozitivan cijeli broj n, n-to ciklotomsko polje K = Q(ζn) je proširenje
polja racionalnih brojeva Q, koje se dobije dodavanjem primitivnog n-tog
korijena iz jedinice ζn. Ovaj korijen je kompleksni broj koji zadovoljava
ζnn = 1, a ζn nije k-ti korijen iz jedinice za k < n.

Jedan primjer n-tog korijena iz jedinice je e
2πi
n .

Definicija 2.1.2

n-ti ciklotomski polinom Φn(x) je normirani polinom čiji su korijeni točno
svi primitivni n-ti korijeni iz jedinice (ili analogno, minimalni polinom
nekog primitivnog korijena jedinice). Drugim riječima, n-ti ciklotomski
polinom Φn(x) je zadan kao

Φn(x) =
∏

1≤k≤n
gcd(k,n)=1

(
x− ζkn

)
,

gdje je ζn = e
2πi
n primitivni n-ti korijen iz jedinice, a produkt ide po svim

k takvim da je gcd(k, n) = 1, odnosno za sve k koji su relativno prosti s
n.

Polinom Φn(x) zadovoljava sljedeću jednadžbu:

xn − 1 =
∏
d|n

Φd(x),
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gdje produkt ide po svim djeliteljima n, a Φd(x) su ciklotomski polinomi za
sve d. Ova jednadžba omogućuje rekurzivno računanje ciklotomskih polinoma.
Vidimo da je stupanj od Φn(x) jednak φ(n).

Na primjer, kada je n = p, gdje je p prost broj, n-ti ciklotomski polinom je

Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1.

Lema 2.1.3

Polinom Φp(x) je ireducibilan u Q[x].

Dokaz. Vrijedi

Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1 =
xp − 1

x− 1
.

Uvedimo supstituciju y = x− 1. Sada imamo

g(y) := Φp(y + 1) =
(y + 1)p − 1

y
=
yp +

(
p
1

)
yp−1 + . . .+

(
p

p−1

)
y

y

= yp−1 + pyp−2 + . . . p.

Upotrebom Eisensteinovog kriterija zaključujemo da je g ireducibilan. Slijedi
da je i Φp(x) ireducibilan.

Neka je ζ = ζp primitivni p-ti korijen iz jedinice. Tada su nultočke od Φp(x)
ζ, ζ2, . . . ζp−1. Dakle (nad Q(ζp)) vrijedi

Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1 = (x− ζ)(x− ζ2) . . . (x− ζp−1).

Uvrštavanjem x = 1 dobivamo

p−1∏
i=1

(1− ζi) = p.

2.2 Konstruktibilnost ravnalom i šestarom
Problem: S ravnalom i šestarom u konačno mnogo koraka riješite sljedeće
probleme:

1. "Duplikacija kocke" - konstruirati kocku s duplo većim volumenom,

2. "Trisekcija kuta" - podijeliti zadani kut na 3 jednaka dijela,

3. "Kvadratura kruga" - Za zadani krug konstruirati kvadrat iste površine.
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Neka je zadan skup E koji predstavlja skup točaka u ravnini. Definiramo DE

kao skup svih pravaca koji prolaze kroz dvije točke iz E. Također, definiramo
CE kao skup svih kružnica sa središtem u nekoj točki iz E i radijusom jednakim
udaljenosti između nekih točaka iz E.

Točka u ravnini je konstruktibilna u jednom koraku iz E ako je:

1. presjek dvaju pravaca iz DE ,

2. presjek pravca iz DE i kružnice iz CE ,

3. presjek dviju kružnica iz CE .

Konstruktibilnost u n koraka iz E se definira induktivno.
Koordinatni sustav ćemo postaviti tako da su O ∈ E i (1, 0) također iz E.

Neka je k = Q(F ), gdje je F skup svih koordinata točaka iz E u toj bazi.
Tada:

• Svaki pravac iz DE ima jednadžbu:

ax+ by + c = 0, a, b, c ∈ k

• Svaka kružnica iz CE ima jednadžbu:

x2 + y2 + ax+ by + c = 0, a, b, c ∈ k

Propozicija 2.2.1

Neka je P = (p, q) točka u ravnini konstruktibilna u jednom koraku iz
E. Tada je k(p, q) ili jednako k, ili je kvadratno proširenje od k (vrijedi
i obrat).

Dokaz. (a) Presjek dvaju pravaca:

ax+ by + c = 0 i a′x+ b′y + c′ = 0

Pretpostavimo da ovi pravci nisu paralelni.

∃!(x, y) ∈ k2 koji zadovoljava ove 2 jednadžbe
⇒ k(p, q) = k

(b) Presjek pravca i kružnice:

x2 + y2 + ax+ by + c = 0

a′x+ b′y + c′ = 0

⇒ x =
−c′ − b′y

a′

Uvrstimo u jednadžbu kružnice i dobijemo kvadratnu jednadžbu za y.
[k(x, y) : k(y)] = 1

⇒ [k(x, y) : k] = 1 ili 2.
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(c) Presjek dvije kružnice:

y2 + y2 + ax+ by + c = 0

x2 + y2 + a′x+ b′y + c′ = 0 /−
(a− a′)x+ (b− b′) y + (c− c′) = 0

svodi se na (b)

Korolar 2.2.2

Neka je P = (p, q) konstruktibilna iz E.

1. Tada postoji konačan niz polja Ki, 0 ≤ i ≤ n takav da je svako Ki

kvadratno proširenje od Ki−1, K0 = K, Kn ⊆ R, Kn = K(p, q).

2. p i q su algebarski nad K i stupanj im je potencija od 2.

Riješimo sada probleme:

1. Neka je stranica kvadrata s vrhovima O i (0, 1). Želimo naći kocku volu-
mena 2. Tada bi kocka s volumenom 2 bez smanjenja općenitosti imala
vrhove u O i (0, 3

√
2). Međutim stupanj od 3

√
2 je 3, pa točka (0, 3

√
2) nije

konstuktibilna. Ovo je dokazao Wantzel 1837.

2. Problem je ekvivalentan iz toga da iz zadanog cos 3α dobijemo cosα. Me-
đutim, lako dobijemo

cos 3α = 4 cos3 α− 3 cosα.

Uzimanjem x := cosα vidimo da zapravo tražimo korijen jednadžbe

4x3 − 3x− cos 3α.

Npr. ako uzmemo α = 40◦, slijedi cos 3α = −1/2, te vidimo da je 4x3 −
3x+1/2 ireducibilna nad Q. Dakle x je stupnja 3 nad Q. Dakle ne možemo
ga konstruirati. Ovo je dokazao Wantzel 1837.

3. Radijus je bez smanjenja općenitosti 1, pa slijedi da je volumen jednak π.
Dakle problem je ekvivalentan konstrukciji kvadrata sa stranicom duljine√
π. Bez smanjenja općenitosti jedna stranica ima vrhove u O i (0,

√
π).

Međutim π nije algebarski (Lindeman-Weierstrassov teorem, 1882.), tako
da druga točka nije konstruktibilna.
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2.3 Rješivost radikalima

Definicija 2.3.1

Polje K ⊆ C je radikalno proširenje od F ako postoji niz (Ki)0≤i≤r

koji zovemo radiklani toranj t.d. za i = 0, . . . , r vrijedi:

1. Ki+1 ⊃ Ki, F = K0, Kr = K.

2. Za svaki i ∈ {1, . . . , r} postoje ni ∈ N, ai ∈ Ki−1 t.d: Ki =
Ki−1( ni

√
ai).

Primjer 2.3.2

K = Q

(
12

√
3

√
2 + 3
√
−7 +

√
5 + 3
√
−7

)
.

Vrijedi

Q ⊂ Q( 3
√
−7) ⊂ Q( 3

√
−7,
√
5) ⊂ Q( 3

√
−7,
√
5, 5
√
−7)

⊂ Q
(

3

√
2 + 3
√
−7 +

√
5, 3
√
−7, 5
√
−7,
√
5

)
⊂ K,

pa je K radikalno proširenje.

Definicija 2.3.3

Neka je f ∈ F [x]. Kažemo da je jednadžba f(x) = 0 rješiva u radikalima
ako je polje cijepanja od f sadržano u nekom radikalnom proširenju od
f .

Definicija 2.3.4

Grupa G je rješiva ako postoji niz normalnih podgrupa

{e} = G0 �G1 �G2 � · · ·�Gn = G,

takav da su kvocijentne grupe Gi+1/Gi Abelove za svaki i =
0, 1, 2, . . . , n− 1.
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Primjer 2.3.5

S3 je rješiva grupa, budući da imamo niz normalnih podgrupa

{e}�A3 � S3,

i obje kvocijentne grupe A3/{e} ∼= Z/3Z i S3/A3
∼= Z/2Z su Abelove,

zaključujemo da je S3 rješiva grupa.

Lema 2.3.6: Galois

Ako je proširenje F ⊆ K radikalno, tada je Galoisovo zatvorenje prošire-
nja F ⊆ K također radikalno.

Dokaz. Skica: normalno zatvorenje se dobije dodavanjem svih konjugata, a ko-
njugati od m-tih korijena nekog elementa a ∈ F su opet m-ti korijeni tog istog
elementa.

Napomena: (DZ) Ako je G rješiva grupa, tada su sve podgrupe i kvoci-
jentne grupe od G rješive.

Teorem 2.3.7: Galois

Neka je f ∈ F [x], i K polje cijepanja od f nad F . Tada je f(x) = 0
rješiva u radikalima ⇐⇒ Gal(K/F ) je rješiva grupa.

Dokaz. Dajemo samo dokaz smjera =⇒ (obrat je sličan). Po pretpostavci, pos-
toji radikalno proširenje M/F t.d. K ⊆M . Neka je L Galoisovo zatvorenje od
M nad F . Dakle vrijedi F ⊆ K ⊆ L, pa je po Galoisovoj teoriji

Gal(K/F ) ≃ Gal(L/F )/Gal(L/K).

Po Napomeni prije teorema, dosta je dokazati da je Gal(L/F ) rješiva (jer tada
slijedi i da je Gal(K/F ) rješiva).

Pošto je po Lemi L radikalno proširenje od F , postoji niz

F = L0 ⊆ L1 ⊆ . . . Ls = L,

gdje je Li+1 = Li( ni
√
ai). za neki ai ∈ Li, i ni ∈ N. Imamo 2 slučaja.

1) lakši slučaj: ζni
∈ F za sve i = 1, . . . , s. Po Kummerovom teoremu vrijedi da

je Li+1/Li cikličko proširenje, pa time i normalno.
Definirajmo Gi := Gal(L/Li) i G := Gal(L/F ). Po Galoisovoj teoriji vrijedi

1 = Gs ≤ Gs−1 ≤ . . . ≤ G1 ≤ G0 = G.

Pošto je Li+1/Li normalno proširenje, imamo da je Gi+1 � Gi, te je po Galo-
isovoj teoriji Gal(Li+1/Li) ≃ Gi/Gi+1 ciklička grupa (a time i Abelova). Ovo
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dokazuje prvi slučaj.

2) opći slučaj. Definirajmo E := F (ζn1
, . . . ζns

). Vrijedi da je E/F Galoisovo,
pa pošto je L/F Galoisovo, vrijedi da je EL/F Galoisovo. Pogledajmo sada niz

E ⊆ EL0 ⊆ EL1 ⊆ . . . ⊆ EL.

Po prvom slučaju, vrijedi da je Gal(EL/E) rješiva. Također,

Gal(E/F ) ≃ Gal(EL/F )/Gal(EL/E)

Pošto je Gal(EL/E) rješiva, Gal(EL/E) � Gal(EL/F ), i Gal(E/F ) Abelova,
slijedi da je Gal(EL/F ) rješiva. Sada po Napomeni slijedi da je Gal(L/F )
rješiva.

Mi nećemo to raditi na ovom kolegiju, ali može se lako dokazati da Sn nije
rješiva grupa za n ≥ 5, te da za svaki n postoji (beskonačno mnogo) polinoma
čije polje cijepanja ima Galoisovu grupu Sn nad Q, za svako n ∈ N. Iz toga
slijedi sljedeći važan teorem.

Teorem 2.3.8: Abel-Ruffini

Opća polinomijalna jednadžba stupnja ≥ 5 nije rješiva radikalima.



Poglavlje 3

Prsteni cijelih

Cilj: Izgradnja "teorije faktorizacije" u poljima algebarskih brojeva K (prošire-
nja nad Q, tj. K/Q) i prstenima Z ⊂ Q.

Treba odabrati pravi potprsten R. Želimo:

1. "Smislena teorija faktorizacije."

2. Prsten R odgovara polju K kao što prsten Z odgovara polju Q.

a) K je polje razlomaka od R.

b) (jače) ∀α ∈ K, ∃n ∈ Z t.d. nα ∈ R.

3. R ∩Q = Z

Primijetimo: Svojstvo 2 ne određuje R jedinstveno. Npr. neka je S = pravi
podskup prostih brojeva.

Definicija:

S−1Z =
{a
b
: a, b ∈ Z, gcd(a, b) = 1, i svi prosti faktori od b su iz S

}
Npr. za S = {2},

S−1Z =
{ a

2n
: a ∈ Z, n ∈ N0

}
Vidjeli smo da općenito faktorizacija na ireducibilne elemente u prstenima u

poljima algebarskih brojeva nije jedinstvena. Ono što ćemo umjesto toga postići
je jedinstvena faktorizacija proizvoljnog ideala na proste ideale.

Sada ćemo vidjeti da to ne možemo postići u svakom potprstenu polja alge-
barskih brojeva.

28
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Primjer 3.0.1

Vrijedi Z[
√
d] ⊂ Q(

√
d) je potprsten. Neka je d = −3. Vrijedi.

4 = 2 · 2 = (1 +
√
−3)(1−

√
−3)

Elementi 1±
√
−3 su ireducibilni u prstenu Z[

√
−3].

Je li faktorizacija ideala na proste ideale jedinstvena u ovom prstenu?
Pogledajmo primjer:

a = (2, 1 +
√
−3) (nije glavni ideal)

a2 = (2, 1 +
√
−3)(2, 1 +

√
−3) = (4, 2(1 +

√
−3),−2 + 2

√
−3)

= (4, 2 + 2
√
−3,−2 + 2

√
−3) = (4, 2 + 2

√
−3)

= 2(2, 1 +
√
−3) = (2)a

Imamo li jedinstvenu faktorizaciju ideala? Da je imamo, onda bismo
imali (2) = (2, 1 +

√
−3), što nije istina.

Odabrali smo krivi prsten! Pravi prsten bi bio Z
[
1+

√
−3

2

]
, i u njemu je

jedinstvena faktorizacija na proste ideale.

Definicija 3.0.2

Neka je R integralna domena, R ⊂ K, gdje je K polje algebarskih bro-
jeva. Element α ∈ K je cijeli nad R ako poništava normirani polinom iz
R[x]. Kažemo da je R integralno zatvoren u K ako svaki element iz
K, koji je cijeli nad R, leži u R.

Primjer 3.0.3

Neka je R = Z, K = Q, i neka je α = r/s, gdje (r, s) = 1, poništava
polinom f ∈ Z[x] oblika:

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0

⇒
(r
s

)n
+ an−1

(r
s

)n−1

+ · · ·+ a1
r

s
+ a0 = 0 /sn ̸= 0

Imamo:
rn + an−1r

n−1s+ · · ·+ a1rs
n−1 + a0s

n = 0,

⇒ s(an−1r
n−1 + · · ·+ a1rs

n−2 + a0s
n−1) = −rn

⇒ s | −rn ⇒ s = 1.

Dakle α ∈ Z.
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Propozicija 3.0.4

Ako je K polje razlomaka od R, i ako je R DJF, tada je R integralno
zatvoren u K.

Dokaz. Potpuno isto kao i u primjeru.

Obrat ne vrijedi! Prsten Z[
√
−5] = R je integralno zatvoren u K = Q(

√
−5),

koje je polje razlomaka od R, ali R nije DJF.

Primjer 3.0.5

Da li je uvjet da jeK polje razlomaka od R uvijek potreban? Promotrimo
primjer Z[i] ⊂ Q(i). Element i ∈ Q(i), jer polinom f(x) = x2 + 1,
zadovoljava f(i) = 0, što znači da je i cijeli nad Z; dakle Z nije integralno
zatvoren u Q(i).

Primjer 3.0.6

Neka je

R = Z[
√
−3], K = Q(

√
−3), f(x) = x2 + x+ 1 ∈ Z[

√
−3][x].

Vrijedi f(α) = 0 za α = −1±
√
−3

2 . Pošto α /∈ R slijedi da R nije
integralno zatvoren u K. Slijedi da Z[

√
−3] nije integralno zatvoren.

Definicija 3.0.7

Kažemo da je α ∈ Q cijeli algebarski broj ako postoji f ∈ Z[x] takav
da je f(α) = 0, pri čemu je f normiran polinom. Skup cijelih algebarskih
brojeva označavamo s A.

Napomena: Uvjeti

1. R je integralno zatvoren u K.

2. K je polje razlomaka od R.

osiguravaju da je R "dovoljno velik". Mi zapravo tražimo najmanji takav R.

Definicija 3.0.8

Neka je K polje, a R prsten. Integralno zatvorenje od R u K je
podskup od K koji sadrži sve elemente koji su cijeli nad R.
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Definicija 3.0.9

Neka jeK polje algebarskih brojeva. Definiramo prsten cijelih brojeva
OK u K kao integralno zatvorenje Z u K. Dakle OK = A ∩K.

Treba dokazati da je OK prsten!

Propozicija 3.0.10

Neka je K polje algebarskih brojeva (PAB). Za α ∈ K sljedeće tvrdnje
su ekvivalentne:

1. α ∈ A (tj. α ∈ OK).

2. Prsten Z[α] je konačno generiran Z-modul.

3. α pripada potprstenu R ⊂ K koji je konačno generiran Z-modul.

4. Postoji konačno generiran Z-modul R ⊂ K t.d. je αR ⊂ R.

Dokaz. (1) ⇒ (2): Postoji polinom fα = xn + an−1x
n−1 + . . .+ a0 ∈ Z[x] takav

da je fα(α) = 0. Vrijedi
Z[α] ∼= Z[x]/ (fα) .

Primijetimo da to znači da u Z[α] vrijedi αn = −an−1α
n−1 − . . . − a0. Dakle,

Z[α] je konačno generiran kao Z-modul sa generatorima 1, α, α2, . . . , αn−1, gdje
je n = deg(fα).

(2) ⇒ (3): Uzmimo R = Z[α], koji je po pretpostavci konačno generiran.
(3) ⇒ (4): Uzmemo opet R koji zadovoljava (3); on će zadovoljavati i (4).
(4) ⇒ (1): Pretpostavimo da postoji Z-modul R ⊂ K koji je generiran s

a1, a2, . . . , an ∈ R, te αai ∈ R za i = 1, . . . , n. Tada za sve i = 1, . . . , n vrijedi:

αai =

n∑
j=1

bijaj , bij ∈ Z, i = 1, . . . , n.

Zapišimo to kao:
n∑

j=1

(δijα− bij) aj = 0.

Dakle, jednadžba

n∑
j=1

(δijα− bij)xj = 0, i = 1, . . . , n.

ima netrivijalno rješenje. Definiramo matricu M :

M = (δijα− bij)ij .
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Pošto jednadžba ima netrivijalno rješenje, slijedi da je

detM = 0.

Međutim detM je normirani polinom u α:

αn + (b11 + b22 + · · ·+ bnn)α
n−1 + · · · = 0.

Iz ovoga zaključujemo da je α ∈ OK .

Lema 3.0.11

Neka je α ∈ K. Tada postoji 0 ̸= q ∈ Z takav da qα ∈ OK .

Dokaz. Neka je fα(x) = xn+an−1x
n−1+ . . .+a0 ∈ Q[x] minimalni polinom od

α. Postoji q ∈ Z takav da

qxn + qan−1x
n−1 + · · ·+ qa0 = qfα(x) ∈ Z[x].

Definiramo polinom:

g(x) =

n∑
i=0

qn−iaix
i ∈ Z[x].

Vidimo i da je g normiran, dakle njegovi korijeni su cijeli. Vrijedi:

g(qα) = qnαn + qnan−1α
n−1 + · · ·+ qna0 = qnf(α) = 0.

Dakle, qα ∈ OK .

Lema 3.0.12

Neka su α, β ∈ OK . Tada je Z[α, β] konačno generiran Z-modul koji je
sadržan u K. Općenito, Z[α1, . . . , αn] je konačno generiran podmodul
od K za α1, . . . αn ∈ OK .

Dokaz. Neka su a1, . . . ak generatori od Z[α], a b1, . . . bl generatori od Z[β].
Slijedi da {aibj | 1 ≤ i ≤ k, 1 ≤ j ≤ l} generira Z[α, β].

Teorem 3.0.13

OK je prsten.

Dokaz. Neka su α, β ∈ OK . Moramo dokazati da α + β, αβ ∈ OK . Po prošloj
lemi Z [α,β] je konačno generiran Z-modul, te slijedi da α+β, αβ ∈ Z [α, β].

Propozicija 3.0.14

Neka je f(x) ∈ OK [x] normiran, te je α ∈ K korijen od f . Tada slijedi
da je α ∈ OK , drugim riječima OK je integralno zatvoren.
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Dokaz. Neka je:

f(x) = xn + an−1x
n−1 + · · ·+ a0 ∈ OK [x], gdje su ai ∈ OK .

Definirajmo S = Z [a0, . . . , an−1]. Po lemi je to konačno generiran Z-modul.
Ako definiramo S′ := S[α], tada je S′ konačno generiran S-modul, a time i
konačno generiran Z-modul. Po propoziciji (3), slijedi da je α ∈ OK .

Zaključak je da vrijedi

OK = K ∩ A = {α ∈ K : fα ∈ Z[x]} = {α ∈ K : fα ∈ OK [x]} ,

gdje zadnja jednakost slijedi iz integralne zatvorenosti od OK . Dakle OK je
"dovoljno velik prsten".

Neka je K = Q(
√
d), gdje je d ∈ Z kvadratno slobodan. Odredimo OK .

Neka je α ∈ K ⇒ α = a + b
√
d, a, b ∈ Q b ̸= 0. Pretpostavimo da je

α /∈ Q i α ∈ OK . Minimalni polinom fα od α je: fα(x) = x2− 2ax+(a2− b2d),
(DZ).

α ∈ Ok ⇔ fα ∈ Z[x]⇔ 2a ∈ Z; a2 − b2d ∈ Z

Ako a ∈ Z ⇒ b2d ∈ Z, pa pošto je d kvadratno slobodan, slijedi da je
b2 ∈ Z⇒ b ∈ Z.

⇒ α ∈ Z[
√
d].

Za α ∈ Z[
√
d] slijedi fα ∈ Z[x], dakle α ∈ OK . Dakle Z[

√
d] ⊆ OK .

Neka je sada a /∈ Z.

a /∈ Z 2a∈Z
=⇒ a =

a1
2
, a1 ∈ Z =⇒ a21

4
− b2d ∈ Z

⇒ b =
b1
2
, b1 ∈ Z

Vidimo, pošto je a1 neparan, da vrijedi a21 ≡ b21 ≡ 1 (mod 4), pa slijedi
1− d ≡ a21 − b21d ≡ 0 (mod 4). Dakle, vrijedi d ≡ 1 (mod 4)

Dobili smo da je, ako K = Q(
√
d), slijedi

OK =

{
Z
[
1+

√
d

2

]
, ako d ≡ 1 (mod 4),

Z[
√
d], ako d ≡ 2, 3 (mod 4).
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3.1 Trag i norma

Definicija 3.1.1

Neka je K polje algebarskih brojeva tako da [K : Q] = n. Neka su
σ1, . . . , σn ulaganja K ↪→ C.
Za element α ∈ K definiramo:

TK/Q(α) =

n∑
i=1

σi(α), je trag od α nad Q,

NK/Q(α) =

n∏
i=1

σi(α), je norma od α nad Q.

Odmah slijedi iz definicija:

T (α+ β) = T (α) + T (β),

N(αβ) = N(α)N(β), ∀α, β ∈ K,

T (rα) = rT (α)

N(rα) = rnN(α), r ∈ Q, α ∈ K,
T (r) = n · r,
N(r) = rn, ∀r ∈ Q.

Neka je α element stupnja d nad Q ([Q(α) : Q] = d). Tada definiramo trag
t(α) i normu n(α) kao zbroj (umnožak) konjugata od α nad Q.

Lema 3.1.2

Vrijedi T (α) = n
d t(α), i N(α) = n(α)

n
d .

Dokaz. Ovdje su t(α) i n(α) trag i norma od α u odnosu na proširenje Q(α)/Q.
Budući da se svako ulaganje iz Q(α) ↪→ C može proširiti na točno n

d ulaganja
K ↪→ C, te je svako ulaganje od α određeno djelovanjem na Q(α), lema slijedi.

Korolar 3.1.3

T (α) i N(α) ∈ Q.

Dokaz. Dovoljno je prema Lemi 3.1.2 dokazati da t(α) i n(α) ∈ Q.
Neka je minimalni polinom od α nad Q:

f(x) = xd + ad−1x
d−1 + · · ·+ a1x+ a0

= (x− α1)(x− α2) · · · (x− αd).
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Prema Vieteovim formulama,

t(α) = −ad−1 ∈ Q,
n(α) = (−1)da0 ∈ Q.

Korolar 3.1.4

Ako je α ∈ OK , tada je T (α), N(α) ∈ Z.

Dokaz. Budući da je α ∈ OK i da je f(x) ∈ Z[x], slijedi odmah t(α), n(α) ∈
Z.

Primjer 3.1.5

K = Q(
√
d)

TK/Q(a+ b
√
d) = 2a

NK/Q(a+ b
√
d) = a2 − db2.

Lema 3.1.6

Za u ∈ OK vrijedi

u ∈ O×
K ⇐⇒ N(u) = ±1.

Dokaz. =⇒

Postoji v ∈ OK takav da uv = 1 /N

N(uv) = 1[K:Q] = 1 =⇒ N(u)N(v) = 1.

Po Korolaru, N(u), N(v) ∈ Z, pa N(u) = ±1.
⇐= Neka je f minimalni polinom od u.

f(x) = xd + ad−1x
d−1 + . . .+ a1x+ (−1)dn(u) ∈ Z[x],

0 = f(u) = ud + ad−1u
d−1 + . . .+ (−1)dn(u)

⇒ u
(
ud−1 + ad−1u

d−2 + . . .+ a1
)
= (−1)d+1n(u) ∈ {±1}

⇒ u ∈ O×
K .

Primjer 3.1.7

Odredite O×
K za K = Q(

√
−2).
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Rješenje: Znamo da je OK = Z[
√
−2]. Vrijedi α ∈ OK ⇒ α = a +

b
√
−2, a, b ∈ Z. Vrijedi

N(α) = a2 + 2b2, pa je

N(α) = ±1 ⇔ a2 + 2b2 = 1⇔ a = ±1, b = 0.

Zaključujemo O×
K = {±1}.

Analogno vrijedi za sve Q(
√
d), gdje je d < 0, osim za d = −1,−3. Za K = Q(i)

smo već pokazali:O×
K = {±1,±i}.

Neka je sada K = Q(
√
−3). Znamo da je OK = Z

[
1+

√
−3

2

]
. Za α ∈ OK

imamo α = a+ b 1+
√
−3

2 , a, b ∈ Z. Tada vrijedi:

N(α) =

(
a+

b

2

)2

+
3

4
b2

= a2 + ab+ b2.

Ako je N(α) = ±1, tada imamo:

a2 + ab+ b2 = 1.

Zaključujemo:

|b| ≤ 1,

b = −1⇒ 1− a+ a2 = 1⇒ a ∈ {0, 1} ⇒ α ∈
{
1−
√
−3

2
,
−1−

√
−3

2

}
,

b = 0⇒ a2 = 1⇒ α ∈ {±1},

b = 1⇒ 1 + a+ a2 = 1⇒ a ∈ {−1, 0} ⇒ α ∈
{
1 +
√
−3

2
,
−1 +

√
−3

2

}
.

Dakle,

O×
K =

{
±1, 1±

√
−3

2
,
−1±

√
−3

2

}
.

(4) U slučaju kada je K = Q(
√
2), imamo

OK = Z[
√
2],

α = a+ b
√
2, a, b ∈ Z,

N(α) = ±1⇔ a2 − 2b2 = ±1.

Vrijedi: N(1 +
√
2) = −1, N((1 +

√
2)n) = (−1)n. Dakle O×

K je beskonačna
grupa. Iz teorije brojeva zapravo možemo zaključiti

O×
K = {(1 +

√
2)n, n ∈ Z}.

Norma se može koristiti da se pokaže da je element α ∈ OK ireducibilan ako
je N(α) = ± prost broj. Očito to implicira da je α ireducibilan.
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1. 9 +
√
10 je ireducibilan u Z[

√
10], jer je N(9 +

√
10) = 81 − 10 = 71, što

je prost broj

2. Neka je OK = Z[
√
−5]. Tada OK ne sadrži elemente čija je norma ≡ ±2

(mod 5) pošto
a2 + 5b2 = ±2 (mod 5),

nema rješenja. Slijedi da su npr. elementi 2, 3, 1+
√
−5 ireducibilni (pošto

ne postoje elementi norme ±2,±3 u OK).

Norma i trag elementa se mogu definirati općenitije. Neka je L/K proširenje
polja, gdje je [L : K] = n, a σ1, . . . , σn su K-ulaganja L ↪→ C.

Definiramo trag TL/K(α) kao:

TL/K(α) =

n∑
i=1

σi(α)

i normu NL/K(α) kao:

NL/K(α) =

n∏
i=1

σi(α).

Lako se vidi sljedeće:

Propozicija 3.1.8

Neka je α ∈ L, te L/K proširenje. Vrijedi TL/K(α) ∈ K, te NL/K(α) ∈
K. Ako je α ∈ OL, tada je TL/K(α) ∈ OK , te NL/K(α) ∈ OK .

Teorem 3.1.9

Neka su K ⊂ L ⊂M polja algebarskih brojeva. Tada za α ∈M vrijedi:

TL/K

(
TM/L(α)

)
= TM/K(α),

NL/K

(
NM/L(α)

)
= NM/K(α).

Dokaz. Neka su σ1, . . . , σn K-ulaganja L ↪→ C i neka su τ1, . . . , τm L-ulaganja
M ↪→ C. σj-eve možemo proširiti na K-ulaganja M̃ ↪→ C, gdje je M̃ normalno
zatvorenje od M nad K (neće biti bitan izbor ulaganja).

Tada imamo:

TL/K

(
TM/L(α)

)
= TL/K

(
m∑
i=1

τi(α)

)

=

n∑
j=1

σj

(
m∑
i=1

τi(α)

)
=
∑
i,j

σjτi(α).
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gdje σjτi K-ulaganja M u C, te ih ima m · n = [M : K]. Treba pokazati da su
sva različita, to jest

σiτj = σuτv ⇔ i = u, j = v.

Neka je σiτj = σuτv
⇒ σiτj |L = σuτv|L
⇒ σi|L = σu|L

pošto je τj , τv identiteta na L. Dakle i = u. Uvrštavanjem gore dobijemo

τj |M = τv|M ⇒ τj = τv ⇒ j = v.

3.2 Diskriminanta
Definicija 3.2.1

Neka je K PAB i neka je [K : Q] = n. Označimo sa σ1, . . . , σn, ulaganja
K ↪→ C, i neka su α1, . . . , αn ∈ K. Diskriminanta ∆(α1, . . . , αn) je
kvadrat determinante matrice (σi(αj))i,j .

Primjer 3.2.2

Neka je K = Q(
√
2). Tada:

∆
(
1,
√
2
)
=

∣∣∣∣∣
(
1
√
2

1 −
√
2

)∣∣∣∣∣
2

= (−2
√
2)2 = 8.

Lema 3.2.3

Neka su oznake kao i iznad. Tada vrijedi

∆(α1, . . . , αn) = det
(
TK/Q(αiαj)

)
ij
.

Dokaz. Neka je A = (σi(αj))ij . Pošto je det(A) = det(Aτ ), vrijedi

∆(α1, . . . , αn) = (det(A))2 = det(AτA)

= det

(
n∑

k=1

σk(αi)σk(αj)

)

= det

(
n∑

k=1

σk(αiαj)

)
= det

(
TrK/Q(αiαj)

)
ij
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Primjer 3.2.4

∆(1,
√
2) =

∣∣∣∣∣
(
2 0

0 4

)∣∣∣∣∣ = 8.

Korolar 3.2.5

∆(α1, . . . , αn) ∈ Q, i ako su α1, . . . , αn ∈ OK , tada je ∆(α1, . . . , αn) ∈ Z.

Teorem 3.2.6

∆(α1, . . . , αn) = 0⇔ α1, . . . , αn su linearno zavisni nad Q.

Dokaz. ⇐= Ako su α1, . . . , αn linearno zavisni, tada postoji relacija

α1 =

n∑
i=2

aiαi.

Onda imamo matricu:

∣∣∣∣∣∣∣∣∣∣
σ1(α1) σ1(α2) · · · σ1(αn)

σ2(α1) σ2(α2) · · · σ2(αn)
...

...
. . .

...
σn(α1) σn(α2) · · · σn(αn)

∣∣∣∣∣∣∣∣∣∣
=

n∑
i=2

ai

∣∣∣∣∣∣∣
σ1(αi) . . . σ1(αi) . . .

σ2(αi) . . . σ2(αi) . . .

. . . . . . . . .
. . .

∣∣∣∣∣∣∣ = 0.

Dakle imamo 2 ista stupca, pa je ∆(α1, . . . , αn) = 0.

=⇒ Neka je ∆(α1, . . . , αn) = 0 i pretpostavimo suprotno, tj, α1, . . . , αn

linearno nezavisni nad Q.
Označimo s R1, . . . , Rn retke matrice

A = Tr(αiαj)ij .

Vrijedi detA = ∆(α1, . . . , αn) = 0.
⇒ R1, . . . , Rn su linearno zavisni nad Q, pa postoji relacija:

a1R1 + a2R2 + . . .+ anRn = 0, gdje su ai ∈ Q, i nisu svi ai = 0

pa pošto suma u j-tom stupcu mora biti 0 vrijedi:

n∑
i=1

ai Tr (αiαj) = 0, ∀j = 1, . . . , n.

Neka je α = a1α1 + a2α2 + . . .+ anαn ⇒ α ̸= 0.
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Pogledajmo

Tr(ααj) = Tr

(
n∑

i=1

aiαiαj

)
=

n∑
i=1

ai Tr(αiαj) = 0, ∀j = 1, . . . , n.

⇒ Tr(αβ) = 0, ∀β ∈ K.

Međutim
n = Tr(1) = Tr

(
α · 1

α

)
= 0,

dakle dobili smo kontradikciju.

Propozicija 3.2.7

Neka je K PAB s bazom (nad Q) α1, . . . , αn ∈ OK . Neka su ai ∈ Q takvi
da je a1α1 + a2α2 + . . .+ anαn ∈ OK . Tada je ∆(α1, . . . , αn) · ai ∈ Z.

Dokaz. Neka je ∆ := ∆(α1, . . . , αn).
Neka su σ1, . . . , σn ulaganja K ↪→ C. Promotrimo sustav

σi(α) = a1σi(α1) + a2σi(α2) + . . .+ anσi(αn).

Možemo ga promatrati kao sustav s n "nepoznanica" ai. Može se zapisati u
matrici oblika: σ1(α)

...
σn(α)

 =

 σ1(α1) · · · σ1(αn)
...

...
σn(α1) · · · σn(αn)


 a1

...
an

 .
Pošto je ∆ ̸= 0, slijedi da postoji jedinstveno rješenje. Po Cramerovom

pravilu: ai = γi

δ , gdje je γi determinanta matrice dobivene zamjenom i-tog

stupca sa stupcem

 σ1(α)
...

σn(α)

, a δ je determinanta matrice jednadžbe. Pošto

ulaganje σi šalje αj u neki njegov konjugat, slijedi da su δ, γi ∈ OK , te

∆ai =
γiδ

2

δ
= γiδ ∈ OK .

Slijedi ∆ai ∈ Q ∩ OK = Z.

Teorem 3.2.8

Neka je K konačno proširenje polja Q stupnja [K : Q] = n. Tada je
prsten cijelih brojeva OK slobodan Z-modul ranga n.
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Dokaz. Neka je {α1, α2, . . . , αn} baza od K nad Q s αi ∈ OK ; takva postoji po
Lemi 3.0.11, te

Zα1 + . . .+ Zαn ⊆ OK ,

slijedi da je rang od OK veći ili jednak od n.
Po prošloj propoziciji vrijedi:

OK ⊆
1

∆(α1, α2, . . . , αn)
(Zα1 + Zα2 + · · ·+ Zαn) ,

pa slijedi da je rang OK manji ili jednak od n.

Korolar 3.2.9

OK je Noetherin prsten.

Dokaz. Po prošlom teoremu možemo zapisati

OK = Z[α1, . . . , αn]

za neke α1, . . . , αn.
Dakle, postoji surjektivni homomorfizam

Z[x1, . . . , xn]→ Z[α1, . . . , αn].

Pošto je Z[x1, . . . , xn] Noetherin prsten, te pošto je slika homomorfizma iz
Noetherinog prstena opet Noetherin prsten, slijedi da je i Z[α1, . . . , αn] Noet-
herin prsten.

3.3 Dedekindove domene
Definicija 3.3.1: Dedekindova domena

Integralnu domenu R nazivamo Dedekindovom domenom ako zadovoljava
sljedeće uvjete:

• R je Noetherin prsten (svaki ideal u R je konačno generiran),

• R je integralno zatvoren u svojem polju razlomaka,

• Svaki nenul prosti ideal je maksimalan.

Lema 3.3.2

Neka je a ideal u OK (prstenu cijelih brojeva PAB K), gdje a ̸= (0).
Tada vrijedi a ∩ Z ̸= {0}.
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Dokaz. Neka je α ∈ a. Tvrdimo da

NK/Q(α) ∈ a ∩ Z.

Treba dokazati da NK/Q(α) ⊆ a.
Neka je σ : K ↪→ C neko ulaganje, te α1, α2, . . . , αn svi konjugati elementa

α nad Q. Neka je bez smanjenja općenitosti α1 = σ(α). Tada vrijedi:

NK/Q(α) = α1α2 · · ·αn,

te definirajmo α′ := α2 · · ·αn. Primijetimo da su svi konjugati od α cijeli alge-
barski brojevi, pa je i α′ cijeli algebarski broj.

Slijedi

α′ =
NK/Q(α)

α1
∈ OK .

Neka je α′′ takva da je α′′ := σ−1(α′).
Budući da je a ideal, zaključujemo da α′′α ∈ a. Konačno imamo:

α′′ · α = σ−1(α′) · σ−1(α1) = σ−1(α1 · . . . · αn) = NK/Q(α).

Dakle α′′ · α ∈ Z ∩ a, te smo gotovi.

Propozicija 3.3.3

OK je Dedekindova domena.

Dokaz. Tvrdimo da je svaki nenul prosti ideal u OK maksimalan ideal.
Neka je P neki nenul prosti ideal, pa po Lemi 3.3.2 postoji m ∈ Z∩P . Dakle,

(m) ⊆ P .
Pogledajmo preslikavanje φ : OK/(m)→ OK/P zadano sa

a+ (m) 7→ a+ P.

Očito je surjekcija.
Ako je [K : Q] = n, tada je

|OK/(m)| = |(Zα1 + Zα2 + . . .+ Zαn)/(m)| = mn < +∞,

za neke α1, . . . , αn.
Slijedi da je OK/P konačna integralna domena. Međutim, svaka konačna

integralna domena je polje (DZ - pogledajte potencije od x, pa zbog konačnosti
postoji neki m takav da je xm = x, pa slijedi da je xm−1 = x−1.) Slijedi da je
P maksimalan ideal.
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3.4 Jedinstvena faktorizacija u Dedekindovim do-
menama

Lema 3.4.1

Neka je A ideal u Dedekindovoj domeni R. Tada postoje prosti ne-nul
ideali p1, . . . , pn t.d p1 · . . . · pn ⊆ A.

Dokaz. Pretpostavimo suprotno, neka postoje ideali za koje to ne vrijedi, te na-
zovimo skup takvih ideala S. Pošto je R Noetherin, postoji maksimalni element
u tom skupu; nazovimo ga B. Pošto je B iz S, on nije prost.

Dakle postoje α, β ∈ R takvi da αβ ∈ B, ali α /∈ B i β /∈ B.
Pošto je B maksimalan u S, slijedi da B + (α) i B + (β) nisu iz S. Sada

imamo
(B + (α))(B + (β)) = B ·B +B(α) +B(β) + (α)(β).

Vidimo da su svi sumandi iz B, pa je i suma iz B.
Međutim, pošto B + (α) i B + (β) nisu iz S, slijedi da postoje ideali pi, qj

takvi da
B + (α) ⊇ p1 · . . . · pk,
B + (β) ⊇ q1 · . . . · ql,

pa je
p1 · . . . · pkq1 · . . . · ql ⊆ (B + (α))(B + (β)) ⊆ B,

što je kontradikcija s našom pretpostavkom.

Lema 3.4.2

Neka je A ̸= 0 ideal u Dedekindovoj domeni R, i neka je A ̸= R. Neka
je K polje razlomaka od R. Tada postoji element γ ∈ K takav da je
γA ⊆ R i γ /∈ R.

Dokaz. Neka je 0 ̸= α ∈ A proizvoljan. Sada po prošloj lemi postoje prosti
nenul ideali p1, . . . , pk takvi da je

(α) ⊇ p1 · . . . · pk
takvi da je k minimalan. Pošto je prsten R Noetherin, A je sadržan u nekom
maksimalnom idealu P . Vrijedi

P ⊇ A ⊇ (α) ⊇ p1 · . . . · pk.

S druge strane, pošto je R DD, slijedi da su p1, . . . , pk maksimalni. Dakle bez
smanjenja općenitosti vrijedi P = p1; ovo vrijedi jer je P prost, pa ako sadrži
produkt, onda mora sadržati i jedan faktor. Primijetimo da ako je k = 1, tada
je p2 · . . . · pk = R.

Po pretpostavci minimalnosti od k, slijedi da α ne sadrži produkt k − 1
prostih ideala. Dakle postoji β ∈ p2 · . . . · pk takav da β /∈ (α).

Neka je γ := β
α . Tvrdimo da γ zadovoljava lemu. Vrijedi
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1. γ /∈ R jer β /∈ (α)

2. Za svaki α′ ∈ A, slijedi da je βα′ ∈ p1 · p2 · . . . · pk, pošto je α′ ∈ p1, a
β ∈ p2 · . . . · pk. Dakle βα′ ∈ p1 · . . . · pk ⊆ (α). Slijedi da je

γ · α′ =
βα′

α
∈ 1

α
(α) = R.

Propozicija 3.4.3

Neka je A ̸= 0 ideal u DD (Dedekindovoj domeni) R. Tada postoji ideal
B ⊆ R t.d je AB glavni ideal.

Dokaz. Neka je 0 ̸= α ∈ A i neka je

B := {β ∈ R|βA ⊆ (α)}.

Pošto je α ∈ B, slijedi da B ̸= (0). Također, lako se provjeri da je B ideal.
Nadalje, po definiciji od B slijedi da je

AB ⊆ (α).

Tvrdimo da je AB = (α). Promotrimo C := 1
αAB ⊆ R. Vrijedi

AB = (α)⇐⇒ C = R.

Pošto su A i B ideali u R, slijedi i da je C ideal u R.
Pretpostavimo suprotno, tj. da je C ̸= R. Po Lemi 3.4.2, postoji γ ∈ K

takav da γ /∈ R takav da je γC ⊆ R.
Mi ćemo pokazati da je γ nultočka normiranog polinoma iz R[x], iz čega

će slijediti da je γ ∈ R, pošto je R integralno zatvoren. To će međutim biti
kontradikcija s našom pretpostavkom na γ.

Primijetimo da za svaki β ∈ B vrijedi

β =
1

α
αβ ∈ C,

pa je B ⊆ C. Imamo
γB ⊆ γC ⊂ R.

Sada tvrdimo: γB ⊆ B . Neka je β ∈ B proizvoljan. On zadovoljava
βα′ ∈ (α) za sve α′ ∈ A. Želimo dokazati:

∀α′ ∈ A, γβα′ ∈ (α).

Fiksirajmo α′ ∈ A. Vrijedi

βα′ ∈ (α) (po definiciji od B),
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=⇒ βα′ = αδ, za neki δ ∈ R

=⇒ δ =
1

α
α′β ∈ C

=⇒ γδ ∈ γC ⊆ R

=⇒ γβα′ = αγδ ∈ (α) pošto je γδ ∈ R.

=⇒ γβ ∈ B =⇒ γB ⊆ B.

Imamo da je B ideal u R, pa pošto je R Noetherin, B je konačno generiran
kao R-modul, tj. B = R[b1, . . . , bn]. Ako promotrimo množenje s γ to je "line-
arni operator" u B, pa možemo djelovanje na bazu {b1, . . . , bn} zapisati s nekom
matricom M s koeficijentima iz R. Po Hamilton-Cayleyevom teoremu postoji
normirani polinom iz R[x] koji poništava γ, pošto je γ svojstvena vrijednost od
matrice M .

Lema 3.4.4

Neka su A,B,C ideali u Dedekindovoj domeni R i neka je A ̸= {0}. Tada
AB = AC povlači da je B = C.

Dokaz. Neka je A′ ⊆ R ideal takav da je AA′ = (α) glavni ideal; takav postoji
po Propoziciji 3.4.3.

Pošto je AB = AC, slijedi da je

AA′B = AA′C,

pa je
(α)B = (α)C, to jest αB = αC.

Slijedi da je B = C.

Definicija 3.4.5

Za ideale A,B u Dedekindovoj domeni R kažemo da B dijeli A ako
postoji ideal C u R takav da je A = BC.

Primijetimo da ako B dijeli A, tada B ⊇ A. Dokažimo da u Dedekindovoj
domeni vrijedi i obrat ovoga.

Lema 3.4.6

Neka su A,B ideali u Dedekindovoj domeni R. Tada B dijeli A ako i
samo ako B ⊇ A.

Dokaz. =⇒ Ovo je očito.
⇐= Neka je B ⊇ A, B′ ideal takav da BB′ = (β). Neka je

C =
1

β
B′A ⊂ R.
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Ovo je ideal u R pošto je B ⊇ A. Slijedi

BC =
1

β
BB′A =

1

β
βA = A.

Definicija 3.4.7

Kažemo da se ideal A ⊆ R faktorizira u proste ideale ako se može zapisati
kao A = P1P2 . . . Pk, gdje su Pi ̸= 0 prosti ideali u R. Kažemo da se A
jedinstveno faktorizira u proste ideale ako je faktorizacija od A u proste
ideale jedinstvena do na poredak Pi-ova.

Teorem 3.4.8: Teorem o jedinstvenoj faktorizaciji u Dedekindo-
vim domenama

Svaki nenul ideal u Dedekindovoj domeni R ima jedinstvenu faktorizaciju
u proste ideale.

Dokaz. Dokažimo prvo da se svaki nenul ideal faktorizira u proste ideale. Neka
je S skup pravih ideala koji se ne faktoriziraju u proste ideale. Pretpostavimo
S ̸= ∅.

Pošto je R Noetherin, slijedi da S ima maksimalni element A (primijetimo da
ovo ne znači da je A maksimalan ideal). Slijedi da je A ⊆ P za neki maksimalan
ideal P . Slijedi da je P prost ideal. Po Lemi 3.4.6 slijedi da P dijeli A, pa je
A = PB za neki ideal B u R.

Pokažimo da A ̸= B. Pretpostavimo suprotno, tj. A = B. Podijelimo
B = A = PB s B; dobijemo P = R, što je kontradikcija.

Dakle imamo A ⊆ B, A ̸= B, tj. A ⊊ B. Slijedi da B /∈ S, dakle B se
faktorizira na proste ideale

B = P1 . . . Pt.

Slijedi da se A faktorizira u proste ideale

A = PP1 . . . Pt,

što je kontradikcija.
Dokažimo sada jedinstvenost faktorizacije. Pretpostavimo

Q1 . . . Qs = A = P1 . . . Pr,

za neke proste ideale Qi, Pj . Slijedi P1|Q1 . . . Qs, pa je P1 ⊇ Q1 . . . Qs. Pošto
je P1 prost, slijedi da P1 ⊇ Qi za neki i ∈ {1, . . . s}. Bez smanjenja općenitosti
možemo pretpostaviti da je i = 1. Imamo P1 ⊇ Q1, te je Q1 maksimalan, pošto
smo u DD. Dakle slijedi P1 = Q1. Dijeljenjem s P1 = Q1, te ponavljanjem ovog
postupka dokazujemo teorem.
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Primjer 3.4.9

Pogledajmo faktorizaciju 6 u Z[
√
−5]. Neka je

P1 = (2, 1 +
√
−5), P2 = (3, 1 +

√
−5), P3 = (3, 1−

√
−5).

Sada imamo

(P 2
1 )(P2P3) = (2)(3) = (6) = (1 +

√
−5)(1−

√
−5) = (P1P2)(P1P3).

Iako faktorizacija elemenata u ireducibilne nije jedinstvena, faktorizacija
u proste ideale je.

3.5 Određivanje OK
Sjetimo se da je slobodna Abelova grupa ranga n generirana s {x1, . . . , xn}.

Lema 3.5.1

Neka je G slobodna Abelova grupa ranga n s bazom {x1, . . . , xn}. Pret-
postavimo da je A = (aij) n× n matrica, s aij ∈ Z. Tada su elementi

yi =

n∑
j=1

aijxj , i = 1, . . . , n

baza za G ako i samo ako detA = ±1.

Dokaz. =⇒ Imamo

yi =

n∑
j=1

aijxj , i = 1, . . . , n,

pa pošto yi-evi čine bazu, imamo i

xi =

n∑
j=1

bijyj , i = 1, . . . , n,

za neke bij-eve. Neka je B = (bij). Slijedi

yi =

n∑
j=1

aij

n∑
k=1

bjkyk =

n∑
k=1

(

n∑
j=1

aijbjk)yk.

Dakle imamoAB = In, pa je det(AB) = detAdetB = 1. Pošto su detA,detB ∈
Z, slijedi detA ∈ {±1}.
⇐= Neka je detA ∈ {±1}. Primijetimo da to implicira da su yi-evi linearno
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nezavisni. Vrijedi A−1 = (detA)−1Ã, te su koeficijenti od Ã iz Z. Slijedi da su
koeficijenti od A−1 iz Z. Neka je B = A−1 = (bij). Imamo da je

xi =

n∑
j=1

bijyj ,

pa slijedi da yj-evi generiraju G (pošto možemo generirati sve xi-eve.)

Sjetimo se ∆({α1, . . . , αn}) = (det(σi(αj))ij)
2.Uzmimo neki skup {β1, . . . βn}

takav da

βk =

n∑
i=1

cikαi,

za neke cik ∈ K, te neka je C = (cij).
Tada vrijedi (ostavljamo dokaz za DZ):

∆({β1, . . . , βn}) = (detC)2∆({α1, . . . , αn}). (3.1)

Definicija 3.5.2

Diskriminanta ∆K od PAB K je ∆({α1, . . . , αn}), gdje je {α1, . . . , αn}
baza od OK kao Z-modula.

Teorem 3.5.3

Neka je G aditivna podgrupa od OK ranga [K : Q] = n sa Z-bazom
{α1, . . . , αn}. Tada |OK/G|2 (ovdjeOK promatramo kao aditivnu grupu)
dijeli ∆({α1, . . . , αn}).

Dokaz. Vrijedi (DZ): Postoji baza {β1, . . . βn} odOK takva da je {µ1β1, . . . , µnβn}
Z-baza od G, gdje su µi ∈ Z. Sada je po (3.1)

∆({α1, . . . , αn}) = (µ1 · . . . · µn)
2∆({β1, . . . , βn}) = |OK/G|2∆K .

Sada tvrdnja teorema slijedi iz ∆K ∈ Z.

Propozicija 3.5.4

Neka je G ⊊ OK aditivna podgrupa sa Z-bazom {α1, . . . , αn}. Tada
postoji x ∈ OK oblika

0 ̸= x =
1

p
(λ1α1 + . . . λnαn),

gdje su 0 ≤ λi ≤ p − 1, λi ∈ Z, i p je prost broj takav da
p2|∆({α1, . . . , αn}).
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Dokaz. Ako je G ⊊ OK , slijedi da je |OK/G| > 1, pa postoji prost p koji dijeli
|OK/G| i element G ̸= U ∈ OK/G takav da pU = G.

Dakle postoji x ∈ 1
pG, pa se on može zapisati kao

x =
1

p
(λ1α1 + . . . λnαn).

Možemo (ako je potrebno, nakon dodavanja elemenata iz G) pretpostaviti 0 ≤
λi ≤ p− 1.

Primjer 3.5.5

Dokažite da za K = Q(
√
5) vrijedi OK = Z

[
1+

√
5

2

]
.

Rješenje:
Pošto su generatori od Z

[
1+

√
5

2

]
cijeli algebarski brojevi, očito je da OK ⊇

Z
[
1+

√
5

2

]
.

Treba samo provjeriti da Z
[
1+

√
5

2

]
nije strogo manji od OK .

Baza za Z
[
1+

√
5

2

]
(nad Z) je

{
1, 1+

√
5

2

}
, te je

∆

({
1,

1 +
√
5

2

})
=

∣∣∣∣∣2 1

1 3

∣∣∣∣∣ = 5

(ovdje smo računali diskriminantu preko traga). Pošto je ∆
({

1, 1+
√
5

2

})
kva-

dratno slobodan, slijedi OK = Z
[
1+

√
5

2

]
.

Primjer 3.5.6

Odredite OK za K = Q( 3
√
5).

Rješenje: Neka je θ = 3
√
5. Očito je {1, θ, θ2} Z-baza od Z[ 3

√
5], koji je

ranga [K : Q]. Imamo 3 ulaganja σi : K ↪→ C, za i = 0, 1, 2, gdje je σi(θ) = ζiθ,
gdje je ζ treći korijen iz jedinice.

Sada imamo

∆({1, θ, θ2}) =

∣∣∣∣∣∣∣
1 θ θ2

1 ζθ ζ2θ2

1 ζ2θ ζθ2

∣∣∣∣∣∣∣
2

= (θ3)2

∣∣∣∣∣∣∣
1 1 1

1 ζ ζ2

1 ζ2 ζ

∣∣∣∣∣∣∣
2

= 5232(ζ2 − ζ)2 = −3352.

Dakle, zaključujemo [OK : Z
[√

5
]
] ∈ {1, 3, 5, 15}.

Ako Z[ 3
√
5] ̸= OK tada postoji α ∈ OK gdje vrijedi jedna od sljedećih mo-

gućnosti:
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(1) 0 ̸= α = 1
3 (λ1 + λ2θ + λ3θ

2), gdje su 0 ≤ λi ≤ 2, ili

(2) 0 ̸= α = 1
5 (λ1 + λ2θ + λ3θ

2), gdje su 0 ≤ λi ≤ 4.

Pokažimo da (2) nije moguće, dok (1) ostavljamo za DZ. Pošto je 1+ζ+ζ2 =
0 slijedi da je T (α) = 3/5λ1 ∈ Z, pa slijedi λ1 = 0. Računamo N(aθ + bθ2) =
. . . = 5a3 + 25b3. Dakle imamo

N(α) =
λ32 + 5λ33

25
∈ Z.

Slijedi
λ32 + 5λ33 ≡ 0 (mod 25). (3.2)

Primijetimo
λ2 ≡ 0 (mod 5)⇐⇒ λ3 ≡ 0 (mod 5),

i ako je to istina, dobijemo α = 0, pa možemo ovaj slučaj odbaciti.
Neka je sada λ3 ̸≡ 0 (mod 5); sada iz (4.4) slijedi da je(

−λ2
λ3

)
≡ 5 (mod 25),

pa slijedi (
−λ2
λ3

)
≡ 0 (mod 5),

što je očito kontradikcija jer implicira λ2 ≡ 0 (mod 5).

Primjer 3.5.7

Neka je K = Q(ζp). Pokažimo da je OK = Z[ζp].

Rješenje:
Očito je OK ⊇ Z[ζp]. Vrijedi

T (ζp) = ζp + ζ2p + . . .+ ζp−1
p = −1.

Također T (ζip) = T (ζp) = −1 za sve 1 ≤ i ≤ p−1. Vrijedi T (1) = p−1. Također

T (1− ζp) = T (1− ζip) = p za sve 1 ≤ i ≤ p− 1.

Sjetimo se da je

Φp(x) = (1 + x+ . . .+ xp−1) =
∏

1≤i≤p−1

(x− ζi),

pa slijedi
p = Φp(1) =

∏
1≤i≤p−1

(1− ζi) = N(1− ζip) (3.3)
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za sve 1 ≤ i ≤ p− 1.
Dovršit ćemo dokaz primjera (do kraja poglavlja) s nekoliko rezultata.

Lema 3.5.8

Vrijedi pZ = (1− ζp)OK ∩ Z.

Dokaz. Primijetimo da (1− ζp)|p (u OK) pa je pZ ⊆ (1− ζp)OK ∩ Z. Pretpos-
tavimo da ne vrijedi jednakost. Tada pošto je (1− ζp)OK ∩ Z ideal u Z i pZ je
maksimalan u Z, slijedi (1− ζp)OK ∩ Z = Z.

Dakle 1 ∈ (1 − ζp)OK , to jest postoji α ∈ OK takav da je 1 = (1 − ζp)α.
Međutim tada bi moralo vrijediti N(1− ζp) = ±1, što smo vidjeli da ne vrijedi.

Korolar 3.5.9

Za svaki α ∈ OK vrijedi T ((1− ζp)α) ∈ pZ.

Dokaz. Neka su σi takvi da je σi(ζp) = ζip.

T ((1− ζp)α) = σ1((1− ζp)α) + . . .+ σp−1((1− ζp)α)

= (1− ζp)σ1(α) + (1− ζ2p)σ2(α) + . . . (1− ζp−1
p )σp−1(α).

Primijetimo da je

1− ζip
1− ζp

= 1 + ζp + ζ2p + . . .+ ζi−1
p ∈ OK ,

pa (1− ζp)|T ((1− ζp)α). Dakle, imamo

T ((1− ζp)α) ∈ (1− ζp)OK ∩ Z = pZ.

Propozicija 3.5.10

OK = Z[ζp] ≃ Z[x]/ϕp.

Dokaz. Znamo Z[ζp] ⊆ OK . Neka je α ∈ OK . Tada je

α = a0 + a1ζp + . . .+ ap−2ζ
p−2
p , ai ∈ Q.

Pomnožimo sve s (1− ζp); dobijemo

α(1− ζp) = a0(1− ζp) + a1(ζp − ζ2p) + . . . ap−2(ζ
p−2
p − ζp−1

p ).

Slijedi

T (α(1− ζp)) = T (a0(1− ζp)) + T (a1ζp)− T (a1ζ2p) + T (a2ζ
2
p)− T (a2ζ3p)+
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. . .+ T (ap−2ζ
p−2
p )− T (ap−2ζ

p−1
p ).

Sada pošto je T (aiζip) = T (aiζ
j
p) za svaki 1 ≤ i ≤ p− 1, slijedi

T (α(1− ζp)) = T (a0(1− ζp)) = a0T ((1− ζp)) = a0p.

Pošto je po Korolaru 3.5.9 T (α(1− ζp)) ∈ pZ, zaključujemo da je a0 ∈ Z.
Imamo da je α− a0 ∈ OK , te slijedi

β := (α− a0)ζ−1
p = (α− a0)ζp−1

p = a1 + a2ζp + . . . ap−2ζ
p−3
p ∈ OK

Ponavljanjem istog postupka za β, tj. promatranjem T (β(1 − ζp)), dobijemo
a1 ∈ Z, i analogno za ostale ai-eve.



Poglavlje 4

Faktorizacija ideala u poljima
algebarskih brojeva

Želimo vidjeti kako se (n) faktorizira u OK za PAB K. Vidjeli smo da se u
Z[
√
−5] ideal (6) faktorizira kao (6) = P 2

1P2P3.
Pogledajmo kako se (n) faktorizira u OK za n ∈ N.. Primijetimo da vrijedi

(n) = (p1) . . . (pk) gdje n =

k∏
i

pi.

Dakle, treba samo odrediti kako se (pi)-evi faktoriziraju. Vidjeli smo na primjer
(5) = (2+ i)(2− i) u Z[i]. Može se i općenitije promatrati: kako se za proširenje
PAB L/K faktoriziraju prosti ideali POK u OL, tj. koja je faktorizacija u
proste ideale od POL.

Lema 4.0.1

Neka je K PAB i p prost ideal u OK . Tada postoji prost broj p ∈ Z
takav da je p ∈ Z ∩ p.

Dokaz. Prema Lemi 3.3.2 imamo p ∩ Z ̸= {0}. Očito je i p ∩ N ̸= {0}. Neka je
n = min p∩N. Tvrdimo da je n prost. Pretpostavimo suprotno. Neka je n = ab,
gdje a, b ∈ N\{1}. Pošto je n ∈ p, vrijedi da je ab ∈ p, pa pošto je p prost,
slijedi da je ili a ∈ p ili b ∈ p.

Posljedica je da se svaki prosti ideal u nekom OK može naći kao faktor nekog
(p) za p ∈ Z. Dakle, trebamo vidjeti kako se faktorizira pOK .

Pogledajmo sada jednostavniji slučaj kada je OK = Z[α], za neki α ∈ OK .
Ovo ne mora vrijediti općenito! Neka je f = fα minimalni polinom od α.

Imamo

53
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OK OK/pOK

Z[x]/(f) Z[x]/(p, f) ≃ Fp[x]/(f)

∼ ∼ ,

gdje su vertikalne strelice izomorfizmi, a f označava redukciju od f modulo p.
Pogledajmo prvo slučaj kada je f stupnja 2. Onda dakle mora i f biti stupnja

2, jer je f normiran. Polinom f je ireducibilan, ali f ne mora biti. Imamo 3
mogućnosti:

1. f je ireducibilan

2. f = gh, gdje su g, h ∈ Fp[x] stupnja 1, te nisu međusobno asocirani.

3. f = g2, gdje je g ∈ Fp[x] stupnja 1.

Pogledajmo sada što se dogodi u svakom od slučaja:
1) f je ireducibilan ⇐⇒ (f) je maksimalan ideal u Fp[x] ⇐⇒ Fp[x]/(f) je

polje ⇐⇒ OK/pOK je polje ⇐⇒ pOK je maksimalan ⇐⇒ pOK je prost.
2) f = gh =⇒

Fp[x]/(f) ≃ Fp[x]/(g)× Fp[x]/(h) ≃ Fp × Fp.

Pogledajmo homomorfizam

φ : OK → Fp[x]/(f) ≃ Fp[x]/(g)× Fp[x]/(h),

α 7→ (x+ (f)) 7→ (x+ (g), x+ (h)).

Vidimo da je jezgra tog preslikavanja pOK . Stavimo φ(α) = (φ1(α), φ2(α)).
Tada će biti kerφ1 = (p, g̃(α)) i kerφ2 = (p, h̃(α)), gdje su g̃, h̃ ∈ Z[X] bilo koji
polinomi takvi da su njihove redukcije modulo p jednake g i h. Dakle, imamo
kerφ = kerφ1 ∩ kerφ2. Pošto su (p, g̃(α)) i (p, h̃(α)) relativno prosti (jer su g i
h), tj. (p, g̃(α)) + (p, h̃(α)) = (1), vrijedi

pOK = kerφ = kerφ1 ∩ kerφ2 = kerφ1 · kerφ2 = (p, g̃(α)) · (p, h̃(α)),

tj. pOK je produkt 2 različita prosta ideala.
3) U ovom slučaju analogno dobijemo pOK = (p, g(α))2.

Primjer 4.0.2

Pogledajmo faktorizaciju 2, 3, 5 u Z[i] ≃ Z[x]/(x2 + 1).

x2 + 1 ≡ (x+ 1)2 (mod 2) =⇒ (2) = (2, 1 + i)2 = (1 + i)2.

x2 + 1 je ireducibilan u F3 =⇒ (3) je prost u Z[i].

x2+1 ≡ (x−2)(x+3) (mod 5) =⇒ (5) = (5, i−2)(5, i−3) = (2+i)(2−i).
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Notacija: K = Q(
√
d), gdje je d kvadratno slobodan, OK prsten cijelih K,

OK = Z[α], f = fα je minimalni polinom od α, a f̄ je redukcija polinoma f
modulo p.

Za prost broj p postoje tri moguće situacije za faktorizaciju f̄(x):

1. f̄(x) je ireducibilan, te je tada pOK prost.

2. f̄(x) = g(x)2, gdje je g linearni polinom, tada pOK = (p, g(α))2.

3. f̄(x) = g1(x)g2(x), gdje su g1 i g2 linearni polinomi. Tada je pOK =
(p, g1(α))(p, g2(α)).

Definicija 4.0.3

U slučaju (1), kažemo da je p inertan OK . U slučaju (2), kažemo da se p
grana (ili ramificira) u OK . U slučaju (3), kažemo da se p cijepa u OK .

Sjetimo se

fα(x) =

{
x2 − d ako je d ≡ 2, 3 (mod 4),

x2 − x+ 1−d
4 ako je d ≡ 1 (mod 4).

Propozicija 4.0.4

Ako je d ≡ 1 (mod 4), tada se p grana u Q(
√
d) ako i samo ako p dijeli d.

Ako je d ≡ 2, 3 (mod 4), tada se p grana u Q(
√
d) ako i samo ako p = 2

ili p|d.

Dokaz. Promotrimo prvo slučaj d ≡ 2, 3 (mod 4). Vrijedi da se p grana ako i
samo ako postoji a ∈ Fp takav da je x2−d = (x−a)2 (mod p), što je ekvivalentno
s:

x2 − d ≡ x2 − 2ax+ a2 (mod p).

Oduzimajući x2 s obje strane, dobivamo:

2ax− d ≡ a2 (mod p).

Ovo je kongruencija polinoma koja je ekvivalentna s

2a ≡ 0 (mod p), a2 ≡ −d (mod p).

Prva jednadžba je zadovoljena ako i samo ako p | 2 ili p | a. Za p = 2 očito
postoji a ≡ a2 ≡ −d (mod 2). Ako je p | a, slijedi d ≡ 0 (mod p), dakle p | d.

Obrnuto, ako p|d onda uzmemo x2 − d (mod x)2 (mod p), pa se p grana.
Neka je sada d ≡ 1 (mod 4) i označimo s f = fα. Korijeni od f su

x1,2 =
1±
√
d

2
.



POGLAVLJE 4. FAKTORIZACIJA IDEALA U POLJIMA ALGEBARSKIH
BROJEVA 56

Primijetimo da se p grana ako i samo ako su korijeni isti, što je ekvivalentno s
tim da je

√
d = 0 u Fp. Za p ̸= 2, to je ekvivalentno s d ≡ 0 (mod p), tj. p | d.

Za p = 2, f ima linearni član, pa nije kvadrat (x2 + a2 ≡ (x+ a)2 (mod 2)),
dakle 2 se ne grana.

Propozicija 4.0.5

Neka je K = Q(
√
d), gdje je 2 kvadratno slobodan. Tada

a) 2 se grana u OK ako i samo ako d ≡ 2, 3 (mod 4),

b) 2 se cijepa u OK ako i samo ako d ≡ 1 (mod 8),

c) 2 je inertan u OK ako i samo ako d ≡ 5 (mod 8).

Dokaz. a) slijedi iz prethodne propozijcije. Neka je sada d ≡ 1 (mod 4); tada
je fα = x2 − x− 1−d

4 . Neka je 1−d
4 = t. Tada je

fα = x2 + x+ t.

Vidimo da je fα ireducibilan ako je t = 1 (što je ekvivalentno s d ≡ 5 (mod 8)),
te da je fα produkt 2 različita polinoma ako je t = 0 (što je ekvivalentno s d ≡ 1
(mod 8)), pa se u tom slučaju 2 cijepa.
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Primjer 4.0.6

Neka je d = −5, OK = Z[
√
−5]. Faktorizirajmo prvih nekoliko prostih

cijelih brojeva u OK .

x2 + 5 ≡ x2 + 1 = (x+ 1)2 (mod 2),

=⇒ 2OK =
(
2,
√
−5 + 1

)2
=⇒ 2 se grana,

x2 + 5 ≡ x2 + 2 ≡ (x+ 1)(x+ 2) (mod 3),

=⇒ 3OK = (2,
√
−5 + 1)(2,

√
−5 + 2),

5OK = (5,
√
−5)2 = (

√
−5)2,=⇒ 5 se grana,

x2 + 5 ≡ (x+ 3)(x+ 4) (mod 7).

=⇒ 7OK = (7,
√
−5 + 3)(7,

√
−5 + 4) =⇒ 7 se cijep,

Pogledajmo p = 11: x2 + 5 je ireducibilan u F11[x], jer:

x (mod 11) 0 1 2 3 4 5

x2 + 5 (mod 11) 5 6 9 3 10 8

pa zaključujemo da x2+5 nema nultočaka u F11, pa je ireducibilan. Stoga
je 11 inertan u OK .
Pogledajmo p = 17. Promatramo x2 ≡ −5 (mod 17).
Međutim, provjerimo da je

(
−5
p

)
= −1, pa je 17 inertan.

Definicija 4.0.7

Neka je p ̸= 2 prost broj. Definiramo Legendreov simbol kao funkciju:(
•
p

)
: Z/pZ→ {0,±1},

gdje vrijedi:

(
a

p

)
=


1, ako je a ̸= 0 kvadratni ostatak modulo p,
0, ako a = 0,

−1, inače.

Često pišemo
(

a
p

)
i za a ∈ Z, gdje se onda zapravo uzima kompozicija s

redukcijom modulo p.
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Korolar 4.0.8

Neka je p ̸= 2 prost broj i OK prsten cijelih nekog kvadratnog polja
K = Q(

√
d). Tada vrijedi:

• p se cijepa u OK ⇐⇒
(

d
p

)
= 1,

• p je inertan u OK ⇐⇒
(

d
p

)
= −1,

• p se grana u OK ⇐⇒
(

d
p

)
= 0.

Dokaz. Promotrimo d ≡ 2, 3 (mod 4). p | d⇐⇒ p se grana. Ako p ∤ d, tada se
x2−d faktorizira kao produkt linearnih polinoma u Fp[x] ako i samo ako x2 ≡ d
(mod p) ima rješenje

⇐⇒
(
d

p

)
= 1.

Ako je d ≡ 1 (mod 4), tada su korijeni od fα jednaki

x1,2 =
1±
√
d

2
.

Dakle fα se faktorizira u Fp[x] postoji⇔ x1,2 ∈ Fp ⇔
√
d ∈ Fp ⇔

(
d
p

)
= 1.

4.1 Konačna polja

Definicija 4.1.1

Kažemo da je polje konačno ako ima konačno mnogo elemenata.

Neka je F konačno polje i neka je f : Z→ F homomorfizam prstenova takav
da f(1) = 1. Pošto je F konačno, f ima netrivijalnu jezgru, dakle ker f = mZ
za neki m ∈ N. Dakle Z/mZ se ulaže u F . Slijedi da Z/mZ mora biti integralna
domena, dakle m mora biti prost. Pišemo p umjesto m da bismo to naglasili.
Dakle vrijedi charF = p. Dakle F je proširenje polja Fp := Z/pZ. Dakle F je
vektorski prostor nad Fp. Neka je [F : Fp] = n. Slijedi |F | = pn.

Teorem 4.1.2

Neka je Fq konačno polje s q = pn elemenata, gdje je p prost broj, a
n ≥ 1. Multiplikativna grupa F×

q = Fq \ {0} je ciklička.

Dokaz. Neka F×
q označava multiplikativnu grupu svih nenul elemenata u Fq. Ta

grupa ima q − 1 elemenata jer |Fq| = q. Očito je grupa F×
q konačna Abelova

grupa.
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Dakle
F×
q ≃ Z/m1Z× . . .× Z/mkZ,

pa slijedi da je xmk − 1 za svaki x ∈ F×
q . Međutim, xmk − 1 ima najviše mk

nultočaka u F×
q , pa onda vrijedi da je k = 1 |F×

q | = mk, tj. F×
q je ciklička.

Posljedica je da za konačno polje F karakteristike p vrijedi F = Fp[α], gdje
je α generator od F×.

Označimo sa σ : F → F , definiran sa σ(x) = xp. Ovo preslikavanje je očito
multiplikativno. Također

σ(x+ y) = (x+ y)p = xp + yp +

p−1∑
i=1

(
p

i

)
xiyp−i = xp + yp,

pošto je
(
p
i

)
= 0 u karakteristici p ta i = 1, . . . , p− 1. Dakle σ je automorfizam

od F , pošto je injekcija, i F je konačan, pa je i surjekcija. σ se često naziva
Frobeniusovo preslikavanje ili Frobenius.

Sjetimo se da je βp = β za svaki β ∈ Fp (Mali Fermatov teorem). Također
znamo da xp− x ima ≤ p korijena u F . Zaključujemo da su nultočke xp− x, tj.
fiksne točke od σ upravo elementi od Fp.

Također βpn−1 = 1 za sve β ∈ F×, pa je βpn

= β, tj. σn = id|F . Primijetimo
da σk, za 1 ≤ k ≤ n − 1 vrijedi σk ̸= id|F , jer σk(α) = αpk ̸= α, pošto je α
reda pn − 1. Također σi ̸= σj za 1 ≤ i < j ≤ n − 1, jer bi u suprotnom bilo
σj−1 = id|F .

Dakle imamo
AutF ⊇ {id, σ, σ2, . . . σn−1}.

Tvrdimo da vrijedi jednakost. Neka je φ ∈ AutF . Zbog φ(1) = 1, vrijedi
φ(k) = k za k ∈ Fp, dakle φ|Fp

= id|Fp
. Primijetimo da su σi(α) nultočke od

fα, te da su sve različite, tj.

fα(x) =

n−1∏
i=0

(x− σi(α)).

S druge strane φ(α) je također nultočka od fα, dakle mora biti φ(α) = σi(α) za
neki 1 ≤ i ≤ n− 1. Pošto α generira F×, slijedi da je φ = σi.

Slijedi
AutF = Gal(F/Fp) = ⟨σ⟩ ≃ Z/nZ. (4.1)

Napomena: Svi rezultati koje smo dokazivali iz Galoisove teorije vrijedi i za
proširenja F/Fp.

Primijetimo da to povlači da za svaki djelitelj d | n, n = dm, vrijedi da
postoji jedinstvena podgrupa H ≤ Gal(F/Fp) reda d, pošto je Gal(F/Fp) cik-
lička, pa po Galoisovoj teoriji, postoji jedinstveno potpolje K od F takvo da je
[F : K] = d, tj. |K| = pm.
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Propozicija 4.1.3

Postoji jedinstveno, do na izomorfizam, polje s pn elemenata.

Oznaka: Polje s pn elemenata označavamo s Fpn .

Dokaz. Neka je fn(x) := xp
n − x ∈ Fp[x] i neka je F skup korijena od fn. Kako

fn nema višestrukih točaka, slijedi da F ima pn elemenata. Lako se provjeri da
je umnožak i zbroj korijena, te inverz elementa, opet korijen, pa slijedi da je F
polje (s pn elemenata).

Primijetimo da je svaki element od F korijen polinoma f(x) = xp
n − x, koji

ima najviše pn korijena, dakle F je polje cijepanja od f . Sada tvrdnja slijedi iz
jedinstvenosti polja cijepanja nekog polinoma.

Primjer 4.1.4

Konstruirajmo polje s 9 elemenata. Zapisat ćemo ga kao F9 :=
F3[x]/(x

2 + 1); to možemo pošto je x2 + 1 ireducibilan u F3[x]. Dakle
elementi od F9 su {ax + b|a, b ∈ F3}. Množenje se radi modulo x2 + 1,
npr. x(x+ 1) = x2 + x = x+ 2.

4.2 Dalje o faktorizaciji
Neka je sada K općenito polje algebarskih brojeva.

Definicija 4.2.1

Ako je p ideal u OK , te p ∩ Z = pZ, kažemo da p leži nad p, te p leži
ispod p.

Definicija 4.2.2

Neka je p ∈ Z prost. Tada je

pOK =
∏

p∩Z=pZ
pe(p/p),

gdje produkt ide po različitim prostim idealima p. Tada se e(p/p) zove
stupanj grananja od p nad p.

Neka je n := [K : Q].Pošto je OK = Zα1 + . . .+ Zαn, vrijedi

|OK/pOK | = pn,

te
OK/pOK ≃ OK/p

e(p1/p)
1 × . . .×OK/p

e(pr/p)
r
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za neki prirdan broj r. Primijetimo da je za prost ideal p, OK/p uvijek polje,
pa je |OK/p| = pf(p/p), za neki f(p/p).

Definicija 4.2.3

Vrijednost f(p/p) takva da je |OK/p| = pf(p/p) zove se stupanj inercije
od p nad p.

Definicija 4.2.4

Neka je A ideal uOK . Definiramo normu NK/Q(A) od A kaoNK/Q(A) :=
|OK/A|.

Primijetimo da ako je p prost, tada je NK/Q(p) = pf(p/p).

Lema 4.2.5

Norma ideala je multiplikativna, tj., NK/Q(AB) = NK/Q(A)NK/Q(B).

Dokaz. Ako su A i B relativno prosti, tada tvrdnja odmah slijedi iz

OK/AB ≃ OK/A×OK/B.

Treba samo dokazati da je

NK/Q(p
m) = NK/Q(p)

m,

za prost ideal p. Prvo primijetimo da po 3. teoremu o izomorfizmu (za grupe!)
vrijedi

|OK/p
m| = |OK/p| · |p/p2| · . . . |pm−1/pm|.

Sada tvrdimo da je homomorfizam grupa

|pk/pk+1| = |OK/p| za sve k = 1, . . .m− 1.

Neka je γ ∈ pk\pk+1. Primijetimo da takav γ postoji jer pk ̸= pk+1 zbog
jedinstvene faktorizacije u proste ideale.

Definirajmo za k = 1, . . . ,m− 1 preslikavanje

OK → pk/pk+1, α 7→ α(γ + pk+1).

Lako se vidi da je ovo surjekcija, te da je jezgra upravo p, te smo dokazali da je

pk/pk+1 ≃ OK/p.
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Propozicija 4.2.6

Neka je K PAB, [K : Q] = n, te p prost broj. Neka je

pOK =

r∏
i=1

p
e(pi/p)
i

faktorizacija od pOK na proste ideale. Označimo s fi := f(pi/p), te
ei := e(pi/p). Tada je

∑r
i=1 eifi = n.

Dokaz. Imamo

pn = NK/Q(pOK) = NK/Q(

r∏
i=1

peii ) =

r∏
i=1

N(pi)
ei =

r∏
i=1

(pfi)ei = p
∑r

i=1 fiei.

Teorem 4.2.7

Neka je OK = Z[α] za neki α ∈ K. Neka je p prost broj, f := fα ∈ Z[x]
minimalni polinom od α i neka je

f := g1(x)
e1 · g2(x)e2 . . . gr(x)er , gi ∈ Fp[x]

faktorizacija f na ireducibilne polinome. Tada je

pOK =

r∏
i=1

(p, gi(α))
ei

faktorizacija od pOK na proste ideale.

Dokaz. Neka je si = deg gi, pa slijedi
∑r

i=1 siei = n. Sjetimo se da je

OK/pi ≃ Z[α]/(p, gi(α)) ≃ Z[x]/(f(x), p, gi(x)) ≃ Fp[x]/(f(x), gi(x)) ≃

≃ Fp[x]/(gi(x)).

Primijetimo prvo iz ovoga da je pi prost pošto je gi(x) ireducibilan u Fp[x].
Također slijedi da je pa slijedi da je si jednak stupnju inercije f(pi/p) od pi.

Promotrimo sada preslikavanje redukcija modulo p

φ : OK → OK/pOK .

Očito vrijedi kerφ = pOK , te

OK/pOK ≃ Z[α]/pZ[α] ≃ Z[x]/(p, f(x)) ≃ Fp[x]/(f(x))

≃ Fp[x]/(g1(x)
e1)× . . .× Fp[x]/(gr(x)

er ).
(4.2)
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Neka je ψ sada izomorfizam iz (4.2) zadan s

α 7→ (x, . . . , x).

gdje označavamo s ψi preslikavanje na i-tu koordinatu.

kerψi = (p, gi(α)
ei),

pa je

pOK = kerψ =

r∏
i=1

(p, gi(α)
ei).

Imamo

(p, gi(α))
ei = (pei , pei−1gi(α), . . . , pgi(α)

ei−1, gi(α)
ei) ⊆ (p, gi(α)

ei)

pošto p dijeli sve članove u izrazu osim gi(α)
ei . Ideali (p, gi(α)ei) su relativno

prosti (jer su gi-evi relativno prosti u Fp[x]).
Sada imamo

pOK =

r∏
i=1

(p, gi(α)
ei) dijeli

r∏
i=1

(p, gi(α))
ei .

Imamo da je NK/Q(pOK) = pn, te je
∏r

i=1(p, gi(α))
ei = p

∑r
i=1 eifi = pn, pošto

je fi = deg gi i
∏
geii = f . Imamo 2 ideala iste norme, gdje jedan sadržan u

drugom, pa moraju biti jednaki.
Dakle, pokazali smo

pOK = kerψ =

r∏
i=1

(p, gi(α))
ei =

r∏
i=1

peii .
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Primjer 4.2.8

Neka je α korijen od f(x) = x3 + 2x + 1 i K = Q(α). Vrijedi (DZ)
OK = Z[α]. Faktorizirajmo 2OK .
Vrijedi

x3 + 2x+ 1 ≡ (x+ 1)(x2 + x+ 1) (mod 2),

gdje je drugi faktor ireducibilan, pa slijedi

2OK = (2, α+ 1)(2, α2 + α+ 1).

Neka je
p1 := (2, α+ 1), p2 := (2, α2 + α+ 1).

Primijetimo da je

OK/p1 ≃ F2, OK/p2 ≃ F4.

Dakle vrijedi, koristeći oznake kao i ranije, r = 2, e1 = e2 = 1, f1 = 1,
f2 = 2.
Faktorizirajmo 3OK . Primijetimo da f(x) nema nultočke modulo 3, pa
vrijedi da je OK/(3) ≃ F27, tj. r = 1, e = 1, f = 3.
Modulo 17, f(x) ima tri nultočke 3, 5, 9, te je

17OK = (17, α− 3)(17, α− 5)(17, α− 9),

pa je r = 3, ei = fi = 1, za i = 1, 2, 3.

Sada proširujemo definiciju "ležati nad" i na relativna proširenja (tj. kada
manje polje nije Q).

Definicija 4.2.9

Ako je p ideal u OK i q ideal u OL, te q∩OK = p, kažemo da q leži nad
p, te q leži ispod p.

Lema 4.2.10

Neka je L/K Galoisovo proširenje i neka je p prost ideal u OK . Neka su
P1, . . . , Pr prosti ideali od L koji leže iznad p. Tada Gal(L/K) djeluje
tranzitivno na ovom skupu prostih ideala; to jest, za sve i, j, postoji
σ ∈ Gal(L/K) takav da σ(Pi) = Pj .

Dokaz. Fiksirajmo različite proste ideale P i P ′ koji leže iznad p. Pretpostavimo
da σ(P ) ̸= P ′ za svaki σ ∈ Gal(L/K). Koristeći ovu pretpostavku, prema
Kineskom teoremu o ostatku, možemo pronaći α ∈ OL takav da:

α ≡ 0 (mod P ′)
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i
α ≡ 1 (mod σ(P )) za sve σ ∈ Gal(L/K).

Promotrimo NL/K(α) =
∏

σ∈Gal(L/K) σ(α) ∈ OK . Budući da α ∈ P ′, ova
norma mora biti u P ′ ∩ OK = p.

S druge strane, budući da je α ≡ 1 (mod σ(P )) za sve σ, α /∈ σ(P ). Sada
zapišimo normu kao

NL/K(α) =
∏

σ∈Gal(L/K)

σ−1(α).

Budući da niti jedan od faktora nije u P , a P je prost ideal, to implicira da
NL/K(α) /∈ P . Imamo NL/K(α) /∈ P ∩ OK = p, što je kontradikcija, čime se
dokazuje lema.

Primijetimo da analogne tvrdnje onima koje smo dokazali za faktorizaciju
pOK , za prost p, vrijede ako imamo proširenje L/K te promatramo faktorizaciju
nekog prostog ideala p od OK u OL, tj. faktorizaciju od pOL. Tj. vrijedi

pOL =

r∏
i=1

qe(q/p),

za neke e(q/p). Broj e(q/p) se zovu stupanj grananja od q nad p. Također
definiramo stupanj inercije f(q/p) od q nad p s f(q/p) := [(OL/q) : (OK/p)] =
e(q/p)
e(p/p) ; ovdje ulažemo i (OL/q) i (OK/p) u neko fiksno algebarsko zatvorenje od
Fp, gdje je p karakteristika oba ova polja.

Korolar 4.2.11

Neka je L/K Galoisovo proširenje stupnja n, i neka je p prosti ideal od
OK . Neka je:

pOL = P e1
1 · · ·P er

r

faktorizacija p u OL, i neka je fi = f(Pi/p). Tada vrijedi:

f1 = f2 = · · · = fr

i
e1 = e2 = · · · = er.

Također vrijedi reifi = n za sve i.

Dokaz. Ako je r = 1, korolar je trivijalan, pa pretpostavljamo r ≥ 2. Dokazat
ćemo da e1 = e2 i f1 = f2; općeniti slučaj je isti. Prema Lemi 4.2.10 možemo
pronaći σ ∈ Gal(L/K) takav da σ(P1) = P2. Primjenom σ na našu faktorizaciju
i koristeći činjenicu da σ(p) = p jer σ fiksira K, zaključujemo da:

pOL = σ(P1)
e1σ(P2)

e2 · · ·σ(Pr)
er .
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S obzirom na to da je σ(P1) = P2, slijedi e1 = e2.
Također primijetimo da je σ : OL/P1 → OL/P2, x+P1 7→ σ(x)+P2 izomor-

fizam (svaki homomorfizam polja je injektivan, te pošto je σ automorfizam od
OL, očito je i surrjektivno), pa slijedi da je OL/P1 ≃ OL/P2, pa je i f1 = f2.

4.3 Karakteri, norma i Hilbertov teorem 90

Definicija 4.3.1

Neka je K/F konačno proširenje polja tako da je K normalno nad F .
Kažemo da je cikličko/Abelovo proširenje ako je Gal(K/F ) ciklička/A-
belova grupa.

Definicija 4.3.2

Neka je G grupa, a L polje. Karakter grupe G sa vrijednostima u L je
homomorfizam χ : G→ L×.

Lema 4.3.3

Neka su χ1, χ2, . . . , χn različiti karakteri grupe G sa vrijednostima u L.
Oni su linearno nezavisni nad L, tj. vrijedi

n∑
i=1

aiχi(g) = 0, za sve g ∈ G,

tada je ai = 0 za sve i = 1, . . . , n.

Dokaz. Pretpostavimo suprotno i neka je n najmanji takav da postoji n linearno
zavisnih karaktera. Neka je a1χ1 + a2χ2 + . . .+ anχn = 0. Očito je da n ≥ 2, te
možemo pretpostaviti da je a1 ̸= 0. Pošto su karakteri χi međusobno različiti,
postoji g ∈ G takav da χ1(g) ̸= χn(g). Sada imamo

a1χ1(x) + . . .+ anχn(x) = 0, ∀x ∈ G, (4.3)

pa vrijedi i
a1χ1(gx) + . . .+ anχn(gx) = 0, ∀x ∈ G, (4.4)

to jest
a1χ1(g)χ1(x) + . . .+ anχn(g)χn(x) = 0, ∀x ∈ G. (4.5)

Pomnožimo (4.3) s χn(g) i oduzmimo (4.5) pa dobivamo
n−1∑
i=1

ai(χn(g)− χi(g))χi(x) = 0, ∀x ∈ G.

Budući da je χn(g)− χ1(g) ̸= 0 i a1 ̸= 0, dobili smo linearnu zavisnost ≤ n− 1
karaktera, što je u kontradikciji s našom pretpostavkom.
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Korolar 4.3.4

Neka su K,L polja i neka su σ1, . . . , σn ulaganja od K u L. Tada su
σ1, . . . , σn linearno nezavisni nad L.

Dokaz. Primijenimo prethodnu lemu na G := K×.

Lema 4.3.5

Neka je K/F konačno normalno proširenje. Tada za svaki σ ∈ Gal(K/F )
i α ∈ K× imamo

N

(
σ(α)

α

)
= 1.

Dokaz.

N

(
σ(α)

α

)
= 1⇐⇒ N (σ(α))N

(
1

α

)
= 1⇐⇒ N(σ(α)) = N(α)

⇐⇒
∏

τ∈Gal(K/F )

τ(σ(α)) =
∏

τ∈Gal(K/F )

τ(α),

što očito vrijedi.

Teorem 4.3.6: Hilbertov teorem 90

Neka je K/F konačno cikličko proširenje, Gal(K/F ) = ⟨σ⟩. Tada za svaki
β ∈ K× takav da je N(β) = 1 postoji α ∈ K takav da je

β =
σ(α)

α
.

Dokaz. Neka je n := [K : F ] = |Gal(K/F )| = |σ|. Definirajmo ϕ : K → K s

ϕ(x) =
x

β
+

σ(x)

βσ(β)
+

σ2(x)

βσ(β)σ2(β)
+ . . .+

σn−1(x)

βσ(β) . . . σn−1(β)
.

Zbog linearne nezavisnosti id, σ, . . . , σn−1 vrijedi ϕ ̸= 0. Dakle, postoji θ takav
da je ϕ(θ) ̸= 0. Neka je α := ϕ(θ). Tvrdimo da je β = σ(α)

α .
Vrijedi

α =
θ

β
+

σ(θ)

βσ(β)
+

σ2(θ)

βσ(β)σ2(β)
+ . . .+

σn−1(θ)

βσ(β) . . . σn−1(β)
,

te

σ(α) =
σ(θ)

σ(β)
+

σ2(θ)

σ(β)σ2(β)
+

σ3(θ)

σ(β)σ2(β)σ3(β)
+ . . .+

σn(θ)

σ(β) . . . σn−1(β)σn(β)
.
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Primijetimo sada da je zadnji član ove sume jednak θ zbog σn = id i jer je
nazivnik jednak N(β) = 1. Podijelimo ovu jednakost s β, pa dobijemo

σ(α)

β
=

σ(θ)

βσ(β)
+

σ2(θ)

βσ(β)σ2(β)
+

σ3(θ)

βσ(β)σ2(β)σ3(β)
+ . . .+

θ

β
= α.

σ(α)

β
= α.

Lema 4.3.7

Neka je p prost, ζp primitivni p-ti korijen iz 1, te ζp /∈ F . Tada je F (ζp)
normalno proširenje i Gal(F (ζp)/F ) ≤ (Z/pZ)× ≃ Z/(p− 1)Z.

Dokaz. Analogno kao i za F = Q.

Primijetimo da je općenito K(ζn1
, ζn2

) = K(ζNZV (n1n2)), te da je

Gal(Q(ζn)/Q) ≃ (Z/nZ)×,

a Gal(K(ζn)/K) je podgrupa od (Z/nZ)×.

Teorem 4.3.8: Kummer

Neka je F polje algebarskih brojeva, n ∈ N i pretpostavimo da je ζn ∈ F .
Tada

a) Neka je K/F normalno proširenje takvo da je Gal(K/F ) ≃ Z/nZ.
Tada je K = F ( n

√
a) za neki a ∈ F , tj. K = F (α) za neki α ∈ K

takav da je αn ∈ F.

b) Ako je K = F ( n
√
a) za neki a ∈ F , tada je K/F normalno i

Gal(K/F ) ≃ Z/dZ za neki d | n.

Dokaz. a) Neka je ζn ∈ F , N : K → F norma, ⟨σ⟩ = Gal(K/F ). Budući da je
ζn ∈ F , slijedi

NK/F (ζn) =
∏

τ∈Gal(K/G)

τ(ζn) = ζnn = 1.

Po Hilbertovom teoremu 90 slijedi da postoji α ∈ K takav da je ζn = σ(α)
α .

Dalje slijedi
σ(α) = αζn,

=⇒ σi(α) = σi−1(σ(α)) = σi−1(αζn) = σi−1(α)σi−1(ζn) = σi−1(α)ζn =

σi−2(σ(α))ζn = σi−2(αζn)ζn = . . . = αζin, za i = 0, . . . , n− 1.

Slijedi da je |{σi(α) : i = 0, . . . , n − 1}| = n. Slijedi da pošto su svi konjugati
od α različiti, je deg fα = n i da je K = F (α). Ostaje dokazati da je αn ∈ F.
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Vrijedi
σ(αn) = (σ(α))n = (αζn)

n = αn,

pa slijedi σi(αn) = σi−1(σ(αn)) = σi−1(αn) = . . . = αn, dakle αn je iz fiksnog
polja od Gal(K/F ), tj. iz F .

b) Neka je b := n
√
a. Slijedi da

fb | xn − a = (x− b)(x− ζnb) . . . (x− ζn−1
n b),

pa slijedi da su {bζin : i = 0, . . . , n − 1} svi konjugati od b. Pošto su oni svi u
F (b) = K, slijedi da je K normalno nad F . Definirajmo preslikavanje

ϕ : Gal(K/F )→ Z/nZ, (b 7→ ζinb) 7→ i.

Lako se vidi da je ϕ homomorfizam grupa, te da je injektivan. Slijedi Gal(K/F ) ≃
Imϕ ≤ Z/nZ, pa je Gal(K/F ) ≃ Z/dZ, za neki d | n.

4.4 Relativna faktorizacija
Prvo ćemo izreći nekoliko lako dokazivih činjenica, čije dokaze ostavljamo za
vježbu.

Propozicija 4.4.1

Neka je L/K proširenje polja algebarskih brojeva stupnja n i neka je p
nenul prosti ideal od OK . Tada vrijedi:

#(OL/pOL) = (#(OK/p))
n.

Korolar 4.4.2

Neka je L/K proširenje polja algebarskih brojeva stupnja n i neka je a
nenul ideal od OK . Tada

NL/Q(aOL) = NK/Q(a)
n.

Korolar 4.4.3

Neka je K polje algebarskih brojeva stupnja n i neka je α u OK . Tada

NK/Q(αOK) = |NK/Q(α)|.

Sada proširujemo naše ranije rezultate faktorizacije na proizvoljna proširenja
polja brojeva. Neka je L/K proširenje polja brojeva stupnja n. Najprije moramo
proširiti pojam prostog broja iz OL koji leži iznad prostog broja iz OK .
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Lema 4.4.4

Neka je p nenul prost ideal u OK i neka je P nenul prost ideal u OL.
Sljedećih pet uvjeta su ekvivalentni.

1. P dijeli pOL;

2. P ⊇ pOL;

3. P ⊇ p;

4. P ∩ OK = p;

5. P ∩K = p.

Nadalje, ako je bilo koji od gornjih uvjeta zadovoljen, tada je p ∩ Z =
P ∩ Z.

Dokaz ostavljamo za vježbu.
Ako p i P zadovoljavaju bilo koji od ekvivalentnih uvjeta iz ove leme, kažemo

da P leži iznad p i da p leži ispod P. Svaki prost iz OL leži iznad jednog
jedinstvenog prostog iz OK , i da svaki prost iz OK leži ispod najmanje jednog
prostog iz OL. Primijetimo također da su prosti ideali koji leže iznad p upravo
oni prosti koji se pojavljuju u faktorizaciji od pOL na proste ideale.

Sada, neka su p i P kao gore i pretpostavimo da P leži iznad p. Označavamo
s e(P/p) točnu potenciju od P koja dijeli pOL; ona se naziva indeks grananja
od P/p. Tako možemo pisati

pOL =
∏

P∩OK=p

Pe(P/p).

Nadalje, neka je p jedinstveni pozitivni racionalni prost sadržan u p i P. Tada
su OK/p i OL/P konačna polja karakteristike p. Štoviše, prirodna injekcija
OK ↪→ OL inducira injekciju

OK/p ↪→ OL/P,

budući da je P ∩OK = p prema Lemi 4.4.4. Tako je OL/P polje proširenja od
OK/p. Definiramo stupanj inercije f(P/p) kao stupanj [OL/P : OK/p] ovog
proširenja. Primijetimo da

NL/Q(P) = NK/Q(p)
f(P/p).

Sada možemo iskazati i dokazati naš temeljni rezultat.

Teorem 4.4.5

Neka je L/K proširenje polja algebarskih brojeva stupnja n i neka je p
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prost u OK . Neka je
pOL = Pe1

1 · · ·Per
r

faktorizacija od pOL u proste ideale od OL. Postavimo fi = f(Pi/p).
Tada

r∑
i=1

eifi = n.

Dokaz. Uzimajući norme ideala s obje strane faktorizacije od pOL, nalazimo da

NL/Q(pOL) = NL/Q(P1)
e1 · · ·NL/Q(Pr)

er = NK/Q(p)
f1e1 · · ·NK/Q(p)

frer

prema definiciji od fi. Prema Korolaru 4.4.2 znamo daNL/Q(pOL) = NK/Q(p)
n,

iz čega teorem sada neposredno slijedi.

Završimo ovaj odjeljak s nekim dodatnim činjenicama i terminologijom.
Prije svega, neka su M/L/K polja algebarskih brojeva, neka je pK prost u
OK , neka je pL prost u OL koji leži iznad pK , i neka je pM prost u OM koji
leži iznad pL. Tada očito pM leži iznad pK , i neposredno iz definicija slijedi da
imamo

e(pM/pK) = e(pM/pL)e(pL/pK)

i
f(pM/pK) = f(pM/pL)f(pL/pK).

Vratimo se sada na slučaj proširenja L/K stupnja n i neka je p prost u OK .
Neka je

pOL = Pe1
1 · · ·Per

r

faktorizacija od pOL u proste od OL. Postavimo fi = f(Pi/p). Ako bilo koji
od ei nije jednak 1, kažemo da se p grana u L/K. (Važna je činjenica da se
samo konačno mnogo prostih grana u proširenju, a koji su to prosti i koliko se
oni jako granaju je bitna invarijanta proširenja.) Ako je r = 1 i e1 = n (tako da
je f1 = 1), tada kažemo da se p potpuno grana u L/K:

pOL = Pn.

Ako je r = 1 i e1 = 1 (tako da je f1 = n), kažemo da je p inertan ili
ostaje prost u L/K; to je slučaj gdje je pOL još uvijek prost. Konačno, ako je
ei = fi = 1 za sve i, kažemo da se p potpuno cijepa u L/K:

pOL = P1 · · ·Pn.

Sljedeći rezultat će nam biti koristan za određivanje cijepanja prostih ideala
u kompozitumima polja algebarskih brojeva.

Definicija 4.4.6

Neka je p ideal u OK . Tada je kp := OK/p polje ostataka od p.
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Napomena: kp nije tipfeler - malo slovo k nema veze s poljem K.

Propozicija 4.4.7

Neka su K1 i K2 polja algebarskih brojeva, L = K1K2 njihov kompo-
zitum, te p prost broj. Neka su f1 i f2 stupnjevi inercije broja p u K1,
odnosno K2 za fiksirani prost ideal P ⊂ OL (te odgovarajuće ideale p1, p2
ispod njega). Tada vrijedi:

1. lcm(f1, f2) dijeli fL.

2. fL ≤ f1 · f2.

Dokaz. 1. Dokaz donje granice (lcm(f1, f2) | fL):
Promatrajmo polja ostataka (konačna polja):

Fp ⊆ OK1
/p1 ⊆ OL/P

Stupanj proširenja Fp ⊆ OK1/p1 je po definiciji f1. Iz multiplikativnosti stupnja
proširenja polja slijedi da f1 dijeli stupanj fL = [OL/P : Fp]. Isto vrijedi i za f2
promatrajući put kroz K2. Budući da f1 | fL i f2 | fL, tada i njihov najmanji
zajednički višekratnik mora dijeliti fL.

2. Dokaz gornje granice (fL ≤ f1 · f2):

Za polje ostataka kP := OL/P je kompozitum polja ostataka kp1
i kp2

(ostavljamo za DZ):
kP = kp1

· kp2
.

Znamo da su kp1
i kp2

konačna polja reda pf1 i pf2 . Kompozitum dvaju konačnih
polja reda pf1 i pf2 unutar nekog fiksiranog algebarskog zatvorenja je jedinstveno
konačno polje reda plcm(f1,f2). Stoga je stupanj tog kompozituma nad Fp točno
lcm(f1, f2).

Propozicija 4.4.8

Neka su K1 i K2 dva brojevna polja i neka je L = K1K2 njihov kompozi-
tum. Neka je p ∈ Z prost broj, te neka su e1 i e2 indeksi grananja broja
p u poljima K1, odnosno K2. Tada vrijedi:

1. Najmanji zajednički višekratnik lcm(e1, e2) dijeli indeks grananja
eL broja p u polju L.

2. Indeks grananja eL je manji ili jednak produktu e1 · e2.

Dokaz. Sada ćemo dokazati samo prvi dio, pošto dokaz drugog dijela zahtijeva
teoriju lokalnih polja koju ćemo raditi kasnije. Dokaz je zapravo analogan do-
kazu prvog dijela prethodnog teorema.



POGLAVLJE 4. FAKTORIZACIJA IDEALA U POLJIMA ALGEBARSKIH
BROJEVA 73

Promatrajmo toranj proširenja Q ⊂ K1 ⊂ L. Ako je P prost ideal u L iznad
p u K1, a p iznad p u Q, tada vrijedi:

e(L/Q) = e(L/K1) · e(K1/Q)

Budući da je e(K1/Q) = e1 po definiciji, slijedi da e1 dijeli e(L/Q).
Analogno, promatrajući toranj Q ⊂ K2 ⊂ L, dobivamo:

e(L/Q) = e(L/K2) · e(K2/Q)

odakle slijedi da e2 dijeli e(L/Q). Budući da je e(L/Q) zajednički višekrat-
nik brojeva e1 i e2, on mora biti djeljiv i s njihovim najmanjim zajedničkim
višekratnikom lcm(e1, e2).
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Primjer 4.4.9: Dekompozicija prostog broja p = 5 u L =
Q(i,
√
2,
√
5)

Promatramo multikvadratno proširenje L = Q(i,
√
2,
√
5) nad Q. Stu-

panj ovog proširenja je [L : Q] = 8. Da bismo odredili ponašanje prostog
broja p = 5, analiziramo ga kroz tri kvadratna podpolja.
Promotrimo prvo ponašanje prostog broja p u kvadratnom polju Q(

√
d):

• Q(i): Budući da je 5 ≡ 1 (mod 4), broj 5 se cijepa. Indeksi su:
e1 = 1, f1 = 1, g1 = 2.

• Q(
√
2): Imamo

(
2
5

)
= −1, pa je5 ovdje inertan. Indeksi su: e2 =

1, f2 = 2, g2 = 1.

• Q(
√
5): Budući da 5 dijeli diskriminantu polja, 5 se grana. Indeksi

su: e3 = 2, f3 = 1, g3 = 1.

Po Propozicijama 4.4.7 i 4.4.8

• Ukupni indeks grananja (e): 2 = lcm(e1, e2, e3) ≤ e ≤ e1 · e2 ·
e3 = 2.

• Ukupni rstupanj inercije (f): 2 = lcm(f1, f2, f3) ≤ f ≤ f1 · f2 ·
f3 = 2.

Koristeći jednakost e · f · r = [L : Q], dobivamo broj prostih ideala g:

2 · 2 · r = 8 =⇒ r = 2

Dakle, u polju L, prost broj 5 se rastavlja na dva prosta ideala, svaki
s indeksom grananja 2 i stupnjem inercije 2.
Faktorizacija ideala (5) u prstenu cijelih brojeva polja L glasi:

(5) = (P1P2)
2

gdje su P1 i P2 prosti ideali norme 5f = 52 = 25.

4.5 Još o ciklotomskim poljima
Neka je K = Q(ζm) ciklotomsko polje i neka je p racionalan prost broj. Neka
je p bilo koji prosti ideal od OK = Z[ζm] koji leži iznad p. Želimo odrediti
e = e(p/p) i f = f(p/p). Primijetimo da su, prema Korolaru 4.2.11 ovi brojevi
neovisni o izboru prostog ideala p. Drugim riječima, u Fp[x] polinom Φm(x)
faktorizira se kao

Φm(x) = (g1(x) · · · gr(x))e
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gdje je deg gi = f za svaki i i vrijedi efr = φ(m).
Započinjemo s slučajem kada p ne dijeli m. Budući da xm − 1 nema ponov-

ljenih faktora u Fp[x], isto vrijedi i za Φm(x); posebno, mora vrijediti e = 1.
Preostaje nam odrediti f i r. Prije nego što riješimo opći slučaj, razmotrimo
poseban slučaj f = 1 kako bismo ilustrirali ideju. Ako je f = 1, tada se Φm(x)
u potpunosti rastavlja na linearne faktore u Fp[x], što znači da Φm(x) ima kori-
jene u Fp. To implicira da Fp sadrži primitivne m-te korijene jedinice. No, F×

p

je ciklička grupa reda p − 1, pa ima elemente točno reda m ako i samo ako m
dijeli p− 1, odnosno ako i samo ako

p ≡ 1 (mod m).

Vidimo da vrijedi i obrat, pa smo pokazali da se prost broj p potpuno cijepa
u Q(ζm) ako i samo ako p ne dijeli m i p ≡ 1 (mod m).

U općem slučaju moramo proširiti polje Fp kako bismo pronašli primitivni
m-ti korijen jedinice. Neka je g(x) jedan od ireducibilnih faktora Φm(x) u
Fp[x]; tada g(x) ima stupanj f . Neka je α korijen polinoma g(x) i definirajmo
F = Fp(α) ∼= Fp[x]/(g(x)); ovo je proširenje polja Fp stupnja f . Primijetimo da
je α primitivni m-ti korijen jedinice, budući da poništava g(x), a samim time i
Φm(x). Nadalje, F je očito najmanje proširenje Fp koje sadrži primitivni m-ti
korijen jedinice (jer je jednostavno Fp kojem je pridružen m-ti korijen jedinice),
pa smo pokazali da je f stupanj najmanjeg proširenja Fp koje sadrži primitivni
m-ti korijen jedinice.

Sada ćemo ovo proširenje odrediti na drugi način. Neka je Fi jedinstveno
proširenje polja Fp stupnja i. Tada je multiplikativna grupa F×

i ciklička reda
pi − 1, pa sadrži primitivni m-ti korijen jedinice ako i samo ako m dijeli pi − 1.
Dakle, najmanje proširenje od Fp koje sadrži primitivni m-ti korijen jedinice bit
će Fi, gdje je i najmanji pozitivan cijeli broj takav da vrijedi

pi ≡ 1 (mod m).

Drugim riječima, i je red broja p u multiplikativnoj grupi (Z/mZ)×. Kom-
binirajući ovo s našim ranijim argumentima, dobivamo sljedeći rezultat.

Dokazali smo:

Propozicija 4.5.1

Neka je p racionalan prost broj koji ne dijeli m, i neka je p prosti ideal
od Z[ζm] koji leži iznad p. Tada vrijedi:

a) e(p/p) = 1,

b) f(p/p) je red broja p u grupi (Z/mZ)×,

c) Ukupno postoji φ(m)/f(p/p) prostih ideala u Z[ζm] koji leže iznad
p.
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Propozicija 4.5.2

Neka je p racionalan prost broj i n = pk ·
∏
qαi
i faktorizacija od n, gdje

qi ̸= p. Neka je K = Q(ζn) i neka je p prost ideal od K nad p. Tada je
e(p/p) = φ(pk).

Dokaz. Kao i u za Q(ζp), na isti način se dokaže da za L = Q(ζpk) vrijedi
pOL = (1−ζpk)φ(pk), tj. p se potpuno grana uK. Sada rezultat slijedi primjenom
Propozicije 4.4.8.

4.6 Primjene na kvadratna polja i Gaussov zakon
reciprociteta

Postoje vrlo zanimljive primjene aritmetike ciklotomskih polja na kvadratna
polja. Razmotrimo polje Q(ζp) za neki neparni prost broj p. Podsjetimo da je
ovo Galoisovo proširenje od Q s Galoisovom grupom izomorfnom (Z/pZ)×, gdje
je automorfizam koji odgovara σa ∈ (Z/pZ)× definiran kao

σa(ζp) = ζap .

Budući da je (Z/pZ)× ciklička grupa reda p − 1, ona sadrži jedinstvenu
podgrupu indeksa 2, koja se sastoji od svih kvadrata u (Z/pZ)×. Ovu podgrupu
označimo s S. Neka je K fiksno polje od S, tj. K je potpolje od Q(ζp) čiji su
svi elementi fiksni pod djelovanjem svih elemenata S. Galoisova teorija nam
govori da je [K : Q] = 2, dakle K je kvadratno polje. Ostaje nam odrediti koje
je točno kvadratno polje.

Možemo to učiniti razmatranjem ramifikacije. Podsjetimo da je p potpuno
ramificiran u Q(ζp); to jest, postoji jedinstven prosti ideal P od Q(ζp) koji leži
iznad p, te vrijedi

(p) = Pp−1.

Neka je p bilo koji prosti ideal od K koji leži iznad p. Tada P leži iznad p
(budući da je P jedini prosti ideal od K koji leži iznad p) i vrijedi

e(P/p) = e(P/p)e(p/p).

Budući da je e(P/p) = p − 1 i da su ramifikacijski indeksi ograničeni stup-
njevima proširenja, to implicira da je

e(P/p) =
p− 1

2
i e(p/p) = 2.

Posebno, p je jedini prosti ideal od K koji leži iznad p, te je potpuno rami-
ficiran.

Neka je Q bilo koji drugi prosti ideal od Q(ζp), neka je q prosti ideal od K
koji leži iznad njega, i neka je q prosti ideal od Z koji leži ispod njega. Sličan
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argument, koristeći činjenicu da je e(Q/q) = 1, pokazuje da je e(q/q) = 1, što
znači da q nije ramificiran u K. Zaključujemo da je p jedini prosti broj iz Z koji
se ramificira u K.

Sada, već smo odredili ramifikaciju u svakom kvadratnom polju, i jedino
kvadratno polje u kojem se samo p ramificira jest Q(

√
εp), gdje je ε = ±1 takav

da vrijedi

εp ≡ 1 (mod 4).

Možemo uzeti ε = (−1)(p−1)/2. Time smo dokazali sljedeću netrivijalnu
činjenicu.

Propozicija 4.6.1

Polje Q(ζp) sadrži kvadratno polje Q(
√
εp), gdje je ε = (−1)(p−1)/2.

Posebno, √εp može se napisati kao racionalna linearna kombinacija p-tih
korijena jedinice.

Teorem 4.6.2: Gaussov kvadratni zakon reciprociteta

Neka su p i q različiti, pozitivni neparni prosti brojevi. Tada vrijedi(
p
q

)(
q
p

)
= (−1)

p−1
2

q−1
2 .

Dokaz. Pokazali smo iznad da √εp ∈ Q(ζp). Označimo taj element s τ . Razmo-
trimo automorfizam σq ∈ Gal(Q(ζp)/Q); on je definiran s σq(ζp) = ζqp . Budući
da su konjugati od τ jednostavno ±τ , moramo imati

σq(τ) = ±τ.

Nadalje, neka je S podgrupa od Gal(Q(ζp)/Q) definirana sa σ(τ) = τ ako
i samo ako σ ∈ S. (To je zato što je Q(τ) fiksno polje od S po definiciji.)
Pod identifikacijom Gal(Q(ζp)/Q) i (Z/pZ)×, S odgovara podgrupi kvadrata;
kombinirajući sve ovo, vidimo da je σq(τ) = τ ako i samo ako je q kvadrat u
(Z/pZ)×; odnosno,

σq(τ) =

(
q

p

)
τ.

Sada neka je q prost ideal u OK iznad q. Zapišimo τ = a0 + a1ζp + · · · +
ap−2ζ

p−2
p gdje su ai ∈ Z. (Primijetimo da je τ očito algebarski cijeli broj.)

Koristeći da je σq(ζp) = ζqp i aq = a za sve a ∈ Fq, nalazimo da je

σq(τ) = a0 + a1ζ
q
p + a2ζ

2q
p + · · ·+ ap−2ζ

(p−2)q
p (4.6)

≡ aq0 + aq1ζ
q
p + aq2ζ

2q
p + · · ·+ aqp−2ζ

(p−2)q
p (mod q) (4.7)

≡ (a0 + a1ζp + a2ζ
2
p + · · ·+ ap−2ζ

p−2
p )q (mod q) (4.8)

≡ τ q (mod q). (4.9)
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Kombinirajući ovo s našim drugim izrazom za σq(τ) dobivamo(
q

p

)
τ ≡ τ q (mod q).

Budući da je q prost i očito imamo τ /∈ q, možemo skratiti τ modulo q;
zaključujemo da (

q

p

)
≡ τ q−1 ≡ (εp)(q−1)/2 (mod q).

Prema Eulerovom kriteriju, ovo pokazuje da(
q

p

)
≡
(
εp

q

)
(mod q).

Po definiciji, to znači da (
q

p

)
−
(
εp

q

)
∈ q;

budući da su
(

q
p

)
i
(

εp
q

)
cijeli brojevi, ta razlika je zapravo sadržana u q∩Z =

qZ. Zapravo,
(

q
p

)
i
(

εp
q

)
su samo ±1, pa je razlika sigurno manja od ±q. Iz

toga slijedi da zapravo imamo jednakost(
q

p

)
=

(
εp

q

)
.

Činjenica da je
(

ε
q

)
=
(

(−1)(p−1)/2

q

)
= (−1)

p−1
2

q−1
2 dovršava dokaz.

4.7 Natrag na ciklotomska polja
Dokažimo još nekoliko rezultata o ciklotomskim poljima. Dokažimo prvo neke
opće rezultate.

Definicija 4.7.1

Neka je f(x) =
∏
(x−αi) ∈ K(x), gdje su αi ∈ K. Tada je diskriminanta

∆(f) od f jednaka
∆(f) =

∏
i<j

(αi − αj)
2.

Propozicija 4.7.2

Neka je OK = Z[α]. Tada je ∆K = ∆(fα).



POGLAVLJE 4. FAKTORIZACIJA IDEALA U POLJIMA ALGEBARSKIH
BROJEVA 79

Dokaz. Neka je K stupnja n. Po pretpostavci {αi|i = 0, . . . n− 1} čine bazu od
OK , pa je po definiciji

∆K = det(1, α, . . . αn−1) = det[σi(α
j−1)]ij =

∏
(σi(α)− σj(α))2 = ∆(fα),

gdje predzadnja jednakost vrijedi pošto je [σi(α
j−1)]ij = [σi(α)

j−1]ij Vander-
mondeova matrica.

Propozicija 4.7.3

Neka je OK = Z[α]. Tada se u OK granaju samo prosti brojevi ∈ Z koji
dijele ∆K .

Dokaz. Neka je fα minimalni polinom od α, p ∈ Z prost i pOK =
∏r

i=1 p
ei
i ,

pi ̸= pj za i ̸= j. Ovo je ekvivalentno sa fα(x) ≡
∏r

i=1 gi(x)
ei , gi ̸= gj za i ̸= j.

Kad bi bio neki ei > 1, to bi značilo da se neki korijen od fα (u Fp) ponavlja.
Ovo je ekvivalentno sa tim da je ∆(fα(x)) = 0, što je ekvivalentno sa

∆(f(x)) ≡ 0 (mod p), što je po prethodnoj propoziciji ekvivalentno sa p|∆K .

Propozicija 4.7.4

Neka je K stupnja n, OK = Z[α] i fα minimalni polinom od α. Tada je
∆K = (−1)

n(n−1)
2 NK/Q(f

′
α(α)).

Dokaz. Neka su α1, . . . αn konjugati od α. Vrijedi

fα(x) =

n∏
i=1

(x− αi), f ′α(x) =

n∑
j=1

∏
i ̸=j

(x− αi)

 .

Slijedi da je
f ′α(αj) =

∏
i̸=j

(αj − αi)),

pa je

NK/Q (f ′α(αj)) =

n∏
j=1

(f ′α(αj)) =
∏
i̸=j

(αj − αi).

Pogledajmo koliko se puta za fiksni i, j, i ̸= j javlja u ∆K , a koliko u
NK/Q(f

′
α(α)): u ∆K se kao faktor javlja (αi − αj)

2, dok se u NK/Q(f
′
α(α))

javlja (αi − αj)(αj − αi) = −(αi − αj)
2. Vidimo da se u NK/Q(f

′
α(α)) pojavi

ukupno
(
n
2

)
minusa, što dokazuje našu tvrdnju.

Propozicija 4.7.5

∆Q(ζp) = (−1)
p−1
2 pp−2.
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Dokaz. Po prošloj propoziciji imamo da je

∆Q(ζp) = (−1)
(p−1)(p−2)

2 N(Φ′
p(ζp)).

Vrijedi

Φp(x) =
xp − 1

x− 1
=⇒ Φ′

p(x) =
(x− 1)pxp−1 − (xp − 1)

(x− 1)2

=⇒ Φ′
p(ζp) =

(ζp − 1)pζp−1
p

(ζp − 1)2
=
pζp−1

p

ζp − 1
.

Slijedi da je

N(Φ′
p(ζp)) =

N(p)N(ζp−1
p )

N(ζp − 1)
=
pp−1 · 1

p
= pp−2.

primijetimo da smo opet na drugi način dokazali da je p jedini prost broj
koji se grana u Q(ζp).

4.8 Dekompozicijska i inercijska grupa
Neka je K polje algebarskih brojeva, te neka je L/K konačno Galoisovo pro-
širenje od K stupnja n. Neka je p fiksan prost ideal od OK i neka je njegova
faktorizacija u OL

pOL = (P1 · · ·Pr)
e,

gdje svi Pi-ovi imaju isti stupanj inercije f . Sjetimo se da vrijedi ref = n, te
da grupa Gal(L/K) djeluje na skup {P1, · · · ,Pr}. To djelovanje je tranzitivno,
tj. za svaki Pi i Pj postoji σ ∈ Gal(L/K) takav da je σ(Pi) = Pj .

Kada grupa djeluje na skup, tada se često promatra stabilizatorska podgrupa
nekog elementa, tj. podgrupa elemenata grupe koji trivijalno djeluju na taj
element skupa.

Definicija 4.8.1

Uz notaciju kao i prije, definiramo dekompozicijsku grupu D(Pi/p) ele-
menta Pi

D(Pi/p) = {σ ∈ Gal(L/K) | σ(Pi) = Pi} ≤ Gal(L/K).

Primijetimo sljedeće: neka su Pi i Pj takvi da je σ(Pi) = Pj . Tada se lako
provjeri da je

D(Pj/p) = σD(Pi/p)σ
−1.
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Dakle, sve dekompozicijske grupe su konjugirane. Pošto je D(Pi) po definiciji
stabilizatorska podgrupa elementa Pi, te je djelovanje grupe tranzitivno (tj.
orbita od Pi je duljine r), po teoremu o orbiti i stabilizatoru da je

#D(Pi/p) = n/r = ef.

Primjer 4.8.2

Promotrimo proširenje Q(ζ15)/Q; to je proširenje stupnja ϕ(15) = 8, vri-
jedi Gal(Q(ζ15)/Q) ≃ (Z/15Z)×. Elemente Gal(Q(ζ15)/Q) prikazujemo
kao σi(ζ15) = ζi15, gdje je i ∈ (Z/15Z)×. Također, vrijedi da je prsten
cijelih brojeva u Q(ζ15) jednak Z[ζ15].
Promotrimo faktorizaciju elemenata 2, 3, 5 i 31 u Z(ζ15). Neka su

p2 = (2, ζ415 + ζ15 + 1),

p3 = (3, ζ415 + ζ315 + ζ215 + ζ15 + 1),

p5 = (5, ζ215 + ζ15 + 1)

p31 = (31, ζ15 + 3)

Prikažimo u sljedećoj tablici vrijednosti r, e i f za navedene proste bro-
jeve.

r e f
p2 2 1 4
p3 1 2 4
p5 1 4 2
p31 8 1 1

Izračunajmo sada dekompozicijsku grupu svakog od ovih prostih eleme-
nata. Očito je D(p3/3) = D(p5/5) = Gal(L/K), pošto su p3 i p5 jedini
prosti brojevi iznad 3 i 5. Također, očito vrijedi #D(p31/31) = n/r = 1.
Dakle, jedini zanimljivi slučaj je D(p2/2). To je grupa reda ef = 4.
Promotrimo preslikavanje

Z[ζ15]→ Z[ζ15]/p2 = F2[x]/(x
4 + x+ 1),

koji šalje ζ15 u x. Vrijedi

σi((2, ζ
4
15 + ζ15 + 1)) = (2, σ(ζ415 + ζ15 + 1)) = (2, ζ4i15 + ζi15 + 1).

Zaključujemo da će σ biti u D(p2/2) ako i samo ako je ζ4i15+ ζi15+1 u p2,
ili ekvivalentno, da x4+x+1 dijeli x4i+xi+1 u F2[x]. Sada eksplicitnim
računom možemo provjeriti da je

D(p2/2) = {σ1, σ2, σ4, σ8}.
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Dekompozicijska grupa nam je važna jer fiksira polje ostataka. Neka je P
prost broj iznad p, te neka je σ ∈ D(P/p). Pošto je σ(P) = P, slijedi da σ
inducira automorfizam polja OL/P. Ovaj automorfizam svakako fiksira OK/p,
te slijedi da smo dobili preslikavanje

D(P/p)→ Gal((OL/P)/(OK/p)), (4.10)

koje lako provjerimo da je homomorfizam.

Definicija 4.8.3

Inercijska grupa I(P/p) je jezgra preslikavanja (4.10), tj.

I(P/p) = ker (D(P/p)→ Gal((OL/P)/(OK/p))) .

Eksplicitnije, vrijedi da je

I(P/p) = {σ ∈ D(P/p)|σ(α) ≡ α (mod P) za sve α ∈ OL}.

Po definiciji inercijske grupe i prvom teoremu o izomorfizmu grupa, slijedi
da je

D(P/p)/I(P/p) ≃ Gal((OL/P)/(OK/p)).

Kao i za dekompozicijske grupe, inercijske grupe prostih ideala koje leže nas
istim prostim idealom od OK su međusobno konjugirane, te se lako vidi da je
#I(P/p) = e. Drugim riječima, inercijska grupa I(P/p) je trivijalna ako i samo
ako je P/p nerazgranat.

Primjer 4.8.4

Izračunajmo inercijske grupe iz prethodnog primjera. Očito su I(p2/2) i
I(p31/31) trivijalne. Grupa I(p3/3) je reda 2. Promotrimo preslikavanje

Z[ζ15]/p3 ≃ F3[x]/(x
4 + x3 + x2 + x+ 1).

Element σi iz D(p3/3) će biti u I(p3/3) ako i samo ako je σi(ζ15) = ζ15
pošto je očito σi(1) = 1, a 1 i ζ15 su generatori od Z[ζ15], pa time i
Z[ζ15]/p3. To je ekvivalentno da je

σi(x) = xi ≡ x (mod x4 + x3 + x2 + x+ 1).

Drugim riječima, pitamo se kada x4 + x3 + x2 + x + 1 dijeli xi − x.
Vidimo da je to istina za i = 11, te onda pošto je I(p3/3) grupa reda 2,
zaključujemo da je

I(p3/3) = {σ1, σ11}.

Analogno možemo izračunati

I(p5/5) = {σ1, σ4, σ7, σ13}.
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Definicija 4.8.5

Pretpostavimo da je Gal(L/K) Abelova. Definiramo inercijsko polje LI

od P/p kao fiksno polje od I(P/p), te dekompozicijsko polje LD od P/p
kao fiksno polje od D(P/p).

Teorem 4.8.6: Teorem o slojevima

Neka je p netrivijalni ideal od OF , gdje je K/F Abelovo proširenje. Tada
se p potpuno cijepa u KD, te ideali iznad p ostaju inertni u KI/KD, te
se potpuno granaju u K/KD.



Poglavlje 5

Grupa klasa ideala

5.1 Razlomljeni ideali
Ideali prstena cijelih brojeva ne čine grupu, jer nemaju inverze. Razlomljeni
ideali, s druge strane, tvore grupu; odnos između razlomljenih ideala i obič-
nih ideala vrlo je sličan odnosu između polja brojeva i njegovog prstena cijelih
brojeva.

Neka je K polje brojeva s prstenom cijelih brojeva OK . Neka je r neprazan
podskup od K koji je OK-modul; odnosno, r je zatvoren na zbrajanje i množe-
njem elementima iz OK . Za takav r kažemo da je razlomljeni ideal ako postoje
γ1, . . . , γm ∈ r takvi da je

r = {α1γ1 + · · ·+ αmγm | αi ∈ OK};

odnosno, r je generiran nad OK pomoću γi. (Ključna stvar ovdje je da je r
konačno generiran nad OK . Nisu svi OK-podmoduli od K takvi).

Postoje dva osnovna primjera razlomljenih ideala. Prije svega, svaki nepra-
zan ideal a od OK također je razlomljeni ideal: a je OK-modul po definiciji i
ima konačni skup generatora jer je OK Noetherin. Da bismo izbjegli zabunu,
od sada ćemo ideale od OK nazivati cjelobrojnim idealima.

Druga vrsta primjera su razlomljeni ideali oblika γOK za neki γ ∈ K∗.
(Lako se provjeri da je γOK OK-modul, i ima samo jedan generator γ.) Takav
razlomljeni ideal naziva se glavni razlomljeni ideal. Primjećujemo da su glavni
ideali od OK upravo cjelobrojni glavni razlomljeni ideali.

Općenitije, neka je a bilo koji ideal od OK i neka je γ bilo koji element iz
K∗. Tada je γa razlomljeni ideal. (γa ima konačni skup generatora jer ako
α1, . . . , αm generiraju a, onda γα1, . . . , γαm generiraju γa.) I obrat ove tvrdnje
vrijedi.

84
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Lema 5.1.1

Neka je r OK-podmodul od K. Tada je r razlomljeni ideal ako i samo
ako postoji γ ∈ K∗ takav da je γr cjelobrojni ideal. (Zapravo, može se
uzeti da je γ racionalni cijeli broj.)

Dokaz. Vidjeli smo gore da ako je a cjelobrojni ideal i γ ∈ K∗, onda je γa
razlomljeni ideal. Obratno, ako je r razlomljeni ideal, možemo pisati

r = {α1γ1 + . . .+ αmγm | αi ∈ OK}

za neke γ1, . . . , γm ∈ r. Po ranije dokazanom postoje a1, . . . , am ∈ Z takvi da
je aiγi ∈ OK . Lako se provjeri da je a1 · · · amr cjelobrojni ideal, što dokazuje
lemu s γ = a1 · · · am.

Označit ćemo s IK skup svih razlomljenih ideala od K. Ako su r, s ∈ IK ,
definiramo produkt rs kao OK-modul generiran svim produktima parova eleme-
nata iz r i s. Primijetimo da ako je r generiran s γ1, . . . , γm i s je generiran s
δ1, . . . , δk, onda je rs generiran produktima γiδj . Posebno, rs je također razlom-
ljeni ideal.

Teorem 5.1.2

Skup IK je Abelova grupa pod množenjem razlomljenih ideala.

Dokaz. Vidjeli smo gore da je IK zatvoren pod množenjem. Jasno je da je ovo
množenje komutativno i asocijativno. Lako se provjerava da je jedinični element
jedinični ideal OK . Preostaje pronaći inverze. Dakle, neka je r razlomljeni ideal
i odaberimo γ ∈ K∗ takav da je γr cjelobrojni ideal. Prema Propoziciji 3.4.3
postoji cjelobrojni ideal b takav da je γrb glavni, recimo generiran s α ∈ O∗

K .
Uzmimo s = γ

αb. Tada je s razlomljeni ideal, i imamo

rs =
γrb

α
= OK .

Tako je s inverz od r u IK .

primijetimo da je iz dokaza Propozicije 3.4.3 jasno da ako je r razlomljeni
ideal, onda je njegov inverz dan s

r−1 = {γ ∈ K∗ | γr ⊆ OK}.

Također možemo karakterizirati razlomljene ideale u smislu jedinstvene fak-
torizacije ideala.
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Propozicija 5.1.3

Svaki razlomljeni ideal r može se zapisati kao

r = pe11 · · · perr

gdje su pi različiti prosti ideali od OK i ei su cijeli brojevi. (Primijetimo
da dopuštamo da ei budu negativni.) Ovaj izraz je jedinstven do na
promjenu redoslijeda faktora. Dakle, IK je slobodna Abelova grupa na
skupu

{p | p je prost ideal od OK}.

Konačno, r je cjelobrojni ideal ako i samo ako je svaki ei nenegativan.

Dokaz. Neka je r razlomljeni ideal i odaberimo nenul racionalni cijeli broj a ∈
Z takav da je ar cjelobrojni ideal. Tada možemo pisati (jedinstveno do na
promjenu redoslijeda i dodavanje faktora s nul eksponentom)

aOK = p
e′1
1 · · · p

e′r
r

ar = p
e′′1
1 · · · p

e′′r
r ;

ovdje dopuštamo da neki e′i i e′′i budu nula. Tako, budući da je IK grupa,

r = p
e′′1 −e′1
1 · · · pe

′′
r −e′r

r .

Ovo pokazuje da r ima takav izraz; činjenica da je on jedinstven slijedi iz činje-
nice da su faktorizacije od aOK i ar jedinstvene. Činjenica da je r cjelobrojni
ideal ako i samo ako je svaki ei pozitivan jasna je iz jedinstvene faktorizacije
ideala.

Primijetimo da je ova dekompozicija razlomljenih ideala u smislu prostih
ideala potpuno analogna dekompoziciji racionalnih brojeva u smislu racionalnih
prostih brojeva.

5.2 Grupa klasa ideala
Neka je K polje brojeva s prstenom cijelih brojeva OK . Vidjeli smo da OK mo-
žda nije domena jedinstvene faktorizacije, iako će imati jedinstvenu faktorizaciju
ideala. Također smo vidjeli da je OK DJF ako i samo ako je DGI; odnosno, ako
i samo ako je svaki ideal glavni. Nadalje, čak i kad OK nije DGI, često je korisno
znati kada su ideali glavni.

Ove činjenice sugeriraju da bi bilo korisno imati neki način da se odredi je li
ideal glavni. Iako je to u praksi često prilično teško, možemo apstraktno dosta
toga dokazati. Definirajmo PK kao podgrupu od IK koja se sastoji od glavnih
razlomljenih ideala. Primijetimo da su cjelobrojni ideali u PK upravo glavni
ideali od OK .
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Definicija 5.2.1

Definiramo grupu klasa ideala CK od K kao kvocijent

CK = IK/PK .

Grupa CK će nam biti korisna za promatranje ranije postavljenih pitanja.
Prije svega, CK je trivijalna grupa ako i samo ako je IK = PK ; odnosno, ako
i samo ako je svaki razlomljeni ideal od K zapravo glavni. Budući da su cjelo-
brojni ideali u PK upravo glavni ideali, ovo je ekvivalentno tome da je OK DGI,
što je pak ekvivalentno tome da je OK DJF. Odnosno, CK je trivijalna ako i
samo ako je OK DJF. Drugo, primijetimo da je razlomljeni ideal r glavni ako i
samo ako se preslikava u 0 u CK .

Zvat ćemo elemente od CK klasama ideala; tako je klasa idealaA jednostavno
koskup od PK . Po definiciji CK , dva razlomljena ideala a i b leže u istoj klasi
ideala ako i samo ako postoji neki γ ∈ K∗ s

γa = b.

Pisat ćemo ovu relaciju kao a ∼ b.
Sljedeća reinterpretacija Leme 5.1.1 pokazuje da razlomljeni ideali zapravo

nisu esencijalni za definiciju grupe idealnih klasa.

Lema 5.2.2

Neka je A klasa ideala. Tada postoji cjelobrojni ideal a u koskupu A.

Dokaz. Neka je r bilo koji razlomljeni ideal u A. Tada postoji γ ∈ K∗ takav da
je γr cjelobrojni ideal. Budući da je γOK ∈ PK , imamo γr ∈ A, što dokazuje
lemu.
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Primjer 5.2.3

Uzmimo K = Q(
√
−5) i razmotrimo ideale

p1 := (2, 1−
√
−5), p2 := (3, 1 +

√
−5), p3 := (3, 1−

√
−5).

Možemo direktno izračunati da je (2, 1−
√
−5) = γ(3, 1 +

√
−5) gdje je

γ = −
√
−5
3

+
1

3
.

Dakle, (2, 1−
√
−5) ∼ (3, 1+

√
−5). Također, možemo primijetiti i da je

(6) := p21p2p3, p
2
1 = (2), p2p3 = (3), p1p2 = (1+

√
−5), p1p3 = (1−

√
−5),

pa zaključujemo da je

p1 ∼ p2 ∼ p3, te je [p1] reda 2.

5.3 Konačnost grupe klasa ideala
Činjenica da je grupa klasa ideala konačna pokazuje da jedinstvena faktoriza-
cija nikada ne "propada previše" u prstenima cijelih brojeva polja algebarskih
brojeva i možda je najvažnija činjenica u algebarskoj teoriji brojeva. U ovom
ćemo odjeljku dati iznenađujuće jednostavan dokaz.

Teorem 5.3.1

Neka je K polje algebarskih brojeva. Postoji broj λK , koji ovisi samo
o K, takav da svaki nenul ideal a od OK sadrži nenul element α sa
svojstvom:

|NK/Q(α)| ≤ λKNK/Q(a).

Dokaz. Neka je α1, . . . , αn integralna baza za OK i neka su σ1, . . . , σn ulaganja
polja K u C. Pokazat ćemo da možemo uzeti

λK =

n∏
i=1

 n∑
j=1

|σi(αj)|

 .

Neka je a nenul ideal od OK i neka je m jedinstven pozitivni cijeli broj takav
da vrijedi

mn ≤ NK/Q(a) < (m+ 1)n.

Razmotrimo skup od (m+ 1)n elemenata:
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
n∑

j=1

mjαj

∣∣∣ 0 ≤ mj ≤ m, mj ∈ Z

 .

Budući da kvocjentni prsten OK/a ima manje od (m + 1)n elemenata, dva
gore navedena elementa moraju biti kongruentna modulo a. Oduzimanjem ta
dva elementa dobivamo element

α =

n∑
j=1

m′
jαj ∈ a

sa svojstvom |m′
j | ≤ m. Računamo sada normu:

|NK/Q(α)| =
n∏

i=1

|σi(α)|

=

n∏
i=1

∣∣∣∣∣∣σi
 n∑

j=1

m′
jαj

∣∣∣∣∣∣
=

n∏
i=1

∣∣∣∣∣∣
n∑

j=1

m′
jσi(αj)

∣∣∣∣∣∣
≤

n∏
i=1

n∑
j=1

|m′
j ||σi(αj)|

≤
n∏

i=1

n∑
j=1

m|σi(αj)|

= mnλK ≤ λKNK/Q(a).

Korolar 5.3.2

Neka je A klasa ideala u CK . Tada A sadrži integralni ideal norme ≤ λK .

Dokaz. Neka je b neki integralni ideal u A−1. Po prethodnom teoremu možemo
pronaći β ∈ b takav da vrijedi

|NK/Q(β)| ≤ λKNK/Q(b).

Glavni ideal βOK sadržan je u b, a ranije smo dokazali da onda mora pos-
tojati integralni ideal a takav da vrijedi ab = βOK . Budući da je βOK glavni
ideal, imamo a ∈ A, te računamo
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NK/Q(a) =
|NK/Q(β)|
NK/Q(b)

≤ λK .

Korolar 5.3.3

Grupa klasa ideala CK je konačna.

Dokaz. Prema prethodnom korolaru svaka klasa ideala sadrži ideal norme naj-
više λK . Postoji samo konačno mnogo ideala s normom ≤ λK , što znači da
svaka klasa ideala sadrži jedan od konačnog skupa ideala. Konkretno, CK mora
biti konačna.

5.4 Teorija Minkowskog
Počet ćemo s nekim osnovnim pojmovima iz linearne algebre koji na prvi po-
gled možda ne djeluju povezano s našom temom. No, strategija je primijeniti
linearne algebarske koncepte, posebno pojam rešetke, na ideale Dedekindovih
prstenova kako bismo dobili osjećaj za "veličinu" ideala. To će nam omogućiti
da ograničimo veličinu ideala i konačno dokažemo da je broj klasa konačan.

Definicija 5.4.1

Neka je V n-dimenzionalan R-vektorski prostor. Rešetka u V je podskup
oblika

Γ = Zv1 + Zv2 + · · ·+ Zvm,

gdje su v1, . . . , vm linearno nezavisni vektori u V . Skup {v1, . . . , vm}
naziva se baza rešetke, a skup

Φ = {x1v1 + · · ·+ xmvm | xi ∈ R, 0 ≤ xi < 1}

naziva se fundamentalna domena rešetke. Rešetka je potpuna ako je
m = n.

Budući da radimo u Euklidskom prostoru, imamo na raspolaganju pojam
volumena. Ako su v1, . . . , vn bazni vektori rešetke, tada je volumen temeljnog
paralelopipeda definiran kao

vol(Φ) = |detA|,

gdje je A matrica promjene baze od ortonormirane baze od Rn do v1, . . . , vn.
Označimo vol(Γ) := vol(Φ).

Sada smo spremni izreći i dokazati Minkowskijev teorem o točkama na re-
šetci.
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Teorem 5.4.2: Minkowskijev teorem o točkama na rešetci

Neka je Γ potpuna rešetka u Euklidskom vektorskom prostoru V , a neka
je X centralno simetričan (oko ishodišta) i konveksan podskup od V za
koji vrijedi

vol(X) > 2n vol(Γ).

Tada X sadrži barem jednu točku 0 ̸= γ ∈ Γ.

Dokaz. Pretpostavimo prvo da postoje γ1, γ2 ∈ Γ takvi da je(
1

2
X + γ1

)
∩
(
1

2
X + γ2

)
̸= ∅. (5.1)

Dakle postoje x1, x2 ∈ X takvi da

y =
1

2
x1 + γ1 =

1

2
x2 + γ2.

Tada slijedi da je

γ1 − γ2 =
1

2
(x2 − x1),

pa je γ1−γ2 polovište dužine između x2 i −x1. Pošto je X centralno-simetričan
oko ishodišta, imamo da je −x1 ∈ X, te pošto je X konveksan, slijedi da γ1−γ2
pripada skupu X. Budući da su γ1 i γ2 elementi rešetke Γ (koja je grupa),
razlika γ1 − γ2 također pripada Γ. Time smo dokazali da je (γ1 − γ2) ∈ Γ ∩X.

Ostaje dokazati da postoje γ1, γ2 ∈ Γ koji zadovoljavaju (5.1).
Pogledajmo kolekciju skupova{

1

2
X + γ | γ ∈ Γ

}
.

Pretpostavimo da su svi ti skupovi međusobno disjunktni. Tada to vrijedi i
za njihove presjeke Φ ∩ ( 12X + γ) s fundamentalnom domenom Φ od Γ. Dakle
imamo

vol(Φ) ≥
∑
γ∈Γ

vol

(
Φ ∩

(
1

2
X + γ

))
Translacija skupa Φ∩

(
1
2X + γ

)
za −γ daje skup (Φ−γ)∩ 1

2X istog volumena.
S druge strane, skup

{Φ− γ | γ ∈ Γ}

prekriva cijeli prostor V , pa i 1
2X. Dakle, mi dobivamo

vol(Φ) ≥
∑
γ∈Γ

vol

(
(Φ− γ) ∩ 1

2
X

)
= vol

(
1

2
X

)
=

1

2n
vol(X),

što je kontradikcija s našom pretpostavkom.
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Sada ćemo primijeniti teoriju rešetki na polja algebarskih brojeva K/Q stup-
nja n. Razmatramo preslikavanje

j : K → KC =

n∏
i=1

C,

koje svakoj vrijednosti x ∈ K pridružuje njen niz ulaganja

j(x) = (τ1(x), . . . , τn(x)).

Iako je KC vektorski prostor nad C, što nam daje pojam udaljenosti, pri-
lično ga je teško geometrijski vizualizirati. Bilo bi mnogo "bolje" kada bismo
mogli preslikati K u Euklidski prostor bez gubitka informacija iz kompleksnih
ulaganja. Da bismo to učinili, moramo primijetiti tri stvari: Prvo, realna ulaga-
nja već preslikavaju K u R, tako da trenutno možemo zanemariti ta ulaganja.
Drugo, kompleksna ulaganja mogu se promatrati kao ulaganja u R2 razdvaja-
njem ulaganja na njihov realni i imaginarni dio. Konačno, kompleksna ulaganja
dolaze u parovima kompleksnih konjugata. Dakle, ako imamo samo polovicu
kompleksnih ulaganja, odnosno jedan iz svakog para kompleksnih konjugata, ne
gubimo nikakve informacije. To nas dovodi do opisa prostora Minkowskog:

Svako ulaganje od K u C je ili realno ili kompleksno. Neka su ρ1, . . . , ρr
realna ulaganja. Kao što je upravo spomenuto, kompleksna ulaganja dolaze u
parovima. Neka su σ1, σ1, . . . , σs, σs kompleksna ulaganja. Od sada nadalje će
nam r biti broj realnih ulaganja, a 2s broj kompleksnih ulaganja. Iz svakog para
kompleksnih ulaganja, odabiremo jedno fiksno ulaganje. Zatim dopuštamo da
ρ varira preko realnih ulaganja, a σ preko odabranih kompleksnih ulaganja.

Definicija 5.4.3

Prostor Minkowskog KR definiran je kao

KR = {(zτ ) ∈ KC | zρ ∈ R, zσ = z̄σ},

gdje τ varira kroz svih n ulaganja polja K u C, te gdje su ρ realna
ulaganja, a σ kompleksna.

primijetimo da je j(K) ⊆ KR. Na taj način možemo polje K interpreti-
rati kao n-dimenzionalni Euklidski prostor, a njegove prstenove cijelih brojeva
i ideale kao rešetke u prostoru Minkowskog.

Da bismo prostor Minkowskog zamislili geometrijski, moramo ga uložiti u
Rn. Sljedeći rezultat se lako dokazuje (ostavljamo za vježbu).
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Propozicija 5.4.4

Preslikavanje
f : KR →

∏
τ

R = Rr+2s, (5.2)

dano s (zτ ) 7→ (xτ ), gdje je

xρ = zρ, xσ = Re(zσ), xσ = Im(zσ), (5.3)

je izomorfizam. Ovaj izomorfizam pretvara kanonsku metriku ⟨·, ·⟩ u
skalarni produkt

⟨x, y⟩ =
∑
τ

ατxτyτ ,

gdje je ατ = 1 ako je τ realan, a ατ = 2 ako je τ kompleksan.

Može se dosta jednostavno pokazati da je vol(X) = 2s volLebesgue f(X)
Da bismo ilustrirali ovaj koncept, predstavljamo jednostavan primjer.

Primjer 5.4.5

Neka je K = Q[ 3
√
2]. K/Q je proširenje stupnja 3. Stoga postoje tri

kanonska ulaganja od K u C, koja ćemo označiti τ1, τ2 i τ3. Preslikavanja
su jedinstveno definirana njihovim djelovanjem na 3

√
2, pa pišemo

τ1(
3
√
2) =

3
√
2, τ2(

3
√
2) =

3
√
2

(
−1

2
+

√
3

2
i

)
, τ3(

3
√
2) =

3
√
2

(
−1

2
−
√
3

2
i

)
.

Vidimo da je τ1 realno ulaganje i da je τ2 = τ3. Stoga, koristeći gornji
izomorfizam, tri nova ulaganja u R3 su

σ1(
3
√
2) =

3
√
2, σ2(

3
√
2) = −

3
√
2

2
, σ3(

3
√
2) =

3
√
2
√
3

2
.

Definicija 5.4.6

Neka je a ideal u OK . Definiramo diskriminatu ∆(a) od a kao
∆(α1, . . . , αn), gdje je α1, . . . , αn baza od a kao Z-modula.

Sada kada možemo razmišljati o K kao n-dimenzionalnom euklidskom pros-
toru, možemo tumačiti prsten cijelih brojeva od K i njegove ideale kao rešetke
u prostoru Minkowskog KR, koristeći sljedeću lemu.
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Lema 5.4.7

Neka je K konačno proširenje Q, a a nenul ideal prstena OK . Tada
je Γ = j(a) potpuna rešetka u KR kojem fundamentalna domena ima
volumen

vol(Γ) =
√
|∆K |[OK : a].

Dokaz. Neka je α1, . . . , αn Z-baza od a. Tada je Γ = Zj(α1) + · · · + Zj(αn).
Neka su τ1, τ2, . . . , τn ulaganja od K u C. Definiramo matricu

A =


τ1(α1) τ2(α1) · · · τn(α1)

τ1(α2) τ2(α2) · · · · · ·
...

...
. . .

...
τ1(αn) · · · · · · τn(αn)

 .

Ako su b ⊆ b′ dva nenul konačno generirana OK-podmodula od K, tada je
[b′ : b] konačan i ∆(b) = [b′ : b]2∆(b′) (prema ranije dokazanom).

Stoga imamo

∆(a) = ∆(α1, . . . , αn) = (detA)2 = [OK : a]2∆(OK) = [OK : a]2∆K .

Sada imamo
vol(Γ) = |detA| =

√
|∆K |[OK : a],

što je i trebalo dokazati.

Teorem 5.4.8

Neka je K/Q konačno proširenje, i neka je a ̸= 0 ideal od OK . Neka je
cτ > 0, za τ ulaganje K u C, realan broj takav da je cτ = cτ i∏

τ

cτ > A[OK : a],

gdje je A = (2/π)s
√
|∆K |. Tada postoji nenul α ∈ a takav da

|τ(α)| < cτ za sve τ ∈ Hom(K,C).

Dokaz. Neka je
X = {(zτ ) ∈ KR | |zτ | < cτ}.

Ovaj skup je centralno simetričan, budući da je |zτ | = | − zτ |, i konveksan je jer
ako je |zτ |, |wτ | < cτ , tada je∣∣∣∣1t zτ +

1

1− t
wτ

∣∣∣∣ ≤ 1

t
|zτ |+

1

1− t
|wτ | ≤ max{|zτ |, |wτ |} < cτ .
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Izračunavamo volumen koristeći preslikavanje (5.2). Ispada da je 2s puta
volumen slike

f(X) =

{
(xτ ) ∈

∏
τ

R | |xρ| < cρ, x
2
σ + x2σ < c2σ

}
.

Ovo daje

vol(X) = 2svol(f(X)) = 2s
∏
ρ

(2cρ)
∏
σ

(πc2σ) = 2r+sπs
∏
τ

cτ .

Sada imamo

vol(X) > 2r+sπs

(
2

π

)s√
|∆K |[OK : a] = 2nvol(j(a)).

Nejednakost slijedi iz pretpostavke, a jednakost iz Leme 5.4.7.
Dakle, prema Minkowskom teoremu o točki rešetke, postoji točka rešetke

j(α) ∈ X, α ̸= 0, α ∈ a. To jest, |τ(α)| < cτ , što je i trebalo dokazati.

Lema 5.4.9

U svakom idealu a ̸= 0 od OK postoji α ∈ a, α ̸= 0, takav da

∣∣NK/Q(α)
∣∣ ≤ ( 2

π

)s√
|∆K |N(a).

Dokaz. Za svaki ε > 0, možemo odabrati pozitivne realne brojeve cτ za τ ∈
Hom(K,C) takve da cτ = cτ i∏

τ

cτ =

(
2

π

)s√
|∆K |N(a) + ε.

Tada prema Teoremu 5.4.8 nalazimo element α ∈ a, α ̸= 0, koji zadovoljava
|τ(α)| < cτ . Stoga

∣∣NK/Q(α)
∣∣ =∏

τ

|τ(α)| <
(
2

π

)s√
|∆K |N(a) + ε.

Budući da je |NK/Q(α)| pozitivan cijeli broj, te tvrdnja vrijedi za svaki ϵ > 0
očito slijedi da postoji α ∈ a, α ̸= 0, takav da

∣∣NK/Q(α)
∣∣ ≤ ( 2

π

)s√
|dK |N(a).

Sada smo spremni dokazati konačnost broja klasa.
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Teorem 5.4.10

Neka je K/Q polje algebarskih brojeva. Tada je broj klasa od K (ili od
OK), hK := [IK : PK ] konačan.

Dokaz. Kao što smo komentirali i ranije, postoji samo konačan broj ideala od
OK s ograničenom apsolutnom normom N(a) ≤M .

Stoga će biti dovoljno pokazati da svaka klasa ideala [a] iz CK sadrži ideal
a1 od OK takav da

N(a1) ≤M =

(
2

π

)s√
|∆K |.

Da bismo to pokazali, biramo proizvoljnog predstavnika klase a i nenul ele-
ment γ ∈ OK takav da je b = γa−1 ⊆ OK . Prema Lemi 5.4.9, možemo naći
nenul element α ∈ b takav da

N
(
αb−1

)
= N

(
(α)b−1

)
=
∣∣NK/Q(α)

∣∣N(b)−1 ≤M.

Primijetimo da N(b)|N(α), pa slijedi da je ab−1 cijeli ideal, pošto mu je norma
cjeloborjna. Dakle, ideal αb−1 = αγ−1a ∈ [a] ima željeno svojstvo.

Važna činjenica iz dokaza koju ćemo zapisati kao posebnu propoziciju je
sljedeća:

Propozicija 5.4.11

Svaka klasa iz CK sadrži ideal a1 od OK takav da

N(a1) ≤M =

(
2

π

)s√
|∆K |.

Najbolja ograda koja se može dobiti za općeniti n je sljedeća (i koju mi
nećemo dokazivati):

Teorem 5.4.12: Minkowski

Neka je µK =
√
|∆K |

(
4
π

)s n!
nn , gdje je [K : Q] = n. Tada postoji inte-

gralni ideal I u svakoj klasi u CK takav da je N(I) ≤ µK .
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Primjer 5.4.13

Neka je K = Q(
√
−5). Budući da je −5 ≡ 3 (mod 4), znamo da je

OK = Z[
√
−5] i δK = −20. Prema Propoziciji 5.4.11 znamo da svaka

klasa ideala sadrži ideal a takav da

N(a) ≤
(
2

π

)√
20 ≈ 2.85.

Stoga moramo naći sve ideale s apsolutnom normom 2. Pretpostavimo
da je a ideal takav da je N(a) = 2. Ranije smo komentirali da se prosti
ideal norme pk mora naći u faktorizaciji od pOK .
Također smo vidjeli da je 2OK = b2, gdje je b = (

√
−5 + 1, 2). Poka-

zat ćemo da b nije glavni, i stoga da nije u istoj klasi ideala kao (2).
Pretpostavimo da je b glavni, tako da je b = (b) za neki b ∈ Z[

√
−5].

Tada
NK/Q(b) | NK/Q(2) = 4

i
NK/Q(b) | NK/Q(

√
−5 + 1) = (1 +

√
−5)(1−

√
−5) = 6

Stoga je NK/Q(b) = 2. Pa ako je b = x+ y
√
−5, onda

NK/Q(b) = x2 + 5y2 = 2.

Nema cjelobrojnih rješenja za x i y, pa b ne može biti glavni.
Pokazali smo da sve klase ideale imaju predstavnika norme ≤ 2, te smo
vidjeli da postoji jedinstveni ideal norme b koji nije glavni. Zaključujemo
hK = 2, te CK = {[(1)], [b]}

Primjer 5.4.14

Neka je K = Q(ζ5). Pokazali smo da je ∆K = 53. Imamo

µK =

(
4

π

)2√
125

4!

44
∼ 1.669921.

Zaključujemo da svaka klasa ima u sebi ideal (1), dakle hK = 1. Dakle
K je domena jedinstvene faktorizacije.
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Primjer 5.4.15

Neka je K = Q(
√
−7). Imamo

µK =

(
2

π

)1√
7 ≃ 1.861,

pa zaključujemo kao i prije da je hK = 1 i da je K domena jedinstvene
faktorizacije.

Primjer 5.4.16

Neka je K = Q(ζ7). Imamo

µK =

(
4

π

)3√
75

6!

66
∼ 4.129.

Dakle, ako postoji klasa ideala koja nije glavna, onda se ona mora naći
u faktorizaciji od ideala 2OK i 3OK .
Element 2 je reda 3 u (Z/7Z)×, pa slijedi da je

2OK = p1p2,

gdje je N(pi) = 8.
Element 3 je reda 6 pa je 3OK prost i norme 36. Zaključujemo da je
hK = 1 i K je domena jedinstvene faktorizacije.
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Primjer 5.4.17

Neka je K = Q(
√
−14). Imamo

µK =
4
√
56

π
∼ 4.76.

Dakle, treba samo promotriti faktorizaciju od 2 i 3. Imamo

2OK = (2,
√
−14)2,

3OK = (3, 1 +
√
−14)(3, 2 +

√
−14).

Dakle svakako imamo hK ≤ 4.
Prvo želimo vidjeti je li p2 = (2,

√
−14) glavni. Dakle pitamo se je li

postoji a ∈ OK takav da a|2 a
√
−14. Dakle

N(a)|(N(2), N(
√
−14)) = (4, 14) = 2.

Neka je a = x + y
√
−14. tada bi moralo biti x2 + 14y2 = 2, što je očito

nemoguće. Dakle p2 nije glavni.
Neka je a = (3, 1 +

√
−14). Analogno kao i gore, pokažemo da a2 nije

glavni. Dakle [a] je reda ≥ 4. Zaključujemo da je

hK = 4, CK ≃ Z/4Z, CK = {[(1)], [p2], [a], [a3]}.

Primjer 5.4.18

Neka je K = Q(
√
−163). Dobijemo µK ∼ 8.127. Računamo(
−163
3

)
=

(
−163
5

)
=

(
−163
7

)
= −1.

Dakle, pOK su inertni za p = 3, 5, 7. Dakle ne postoje ideali norme 3, 5, 7
u OK . Ostaje odrediti faktorizaciju od 2OK .

Sjetimo se da je Z
[
1+

√
−163
2

]
, te je minimalni polinom od 1+

√
−163
2 jednak

x2−x+41. Taj polinom je ireducibilan modulo 2, pa slijedi da je 2 inertan
u K. Dakle 2OK je jedini pravi ideal norme < µK , te je on očito glavni.
Slijedi da je hK = 1.

Recimo malo i o povijesti proučavanja broja klasa imaginarnih kvadratnih
polja. Gauss je izrekao slutnju (bila je zato poznata kao Gaussova slutnja) da
hQ(

√
−d) →∞ kako d→∞. To je dokazao Heilbronn 1934. godine.

Postoji samo 9 imaginarnih kvadratnih polja K s hK = 1. To su Q(
√
d) za

d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}.

Ovo je dokazao Stark 1967. godine, koristeći prethodne rezultate Bakera i Heeg-
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nera. Važno otvoreno pitanje je postoji li beskonačno mnogo realnih kvadratnih
polja K = Q(

√
d), d > 0 s hK = 1. Slutnja je da postoji.

Nastavimo sada promatrati K = Q(
√
−163).

Lema 5.4.19

Neka je p ≤ 37 prost broj. Tada je p inertan u K = Q(
√
−163).

Dokaz. Pretpostavimo da nije, da se neki pOK cijepa za p ≤ 37. Neka je
α = 1+

√
−163
2 . Pošto je hK = 1, slijedi da je

pOK = (a)(b), za neke a, b,∈ OK

Tada je a = x+ yα, x, y ∈ Z takav da je N(a) = p. Međutim, imamo

N(a) = N

((
x+

y

2

)
+

(
x+

y
√
−163
2

))
=
(
x+

y

2

)2
+

163

4
y2.

Pošto mora biti a /∈ Z, mora biti y ̸= 0, pa slijedi N(a) > 163
4 , što je kontradik-

cija.

Ova činjenica ima jednu vrlo zanimljivu posljedicu.

Propozicija 5.4.20

Neka je f(x) = x2 − x+ 41. Tada je f(x0) prost za sve prirodne brojeve
x0 ∈ x0 ≤ 40.

Naravno, ova propozicija se lako računski dokaže, ali mi ćemo dati ljepši
dokaz.

Dokaz. Neka je x0 kao u pretpostavkama propoziciji. Neka je p neki prosti
djelitelj od x20 − x0 + 41. Tada je

x20 − x0 + 41 ≡ 0 (mod p),

=⇒ (2x0 − 1)2 ≡ −163 (mod p)(
−163
p

)
= 1

za p ̸= 163. Kada bi to bilo istina za p ≤ 37, tada bi se taj p cijepao u Q(
√
−163),

a vidjeli smo da je to nemoguće.
Ako uvrstimo f(40) = 1601 < 412, pa slijedi da kada f(x0) ne bi bio prost

za neki x0 ≤ 40, tada bi imao prostog djelitelja < 41, što smo vidjeli da je
nemoguće.
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Primjer 5.4.21

Neka je K = Q(
√
82). Pokažimo da je grupa klasa ciklička grupa reda 4.

Rješenje: Ovdje je n = 2, r2 = 0, disc(K) = 4 · 82, pa je Minkowskijeva
ograda ≈ 9.055. Pogledajmo proste ideale koji dijele 2, 3, 5 i 7.

Sljedeća tablica opisuje kako se (p) faktorizira iz načina na koji se T 2 − 82
faktorizira modulo p.

p T 2 − 82 mod p (p)

2 T 2 p22
3 (T − 1)(T + 1) p3p

′
3

5 ireducibilno prost
7 ireducibilno prost

Dakle, grupa klasa od Q(
√
82) je generirana s [p2] i [p3], gdje su p22 = (2) ∼

(1) i p′3 ∼ p−1
3 .

Budući da je NK/Q(10 +
√
82) = 18 = 2 · 32, i 10 +

√
82 nije djeljivo s 3,

(10+
√
82) je djeljivo samo s jednim od p3 i p′3. Neka je p3 taj prosti ideal, tako

da je (10 +
√
82) = p2p

2
3. Stoga p2 ∼ p−2

3 , pa je grupa klasa od K generirana s
[p3] i imamo formule

[p2]
2 = 1, [p3]

2 = [p2].

Dakle, [p3] ima red koji dijeli 4.
Pokazat ćemo da p2 nije glavni ideal, tako da [p3] ima red 4, i stoga K ima

grupu klasa ⟨[p3]⟩ ∼= Z/4Z.
Ako je p2 = (a + b

√
82), onda je a2 − 82b2 = ±2, tako da je 2 ili −2

≡ □ mod 41. Ovo nije kontradikcija, jer je 2 ≡ 172 mod 41. Potrebna nam je
drugačija ideja.

Ideja je koristiti poznatu činjenicu da je p22 glavni ideal. Ako je p2 = (a +
b
√
82), onda je (2) = p22 = ((a+ b

√
82)2), tako da je

2 = (a+ b
√
82)2u,

gdje je u jedinica.
Uzimajući norme ovdje, N(u) mora biti pozitivna, pa je N(u) = 1. Grupa

jedinica od Z[
√
82] je ±(9+

√
82)Z, a 9+

√
82 ima normu −1. Stoga su pozitivne

jedinice norme 1 integralne potencije od (9+
√
82)2, koji su svi kvadrati. Kvadrat

jedinice može se apsorbirati u izraz (a + b
√
82)2, pa moramo moći riješiti 2 =

(a + b
√
82)2 u cijelim brojevima a i b. Ovo je očito nemoguće: implicira da je√

2 u Z[
√
82], što je netočno. Dakle, p2 nije glavni ideal.

Primjer 5.4.22

Neka jeK = Q(
√
−30). Pokažimo da je grupa klasa produkt dvije cikličke

grupe reda 2.
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Rješenje: Ovdje je n = 2, r2 = 1 i disc(K) = −120. Minkowskijeva ograda
je ≈ 6.97, pa je grupa klasa generirana prostim idealima koji dijele 2, 3 i 5.

Sljedeća tablica prikazuje kako se ti prosti brojevi faktoriziraju u proste
ideale.

p T 2 + 30 mod p (p)

2 T 2 p22
3 T 2 p23
5 T 2 p25

Za a, b ∈ Z, NK/Q(a+b
√
−30) = a2+30b2 nikada nije 2, 3 ili 5. Stoga p2, p3

i p5 nisu glavni, pa njihove klase ideala imaju red 2 u grupi klasa od K. Štoviše,
budući da je NK/Q(

√
−30) = 30 = 2 · 3 · 5, slijedi da je (

√
−30) = p2p3p5. Stoga

je p2p3p5 ∼ 1 u grupi klasa, pa [p2] i [p3] generiraju grupu klasa.
Relacija p2p3p5 ∼ 1 u grupi klasa može se zapisati kao

[p2][p3] = [p5]
−1 = [p5].

Budući da p5 nije glavni ideal i [p2] i [p3] imaju red 2 u grupi klasa, [p2] ̸= [p3].
Stoga je grupa klasa od K ⟨[p2], [p3]⟩ ∼= ⟨[p2]⟩ × ⟨[p3]⟩ ∼= Z/2Z× Z/2Z.

Primjer 5.4.23

Neka je K = Q( 3
√
2). Pokazat ćemo da je grupa klasa ideala trivijalna.

Rješenje: Budući da je OK = Z[ 3
√
2] i r2 = 1, Minkowskijeva ograda je

(6/27)(4/π)
√
108 ≈ 2.94,

stoga trebamo faktorizirati (2) u proste ideale u OK . Imamo (2) = ( 3
√
2)3, što

znači da je ( 3
√
2) prost ideal norme 2, tako da je jedini prosti ideal norme manje

od 2.94 glavni, pa je h(K) = 1.

Primjer 5.4.24

Neka je K = Q( 3
√
3). Pokazat ćemo da je grupa klasa ideala trivijalna.

Rješenje: Budući da je OK = Z[ 3
√
3] i r2 = 1, Minkowskijeva ograda je

(6/27)(4/π)
√
243 ≈ 4.41,

stoga trebamo faktorizirati ideale (2) i (3) u proste ideale u OK .

p T 3 − 3 mod p (p)

2 (T + 1)(T 2 + T + 1) p2p2
3 T 3 p33
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Prema tablici, postoji jedan prosti ideal norme 2 i jedan norme 3. To su ideali
(−1 + 3

√
3) i ( 3

√
3) budući da −1 + 3

√
3 ima minimalni polinom (T + 1)3 − 3 =

T 3+3T 2+3T−2 s konstantnim članom −2, a 3
√
3 ima minimalni polinom T 3−3

s konstantnim članom −3 (sjetimo se, konstantni član minimalnog polinoma
jednak je normi). Kako je (2) = p2p

′
2 gdje je p2 glavni ideal, p′2 je također

glavni. (Eksplicitno, p′2 = (1 + 3
√
3 + 3
√
9).) Stoga su svi prosti ideali norme

manje od 4.41 glavni, pa je h(K) = 1.
Pokažimo sada kako možemo iskoristiti grupe klasa ideal za rješavanje Di-

ofantskih jednadžbi:

Primjer 5.4.25

Nađimo sva rješenja od

x2 + 19 = y3, x, y ∈ Z.

Rješenje: Zapišimo

(x+
√
−19)(x−

√
−19) = y3

Neka je K = Q(
√
−19), tada je OK = Z[ 1+

√
−19
2 ] i |∆K | = 19. Računamo

Minkowskijevu ogradu:

µK =

(
4

π

)
· 2!
22
·
√
19 =

2

π
·
√
19 < 5

Polinom f = x2 + x+ 5 je minimalni polinom od 1+
√
−19
2 .

(x2 + x+ 1) je ireducibilan modulo 2⇒ 2OK prost,

(x2 + x+ 2) je ireducibilan modulo 3⇒ 3OK prost.

Dakle hK = 1.
Dokažimo da su elementi (x +

√
−19) i (x −

√
−19) relativno prosti. Pret-

postavimo da π | x+
√
−19 i π | x−

√
−19.

π | 2x, π | 2
√
−19

Ako je x neparan (a time y paran) ⇒ x2 ≡ 1 (mod 8)

⇒ x2 + 19 ≡ 1 + 3 ≡ 4 ≡ 4 (mod 8).

S druge strane y3 ≡ 0 (mod 8), pa smo došli do kontradikcije.
Dakle x je paran, x = 2t, t ∈ Z. Kada bi

√
−19 | x u OK ⇒ 19 | x.

x2 + 19 ≡ 19 (mod 192)⇒ y3 ≡ 19 (mod 192),

što je kontradikcija. Zaključujemo da π ∤
√
−19.
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Pretpostavimo da π|2. Pošto je 2OK prost, slijedi da je π = 2. Međutim,
pošto 2 ∤

√
−19, te 2|x, očito slijedi da 2 ∤ (x±

√
−19).

Dakle
(x+

√
−19, x−

√
−19) = 1⇒ (x+

√
−19) = a3

⇒ x+
√
−19 = u

(
c+ d

(
1 +
√
−19

2

))3

, u ∈ O×
K , a, b ∈ Z

Zapišimo zbog jednostavnosti(
c+ d

(
1 +
√
−19

2

))
=

(
a+ b

√
−19

2

)
,

gdje a, b moraju biti iste parnosti. Imamo(
a+ b

√
−19

2

)3

=
1

8
(a3 + 3a2b

√
−19− 57ab2 − 19b3

√
−19).

⇒ a3 − 57ab2 = 8x, 3a2b− 19b3 = 8.

Primijetimo da vrijedi

b
(
3a2 − 19b2

)
= 8⇒ b = ±1, 2, 4, 8,

te da je 3a2 − 19b2 djeljivo s 4, pošto su a i b iste parnosti, dakle b = ±1,±2 su
jedine mogućnosti Za b = ±1 dobijemo

3a2 − 19 = ±8,

Ovo nam daje rješenje a = ±3, b = 1. Uvrštavanjem u drugu jednadžbu dobi-
vamo

a3 − 57ab2 = ±27∓ 171 = ±144 = 8x.

Dakle, dobivamo rješenje x = ±18. Računamo

182 + 19 = 324 + 19 = 343 = 73,

pa je x = ±18, y = 7 zaista rješenje.
Za b = ±2 dobijemo

3a2 − 19 · 16 = ±4,

Ovo nam daje rješenje a = ±10, b = −2. Uvrštavanjem u drugu jednadžbu
dobivamo

a3 − 57ab2 = ±1000∓ 2280 = ±1280 = 8x.

Dakle dobivamo rješenje x = ±160. Međutim

1602 + 19 = 25619
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nije kub, tako da tu ne dobivamo rješenja.

Primjer 5.4.26

Nađimo sva rješenja u Z jednadžbe x3 = y2 + 5.

Rješenje:
Započnimo s provjerom parnosti. Ako je x paran, tada je y2 ≡ −5 ≡ 3

(mod 8), ali 3 modulo 8 nije kvadrat. Stoga je x neparan, pa je y paran.
Primijetimo da su x, y relativno prosti, jer bi inače njihov najveći zajednički

djelitelj morao dijeliti x3 − y2 = 5. Kad bi najveći zajednički djelitelj bio 5,
dolazimo do kontradikcije modulo 125, tj. dobili bismo −25t2 ≡ 5 (mod 125),
što je očito nemoguće.

Zapišimo jednadžbu kao

x3 = y2 + 5 = (y +
√
−5)(y −

√
−5). (5.4)

Neka je K = Q(
√
−5). Kada bi bilo da je hK = 1, mogli bismo provjeriti

da su y +
√
−5 i y −

√
−5 relativno prosti i njihov produkt je kub, pa su

oni oboje kubovi (jedinice u Z[
√
−5] su ±1, koje su oboje kubovi). Međutim,

imamo hK = 2, tako da ne možemo to napraviti. Međutim, možemo promotriti
faktorizaciju ideala

(x)3 = (y +
√
−5)(y −

√
−5).

Dokažimo prvo da su ideali (y+
√
−5) i (y−

√
−5) relativno prosti. Pretposta-

vimo da ℘ ⊆ OK dijeli (y +
√
−5) i (y −

√
−5). To znači da su

y +
√
−5 ∈ p, y −

√
−5 ∈ p.

Slijedi da su 2y i y2 +5 = x3 također u p. Neka je p prost broj takav da pZ leži
ispod p. Tada su 2y, x3 ∈ pZ, što smo vidjeli da je nemoguće,

Zaključujemo da je
(y +

√
−5) = I3

za neki ideal I u OK . Primijetimo da je [I3] = [I], pošto je hK = 2 (pa je
[I2] = [OK ] za svaki ideal I). Pošto je I3 glavni, slijedi da je i I glavni.

Dakle
y +
√
−5 = (m+ n

√
−5)3 (5.5)

za neke cijele brojeve m i n, pa je

y = m3 − 15mn2 = m(m2 − 15n2), 1 = 3m2n− 5n3 = n(3m2 − 5n2). (5.6)

Iz druge jednadžbe, n = ±1. Ako je n = 1, tada 1 = 3m2−5, pa 3m2 = 6, što
nema cjelobrojnih rješenja. Ako je n = −1, tada 1 = −(3m2 − 5), pa 3m2 = 4,
što također nema cjelobrojnih rješenja. Došli smo do zaključka da y2 = x3 − 5
nema cjelobrojnih rješenja.

Napomenimo ovdje bitnu činjenicu koju smo koristili: ako imamo izraz
Xm = Y · Z u OK , gdje su ideali (Y ) i (Z) relativno prosti, te je (hK ,m) = 1,
tada su Y i Z zapravo m-te potencije u OK .



Poglavlje 6

Fermatov posljednji teorem za
regularne proste brojeve

6.1 Teorem
Neka je p neparan prost broj i K = Q(ζp). Pisat ćemo ζ umjesto ζp za ovo
poglavlje.

Početkom 19. stoljeća primijećeno je da je ovo polje usko povezano s Fer-
matovim posljednjim teoremom. Specifično, ako postoji rješenje jednadžbe

xp + yp = zp (6.1)

gdje su x, y, z ∈ Z, može se koristiti faktorizacija

xp + yp = (x+ y)(x+ ζy)(x+ ζ2y) · · · (x+ ζp−1y)

kako bi se zaključilo da je

(x+ y)(x+ ζy)(x+ ζ2y) · · · (x+ ζp−1y) = zp.

Odavde se pokazuje (uz odgovarajuće uvjete za x, y, z) da su faktori s lijeve
strane međusobno relativno prosti. Ako je OK DJF, slijedi da je svaki x+ ζiy
p-ta potencija u OK , budući da im je umnožak takav. Odavde se može lako
dobiti kontradikcija koja pokazuje da Fermatova jednadžba nema netrivijalno
rješenje u ovom slučaju.

Ovaj dokaz je prvi uspješno proveo Kummer sredinom 19. stoljeća. Shvatio
je da njegov dokaz vrijedi ne samo za one p kod kojih je Z[ζp] DJF, već i za
puno veću klasu prostih brojeva. Ključno svojstvo se pokazalo da p ne dijeli
broj klasa hQ(ζp). Kummer je takve proste brojeve nazvao regularni; ako prost
broj nije regularan, onda se kaže da je iregularan.

Dokazati ćemo Kummer-ov teorem s dodatnom pojednostavljujućom pret-
postavkom da p ne dijeli xyz; ovo se klasično naziva Slučaj I. Slučaj I sadrži
većinu zanimljivog sadržaja općeg slučaja i ima prednost da je tehnički puno
jednostavniji.

106
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Teorem 6.1.1: (Kummer)

Neka je p ≥ 5 regularan prost broj. Tada jednadžba

xp + yp = zp

nema rješenja s x, y, z ∈ Z i p koji ne dijeli xyz.

Dokaz. Za početak, lako vidimo da možemo bez smanjenja općenitosti pretpos-
taviti da x i y nisu kongruentni modulo p. Naime, prvo primijetimo da možemo
pretpostaviti da su x, y, z u parovima relativno prosti, inače ih sve podijelimo
s najvećim zajedničkim djeliteljem, pa dobijemo u parovima relativno prosta
rješenja iste jednadžbe. Dakle, ne mogu i x i y biti kongruentni 0 modulo p.
Pretpostavimo sada da je 0 ̸= x ≡ y (mod p). Tada je z ≡ 2x (mod p) i z ̸≡ −x
(mod p) (jer bi inače bilo y ≡ 0 (mod p)). Sada uz zamjenu varijabli y′ = −z i
z′ = −y imamo jednadžbu

xp + (y′)p = (z′)p

takvu da je x ̸≡ y′ (mod p).
Neka je sada K = Q(ζp). Pretpostavimo da postoji rješenje xp + yp = zp.

Kao i prije, pišemo

(x+ y)(x+ ζy) · · · (x+ ζp−1y) = zp.

Najprije ćemo pokazati da glavni ideali
(
x+ ζiy

)
i
(
x+ ζjy

)
nemaju zajed-

ničkih faktora za i ̸= j.

Lema 6.1.2

Pretpostavimo xp + yp = zp i p ne dijeli xyz. Tada su ideali
(
x+ ζiy

)
međusobno relativno prosti za i = 0, . . . , p− 1.

Dokaz. Neka su i i j različiti cijeli brojevi između 0 i p − 1 i pretpostavimo
da postoji neki prost ideal q od OK koji dijeli i

(
x+ ζiy

)
i
(
x+ ζjy

)
. Tada q

također dijeli glavne ideale:((
x+ ζiy

)
−
(
x+ ζjy

))
=
((
ζi − ζj

)
y
)

i ((
x+ ζiy

)
− ζi−j

(
x+ ζjy

))
=
((
1− ζi−j

)
x
)
.

Napomena: ζi−j
(
x+ ζjy

)
generira isti ideal kao x + ζjy budući da je ζi−j

jedinica.
Sjetimo se da, budući da i ̸= j, ζi − ζj = ζi

(
1− ζj−i

)
i 1 − ζi−j su oboje

asocirani (generiraju isti ideal) broju 1 − ζ. Zaključujemo da q dijeli ideale
(1− ζ) (x) i (1− ζ) (y).



POGLAVLJE 6. FERMATOV POSLJEDNJI TEOREM ZA REGULARNE
PROSTE BROJEVE 108

Međutim, budući da su x i y relativno prosti u Z, slijedi da ne može postojati
prost ideal u OK koji ih oboje dijeli; stoga je jedina mogućnost q = (1− ζ).

Pretpostavimo dakle da (1− ζ) dijeli
(
x+ ζiy

)
i
(
x+ ζjy

)
kao ideale. Ovo

odmah implicira da 1− ζ dijeli x+ ζiy i x+ ζjy kao elemente od OK . Dakle:

x+ ζiy ≡ 0 (mod 1− ζ).

Također vrijedi ζi ≡ 1 (mod 1− ζ), tako da zaključujemo:

x+ y ≡ 0 (mod 1− ζ).

Međutim, x+ y je racionalni cijeli broj, tako da ako je djeljiv s 1− ζ, onda
mora biti djeljiv s p, pošto je (1− ζ) ∩ Z = pZ.

Sada imamo da p dijeli x+ y u Z. Budući da

xp + yp ≡ x+ y (mod p),

slijedi da p dijeli xp + yp, i stoga da p dijeli z. Ovo je kontradikcija našoj
pretpostavci da p ne dijeli xyz (ili našoj pretpostavci da su x i y relativno
prosti), pa zaključujemo da su

(
x+ ζi

)
i
(
x+ ζjy

)
relativno prosti ideali, kao

što smo i tvrdili.

Neka je (z) = qn1
1 · · · qnr

r faktorizacija ideala (z) u OK . Jednakost ideala

(x+ y)(x+ ζy) · · · (x+ ζp−1y) = (z)p

pokazuje da (x+ y)(x+ ζy) · · · (x+ ζp−1y) = qpn1

1 · · · qpnr
r .

Budući da su ideali (x + ζiy) u parovima relativno prosti, svaki qi mora
se pojaviti u faktorizaciji točno jednog od njih. Kako se svaki qi pojavljuje s
eksponentom djeljivim s p, slijedi da se svaki prosti faktor od (x+ζiy) pojavljuje
s eksponentom djeljivim s p. Drukčije rečeno, svaki (x + ζiy) je p-ta potencija
nekog ideala ai od OK : (x+ ζiy) = api .

Sada koristimo hipotezu da je p regularan kako bismo zaključili da su svi ai
glavni. Konkretno, primijetimo da je api trivijalan u CK jer je to glavni ideal
(x + ζiy). Budući da p ne dijeli red od CK , to implicira da ai sam mora biti
trivijalan u CK (jer ako bi CK imao element reda p, onda bi njegov red bio
djeljiv s p), pa je stoga glavni. Dakle, možemo pisati ai = (αi) za neki αi ∈ OK ,
i imamo jednakost glavnih ideala

(x+ ζiy) = (αi)
p.

Ovo implicira da
x+ ζiy = uαp

i

za neki u ∈ O∗
K . Sljedeći korak je dobiti malo više informacija o jedinici u.

Lema 6.1.3

Neka je K polje algebarskih brojeva s kompleksnim ulaganjima σ1, . . . σn.
Neka je α ∈ K cijeli algebarski broj takav da |σi(α)| = 1 za sve i =
1, . . . , n. Tada je α korijen iz jedinice.
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Dokaz. Definirajmo S kao skup svih α ∈ OK takvih da σi(α) ima apsolutnu
vrijednost 1 za svaki i. Prvo primijetimo da je S zapravo grupa s obzirom na
množenje; to je zato što, ako su α, β ∈ S, tada je

|σi(αβ)| = |σi(α)| · |σi(β)| = 1,

pa je αβ ∈ S. Zatvorenost S s obzirom na inverz dokazuje se na isti način.
Pokazat ćemo da je S konačan; to će implicirati da svi elementi u S imaju
konačan red, i stoga su korijeni jedinice.

Neka je f(x) ∈ Z[x] karakteristični polinom bilo kojeg β ∈ S. (f(x) ima
cjelobrojne koeficijente jer je β algebarski cijeli broj.) Imamo

f(x) = (x− σ1(β)) · · · (x− σn(β)).

Razmotrimo koeficijent an−1 uz xn−1 u f(x). To je cijeli broj, jer je f(x) ∈
Z[x]. Također ima izraz

an−1 = −(σ1(β) + · · ·+ σn(β)).

Budući da svaki σi(β) ima apsolutnu vrijednost 1, to implicira da

|an−1| ≤ n.

Na isti način, pokazuje se da za bilo koji k,

|ak| ≤
(
n

k

)
.

Dakle, postoji samo konačno mnogo mogućnosti za svaki ak, jer je svaki cijeli
broj u ograničenom rasponu.

Posebno, to znači da postoji samo konačno mnogo mogućih izbora za f(x),
jer postoji samo konačno mnogo izbora za svaki koeficijent od f(x). (Primije-
timo također da je stupanj od f(x) fiksan na n.) Svaki takav f(x) ima najviše
n korijena, pa sve zajedno može postojati samo konačan broj korijena polinoma
koji bi mogli biti karakteristični polinomi elemenata iz S. Posebno, sam S mora
biti konačan, kao što smo i tvrdili.

Lema 6.1.4

Neka je u ∈ O×
K . Tada je u/ū = ζb za neki b, gdje je ū kompleksno-

konjugirana vrijednost od u.

Dokaz. Neka su σ1, . . . , σp−1 kompleksna ulaganja od Q(ζ), poredana na uobi-
čajeni način. Primijetimo da za svaki α ∈ Q(ζ) vrijedi

σi(α) = σi(σ−1(α)) = σ−1(σi(α)) = σi(α),

zbog σ−1(α) = α i komutativnosti Galoisove grupe. Posebno, svaki konjugat
od α/α imat će apsolutnu vrijednost 1, budući da kompleksan broj i njegov
kompleksni konjugat imaju istu apsolutnu vrijednost.
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Kada je u jedinica, u/u je također algebarski cijeli broj, jer je u jedinica.
Sada možemo primijeniti Lemu 6.1.3 kako bismo zaključili da je u/u korijen
jedinice. Dakle

u

u
= ±ζk (6.2)

za neki k. Moramo pokazati da je predznak zapravo +. Pretpostavimo da je
u/u = −ζk za neki k. Napišimo

u = a0 + a1ζ + · · ·+ ap−2ζ
p−2. (6.3)

Tada
u ≡ a0 + a1 + · · ·+ ap−2 (mod 1− ζ). (6.4)

Slično, budući da su 1− ζ i 1− ζ = 1− ζp−1 asocirani, vrijedi

u ≡ a0 + a1 + · · ·+ ap−2 (mod 1− ζ). (6.5)

Stoga,

u ≡ u ≡ −ζku ≡ −u (mod 1− ζ). (6.6)

Zbog toga 2u ∈ (1 − ζ); budući da je (1 − ζ) prost ideal i 2 nije u tom idealu,
to implicira da u ∈ (1 − ζ). No to je nemoguće, jer je u jedinica, a ovo nije
jedinični ideal. Time dobivamo željenu kontradikciju.

Lema 6.1.5

Neka je u jedinica od OK . Tada se u može napisati kao ζaε gdje je ε
jedinica maksimalnog realnog potpolja od K.

Dokaz. Prvo možemo primijeniti Lemu 6.1.3 i zaključiti da je u/u korijen jedi-
nice. Prema Lemi 6.1.4 to znači da je

u

u
= ζb

za neki b.
Sada odaberimo a ∈ Z takav da je 2a ≡ b (mod p) i neka je ε = ζ−au. Tada

je u = ζaε, i
ε̄ = ζaū = ζaζ−bu = ζ−au = ε,

tako da je ε realan i stoga leži u maksimalnom realnom potpolju od K.

Nastavljamo dokaz Kummerovog teorema. Sjetimo se da smo dokazali da je
x+ ζiy = uαp

i za neki u ∈ O×
K . Sada uzmimo i = 1; prema dokazanom do sada,

možemo pisati
x+ ζy = ζaεαp
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za neki cijeli broj a, neku realnu jedinicu ε i neki α = α1 ∈ OK . Pokažimo da
je αp ≡ b (mod p) za neki racionalni cijeli broj b. Neka je

α = a0 + a1ζ + . . .+ ap−2ζ
p−2,

za neke ai ∈ Z. Tada je

αp ≡
(
a0 + a1ζ + . . .+ ap−2ζ

p−2
)p

(mod p)

≡ a0 + a1ζ
p + . . .+ ap−2ζ

p(p−2) (mod p)

≡ a0 + a1 + . . .+ ap−2, (mod p)

kao što smo i tvrdili.
Zaključujemo da

x+ ζy ≡ ζaεb (mod p).

Budući da su ε, b i p svi realni, uzimanjem kompleksnih konjugata dobivamo

x+ ζ−1y ≡ ζ−aεb (mod p).

Kombinirajući ove jednadžbe, zaključujemo da

ζ−a(x+ ζy) ≡ ζa(x+ ζ−1y) (mod p)

što se pojednostavljuje na

x+ ζy − ζ2a−1y − ζ2ax ≡ 0 (mod p).

Možemo koristiti ovu kongruenciju da dobijemo našu željenu kontradikciju.
Pretpostavimo prvo da su 1, ζ, ζ2a−1 i ζ2a svi različiti. Budući da je p ≥ 5, to
implicira da su ovi elementi dio integralne baze za OK . Sada činjenica da je

x+ ζy − ζ2a−1y − ζ2ax

djeljivo s p u OK implicira da x i y moraju biti djeljivi s p u Z; ovo proturječi
našoj pretpostavci da p ne dijeli xyz, što završava ovaj slučaj.

To ostavlja slučajeve gdje su neki od 1, ζ, ζ2a−1, ζ2a jednaki. Mogućnosti
su:

(1) 1 = ζ2a−1. Tada je ζ = ζ2a, pa nalazimo da

(x− y) + (y − x)ζ ≡ 0 (mod p).

Ovo povlači da p dijeli (x − y)(1 − ζ). Kako smo pretpostavili da x i y nisu
kongruentni modulo p, x− y je relativno prost s p; budući da također p ne dijeli
1 − ζ (oni nisu relativno prosti, ali to nije važno), ovo implicira da p ne može
dijeliti (x− y)(1− ζ); to je željena kontradikcija.

(2) 1 = ζ2a. Tada je ζ2a−1 = ζ−1, pa se kongruencija reducira na

ζy − ζ−1y ≡ 0 (mod p).
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Ovo implicira da p dijeli y(ζ− ζ−1) = −yζ−1(1− ζ2); činjenica da p ne dijeli
y sada daje kontradikciju kao u prethodnom slučaju.

(3) ζ = ζ2a−1. Tada je ζ2a = ζ2 i kongruencija se reducira na

(1− ζ2)x ≡ 0 (mod p).

Ovaj put p dijeli x(1−ζ2); činjenica da p ne dijeli x sada daje kontradikciju.
Ovo završava dokaz.

Napomenimo da smo mi koristili činjenicu da p ne dijeli xyz na bitan način;
Kummer je uspio proširiti teorem na slučaj p|xyz.

6.2 Regularni prosti brojevi
Još nismo dali nikakve metode za određivanje je li neki prost broj regularan. U
ovom odjeljku ćemo navesti neke Kummerove rezultate koji daju lako izračun-
ljive kriterije za regularnost.

Definiramo Bernoullijeve brojeve Bn ∈ R formulom:

t

et − 1
=

∞∑
n=0

Bnt
n

n!
.

Može se pokazati da je Bn = 0 ako je n > 1 neparan. Također, vrijedi formula

n−1∑
k=0

(
n

k

)
Bk = 0

koja ih čini lagano izračunljivima i također pokazuje da su zapravo u Q.
Kummer-ovi glavni rezultati o regularnim prostim brojevima su sljedeći te-

oremi. Neka je hp broj klasa od Q(ζp) i h+p broj klasa maksimalnog realnog
potpolja Q(ζp + ζ−1

p ). Vrijedi da h+p dijeli hp, i definirajmo h−p = hp/h
+
p .

Teorem 6.2.1: Kummer

Neka je p neparan prost broj. Tada p dijeli h−p ako i samo ako p dijeli
brojnik nekog Bernoullijevog broja Bj gdje je j = 2, 4, . . . , p− 3.

Teorem 6.2.2: Kummer

Ako p dijeli h+p , onda p dijeli h−p .

Iako postoji beskonačno mnogo prostih brojeva za koje p dijeli h−p , ne postoje
poznati p za koje p dijeli h+p . Vandiver je izrekao slutnju da se ovo nikada ne
događa, iako ova slutnja nije univerzalno prihvaćena.
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Korolar 6.2.3: Kummer

p dijeli hp ako i samo ako p dijeli brojnik nekog Bernoullijevog broja Bj

gdje je j = 2, 4, . . . , p− 3.

Koristeći ove rezultate, nalazimo da je 37 prvi iregularni prost broj; on dijeli
numerator od B32. Sljedeći nekoliko iregularnih prostih brojeva su 59, 67, 101,
103, 131, 149 i 157.

Možemo dati heurističku argumentaciju za postotak prostih brojeva koji su
iregularni. Definiramo indeks iregularnosti i(p) kao broj Bernoullijevih brojeva
Bj gdje je j = 2, 4, . . . , p − 3 za koje p dijeli brojnik od Bj ; dakle i(p) = 0
ako i samo ako je p regularan. Pretpostavljajući da su Bernoullijevi brojevi
nasumično distribuirani modulo p (što znači da p dijeli Bj s vjerojatnošću 1/p),
vjerojatnost da je i(p) = k za neki k jest:(p−3

2

k

)(
1− 1

p

) p−3
2 −k (

1

p

)k

.

Kako p raste, ovo se približava Poissonovoj distribuciji:

(1/2)ke−1/2

k!
.

Uzimajući k = 0, nalazimo da bi udio regularnih prostih brojeva trebao biti
e−1/2, što je približno 60,65%. Ovaj rezultat se jako poklapa s numeričkim
izračunima.

Korolar 6.2.4: Kummer

Postoji beskonačno mnogo iregularnih prostih brojeva.



Poglavlje 7

p-adski brojevi

7.1 Inverzni limes
Definicija 7.1.1

Inverzni sistem je niz objekata (npr. skupova/grupa/prstena) (An)
skupa sa nizom morfizama (npr. funkcija/homomorfizama) (fn)

· · · → An+1
fn−→ An → · · ·

f2−→ A2
f1−→ A1.

Definicija 7.1.2

Inverzni limes A = lim←−An inverznog sistema skupova (An), (fn) defini-
ranog kao gore je skup A čiji elementi su beskonačni nizovi (an), gdje je
an ∈ An za svaki n ≥ 0, te koji zadovoljavaju fn(an+1) = an za svaki
n ≥ 0.

Napomena 7.1.3

Ako su An grupe i fn homomorfizmi grupa, tada je inverzni limes također
grupa. Ako su An prsteni i fn homomorfizmi prstenova, tada je An

prsten.

114
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7.2 Prsten cijelih p-adskih brojeva

Definicija 7.2.1

Neka je p fiksan prost broj. Prsten cijelih p-adskih brojeva Zp je inverzni
limes

Zp = lim←− Z/pnZ

inverznog sistema prstenova (Z/pnZ) s homomorfizmima prstenova (fn),
gdje je fn redukcija modulo pn.

Napomena 7.2.2

Multiplikativna jedinica u prstenu je 1 = (1, 1, . . .), gdje je n-ta 1 ozna-
čava 1+pnZ. Preslikavanje koje šalje x ∈ Z u (x, x, . . .), je homomorfizam
prstenova koji očito ima trivijalnu jezgru. Dakle vidimo da se Z ulaže u
Zp, pa vidimo da Zp ima karakteristiku 0, te možemo smatrati Z potpr-
stenom od Zp. Međutim, prsten Zp je puno veći od Z.

Elemente prstena Zp ćemo neformalno pisati kao nizove (a1, a2, . . .), gdje
cijeli broj ai ∈ [0, pi − 1] reprezentira ai + piZ.

Primjer 7.2.3

U Z7 imamo

2 = (2, 2, 2, 2, 2 . . .),

2002 = (0, 42, 287, 2002, 2002, . . .),

−2 = (5, 47, 341, 23999, 16805, . . .),

1

2
= (4, 25, 172, 1201, 8304, . . .),

√
2 =

{
(3, 10, 108, 2166, 4567, . . .)

(4, 39, 235, 235, 12240, . . .)

5
√
2 = (4, 46, 95, 1124, 15530, . . .)

Zadatak 7.2.4

Dokažite da postoji p
√
2 u Z7 za svaki p > 7.
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Definicija 7.2.5

Sjetimo se da je niz homomorfizama grupa egzaktan ako je za svaku
grupu u nizu slika ulaznog homomorfizma jednaka jezgri izlaznog homo-
morfizma. Za kratki egzaktan niz

0→ A
f−→ B

g−→ C → 0,

to znači da je f injektivan, g surjektivan, te da je im f = ker g. Po prvom
teoremu o izomorfizmu grupa, također vrijedi B/ im f ≃ C.

Propozicija 7.2.6

Za svaki cijeli broj m, niz

0→ Zp
[pm]−−−→ Zp

πm−−→ Z/pmZ→ 0

je egzaktan, gdje je [pm] množenje s pm, te je πm projekcija na Z/pmZ,
tj. preslikavanje koje šalje niz (an) u am.

Dokaz. Dokažimo prvo da je množenje s p u Zp injektivno. Pretpostavimo
suprotno, tj. da je a = (an) u jezgri. Tada je pa = 0, pa je pan = 0 za svaki n.
Posebno, pan+1 = 0 u Z/pn+1Z. To sada znači da je an+1 = pnyn+1 u Z/pn+1Z
za neki yn+1 ∈ Z/pn+1Z. Sada slijedi da je an = f(an+1) = pnf(yn+1) = 0 u
Z/pnZ. Kako ovo vrijedi za sve n, slijedi a = 0.

Egzaktnost s lijeva: Pošto je množenje s p injektivno, vrijedi da je
kompozicija tog preslikavanja sa samim sobom m puta (tj. množenje s pm)
injektivno.

Egzaktnost s desna: Zapišimo β ∈ Z/pmZ kao b + pmZ. Tada će πm
preslikati element (b, b, b, b, . . .) u β.

Egzaktnost u sredini: Ako je a ∈ Zp, tada je πm(pma) = pmπm(a) = 0
u Z/pmZ. Dakle slika ulaznog preslikavanja je u jezgri izlaznog preslikavanja.
Dokažimo suprotnu inkluziju. Neka je a = (an) u jezgri od πm. Dakle vrijedi
da je am = 0. Dakle za svaki n ≥ m, imamo an ∈ pmZ/pnZ. Dakle postoji
jedinstveni bn−m koji se preslikava u an pod djelovanjem izomorfizma

Z/pn−mZ pm

−−→ pmZ/pnZ.

Niz tih bn−m-ova je kompatibilan, pošto su an-ovi kompatibilni, te postoji ele-
ment b = (bn) takav da je pmb = a, dakle a je u slici od množenja s pm.

Korolar 7.2.7

Za svaki prirodan broj m vrijedi Zp/p
mZp ≃ Z/pmZ.
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Propozicija 7.2.8

Element x ∈ Zp je invertibilan ako i samo ako x /∈ pZp. Drugim riječima,
Z×
p je Zp\pZp.

Dokaz. Ako je a = (an) ∈ Zp djeljiv s p, tada je a1 = 0, pa a očito ne može biti
invertibilan. Ako a nije djeljiv s p tada za svaki n vrijedi an ∈ bn + pnZ za neki
bn ∈ Z, te taj bn nije djeljiv s p. Slijedi da an ima inverz cn u Z/pnZ. Također,
niz (cn) mora biti kompatibilan, te je c = (cn) inverz od a.

Propozicija 7.2.9

Svaki element x ∈ Zp se može na jedinstven način zapisati kao pnu, gdje
je u ∈ Z×

p .

Dokaz. Postojanje zapisa: Ako je 0 ̸= a = (an), tada postoji najveći n
takav da je an = 0. Za taj n, po Propoziciji 7.2.6 vrijedi a = pnu za neki
u ∈ Zp. štoviše, u ne može biti djeljiv s p, pošto bi tada bilo un+1 = 0, pa je po
prethodnoj propoziciji u invertibilan.

Jedinstvenost zapisa: Pretpostavimo pnu1 = pmu2. Ako je m = n,
tada zbog injektivnosti množenja s pm imamo u1 = u2. U suprotnom možemo
bez smanjenja općenitosti pretpostaviti da je n > m. Tada je u2 = pn−mu2
invertibilan, što je kontradikcija s prethodnom propozicijom.

Korolar 7.2.10

Prsten Zp je integralna domena.

Dokaz. Množenjem dva nenul elementa pnu1 i pmu2 dobivamo pn+mu1u2, čija
je (n+m+ 1)-ta komponenta različita od nule.

Definicija 7.2.11

Neka je a = (an) ∈ Zp, gdje je po običaju an cijeli broj iz [0, pn− 1]. Niz
(b0, b1, . . .) za kojeg vrijedi b0 = a1 i bn = (an+1−an)/pn se zove p-adska
ekspanzija od a.

Dakle svaki a ∈ Zp se može zapisati kao formalni red

a =

∞∑
i=0

bip
i.

Iz definicije odmah slijedi:
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Propozicija 7.2.12

Svaki element u Zp ima jedinstvenu p-adsku ekspanziju i svaki niz
(b0, b1, . . .), gdje je bi ∈ [0, p− 1] je p-adska ekspanzija nekog elementa iz
Zp.

Dakle, postoji bijekcija između Zp i nizova cijelih brojeva s elementima iz
[0, p− 1].

Definicija 7.2.13

Za svaki 0 ̸= a ∈ Zp, p-adska valuacija od a, s oznakom vp(a) je najveći
cijeli broj m za koji je a u pmZp. Ekvivalentno vp(a) je za a =

∑∞
i=0 bip

i

najmanji prirodan broj m takav da je bm ̸= 0. Također, ekvivalentno,
ako zapišemo a = pmu, gdje je u ∈ Z×

p tada je vp(a) = m. Definiramo
vp(0) = +∞.

Propozicija 7.2.14

Svaki ne-nul ideal u Zp je oblika (pm) za neki prirodan broj m.

Dokaz. Neka je I ne-nul ideal u Zp i neka je m = inf{vp(a) : a ∈ I}. Pošto je
I ̸= (0), tada je m < ∞, te za svaki a ∈ I vrijedi a ∈ pmZp = (pm). S druge
strane, postoji a ∈ I takav da je a = pmu. Slijedi da je u−1a = pm ∈ I, iz čega
slijedi da je (pm) ⊂ I.

Korolar 7.2.15

Prsten Zp je domena glavnih ideala (a time i prsten jedinstvene faktori-
zacije) s jedinstvenim prostim idealom (p) (te jednim prostim elementom
p).

Propozicija 7.2.16

Uz konvenciju da je n+∞ =∞ za svaki cijeli broj n, p-adska valuacija
zadovoljava sljedeća svojstva:

1. vp(a) =∞ ako i samo ako je a = 0.

2. vp(ab) = vp(a) + vp(b).

3. vp(a+ b) ≥ min(vp(a), vp(b)).

Dokaz. Prvo svojstvo slijedi iz definicije. Drugo i treće svojstvo su očito zado-
voljena ako su a ili b jednaki 0. Pretpostavimo a, b ̸= 0. Neka je vp(a) = m i
vp(b) = n.
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Da bismo dokazali drugu tvrdnju zapišimo a = pmu1 i b = pnu2, gdje su
u1, u2 ∈ Z×

p . Tada je ab = pm+nu1u2, pa je vp(ab) = m+ n.
U trećoj tvrdnji možemo bez smanjenja općenitosti pretpostaviti da je m ≤

n. Slijedi da je pnZp ⊆ pmZp, pa su i a, b ∈ pmZp, iz čega slijedi da je a + b ∈
pmZp, te je vp(a+ b) ≥ min(vp(a), vp(b)).

p-adska valuacija je primjer diskretne valuacije.

Definicija 7.2.17

Neka je R komutativni prsten. Diskretna valuacija (na R) je funkcija
v : R→ Z ∪ {∞} koja zadovoljava svojstva iz propozicije 7.2.16.

Definicija 7.2.18

Prsten diskretne valuacije je domena glavnih ideala koja sadrži jedins-
tveni maksimalni ideal, te nije polje.

Možda je ova definicija na prvi pogled neobična, pošto se ne spominje valu-
acija, međutim za svaki prsten diskretne valuacije se može na analogan način
definirati diskretna valuacija.

Prsten diskretne valuacije je "najbliže" što komutativni prsten može biti
polje, a bez da je zaista polje.

7.3 Polje p-adskih brojeva
Sjetimo se da se polje razlomaka nekog prstena R definira kao skup uređenih
parova (a, b) ∈ R2, koji se obično zapisuje kao a/b gdje vrijedi da je a/b ∼ c/d
kad god je ad = bc.

Definicija 7.3.1

Polje p-adskih brojeva Qp je polje razlomaka od Zp.

Pošto je a ∈ Qp po definiciji a = (pmu1)/(p
nu2) = pm−nu1u

−1
2 , možemo

svaki element iz Qp zapisati kao upk za u ∈ Z×
p , k ∈ Z. Sada možemo proširiti

definiciju od vp na Qp tako da za a = upk, u ∈ Z×
p , k ∈ Z vrijedi vp(upk) = k,

te je kao i prije vp(0) := +∞.
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Napomena 7.3.2

Primijetimo da sada možemo Zp identificirati kao podskup od Qp sa
elementima ne-negativne valuacije, te Z×

p možemo definirati kao podskup
Qp elemenata s valuacijom 0.
Vrijedi Q ⊂ Qp, te vrijedi za svaki x ∈ Qp je ili x ∈ Zp ili je x−1 ∈ Zp.

Ovo je jedan od dva načina definiranja polja Qp. Promotrimo sada drugi
način, preko apsolutnih vrijednosti.

7.4 Apsolutne vrijednosti

Definicija 7.4.1

Neka je k polje. Apsolutna vrijednost na k je funkcija ∥∥ : k → R≥0 sa
sljedećim svojstvima:

(1) ∥x∥ = 0 ako i samo ako je x = 0,

(2) ∥xy∥ = ∥x∥ · ∥y∥.

(3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Apsolutne vrijednosti se nekada nazivaju i "norme", ali mi ćemo koristiti
izraz norme za nešto drugo, te ćemo koristiti naziv "apsolutna vrijednost" kako
bismo izbjegli zabunu.

Neke norme zadovoljavaju jače svojstvo

(3’) ∥x+ y∥ ≤ max{∥x∥, ∥y∥}.

se zovu nearhimedske apsolutne vrijednosti, a one koje ne zadovoljavaju se zovu
arhimedske.

Definicija 7.4.2

Definiramo p-adsku apsolutnu vrijednost | |p na Qp s

|x|p = p−vp(x).



POGLAVLJE 7. p-ADSKI BROJEVI 121

Napomena 7.4.3

primijetimo da pošto je Q ⊂ Qp, ovo daje definiciju apsolutne vrijednosti
| |p na Q. Spomenuti alternativni način definicije od Qp je da definiramo
Qp kao upotpunjenje od Q (tj. Q skupa s svim limesima nizova iz Q) s
obzirom na apsolutnu vrijednost | |p. Dosta knjiga definira Qp upravo na
ovaj način. Tada se Zp definira kao

Zp = {x ∈ Qp : |x|p ≤ 1},

ili kao upotpunjenje od Z s obzirom na | |p.

Napomena 7.4.4

Naziv prsten cijelih brojeva u Qp može biti zbunjujući. Naime, Zp nije
integralno zatvorenje od Z u Qp. To možemo vidjeti promatranjem kardi-
naliteta tih skupova. Integralno zatvorenje od Z u Qp je prebrojiv skup,
(pošto postoji prebrojivo mnogo polinoma s cjelobrojnim koeficijentima)
dok je Zp očito neprebrojiv skup. Međutim, istina je da je Zp integralno
zatvoren u Qp, te Zp sadrži integralno zatvorenje od Z u Q.

Definicija 7.4.5

Dvije apsolutne vrijednosti ∥ ∥ i ∥ ∥′ na polju k su ekvivalentne ako
postoji α ∈ R takav da je

∥x∥′ = ∥x∥α

za svaki x ∈ k.

Sljedeći teorem, koji nećemo dokazivati, nam govori koje su sve apsolutne
vrijednosti, do na ekvivalenciju, na Q. Označimo s | |∞ uobičajenu apsolutnu
vrijednost.

Općenito u p-adskoj apsolutnoj vrijednosti, "mali" su brojevi koji su djeljivi
velikim potencijama broja p.

Teorem 7.4.6: Ostrowski

Svaka ne-trivijalna apsolutna vrijednost na Q je ekvivalentna s | |p za
neki prost broj p ili | |∞.

Na Zp i Qp se može definirati p-adska topologija preko apsolutne vrijednosti.
U p-adskim brojevima su a, b ∈ Q, promatrani kao elementi od Qp "blizu", ako
je u brojniku od a − b velika potencija od p. Na primjer, niz 2, 4, 8, 16, 32, . . .
konvergira u 0 u Z2.

p-adska analiza nam je često vrlo korisna, međutim trebamo biti vrlo pažljivi
s intuicijom kada radimo s p-adskim brojevima.
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Primjer 7.4.7

Neka su b, c ∈ Q, te neka je p prost broj. Tada postoji niz racional-
nih brojeva ai koji konvergira u b u standardnoj (realnoj) topologiji, te
konvergira u c u p-adskoj topologiji. Dokažimo ovu tvrdnju. Neka je

dn =
pn

pn + 1
en =

1

pn + 1
.

U standardnoj topologiji dn konvergira u 1, a en konvergira u 0, dok u
p-adskoj topologiji dn konvergira u 0, a en = 1 − pn

pn+1 konvergira u 1.
Dakle vidimo da će niz (an) = (bdn + cen) konvergirati u b u standardnoj
topologiji, te u c u p-adskoj.

Prikažimo sada jednu primjenu p-adskih brojeva i jednostavne p-adske ana-
lize.

Primjer 7.4.8

Dokažimo da ako prost p dijeli nazivnik od koeficijenata od (1+t)a, onda
p dijeli nazivnik od a.
Na primjer,

(1 + t)
1
6 = 1 +

1

6
t− 5

2232
t2 +

55

2434
t3 − 935

2735
t4 + . . . .

Vidimo da se u nazivnicima nalaze samo potencije od 2 i 3, tj. prostih
djelitelja od 6. Tvrdimo da, za a ∈ Q, k ∈ N, se u nazivniku od(

a

k

)
=
a(a− 1)(a− 2) . . . (a− k + 1))

k!

nalaze samo potencije prostih brojeva koje dijele nazivnik od a.
Dokažimo tvrdnju obratom po kontrapoziciji: ako p ne dijeli nazivnik od
a, tada p ne dijeli nazivnik od

(
a
k

)
. Pošto a nema faktore od p u nazivniku,

tada je a ∈ Zp. Dakle, zaključujemo da je a = (an) limes niza (bn), gdje je
bn ∈ Z, npr. uzmimo da je bi i-ti član p-adske ekspanzije bi =

∑i
k=0 akp

k.
Općenitije Zp je upotpunjenje od Z u p-adskoj topologiji, pa ova tvrdnja
vrijedi za svaki r ∈ Zp.
S druge strane, polinomijalna funkcija x 7→

(
x
k

)
∈ Q[x] je neprekidna u

p-adskoj topologiji, pa zbog a = limi→∞ bi, imamo(
a

k

)
= lim

i→∞

(
bi
k

)
.

Pošto je bi ∈ Z, slijedi da je
(
bi
k

)
∈ Z. Pošto je

(
a
k

)
limes elemenata iz Z,

slijedi da je
(
a
k

)
∈ Zp, tj. p ne dijeli nazivnik od

(
a
k

)
.
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7.5 Rješenja polinomijalnih jednadžbi

Lema 7.5.1

Neka je (Sn) inverzni sistem konačnih nepraznih skupova s kompatibilnim
preslikavanjem fn : Sn+1 → Sn. Tada je lim←−Sn neprazan.

Dokaz. Ako su svi fn surjektivni, tada lako konstruiramo element (sn): izabe-
remo bilo koji s1 ∈ S1, te za n ≥ 1 izaberemo sn+1 ∈ f−1

n (sn). sada nam je cilj
opći slučaj reducirati na ovaj.

Neka je Tn,n = Sn i za m > n neka je Tm,n slika od Sm u Sn, tj.

Tm,n = fn(fn+1(· · · fm−1(Sm) · · · )).

Tada za svaki n imamo niz inkluzija

· · · ,⊆ Tm,n ⊆ Tm−1,n ⊆ · · ·Tn,n ⊆ Sn.

Svaki Tm,n je konačan neprazan skup, pa slijedi da je za sve osim konačno
mnogo inkluzija, ta inkluzija zapravo jednakost. Dakle za svaki n, je En =
∩mTm,n neprazan podskup od Sn. Restringirajući preslikavanje fn tako da
definira preslikavanje En+1 → En dobivamo inverzni sistem (En) nepraznih
skupova takvih da su sva preslikavanja surjekcija, kao što smo i htjeli.

Propozicija 7.5.2

Neka je f ∈ Zp[x]. Tada su sljedeće tvrdnje ekvivalentne:

(1) Jednadžba f(x) = 0 ima rješenja u Zp.

(2) Jednadžba f(x) = 0 ima rješenja u Z/pnZ za svaki n ∈ N

Dokaz. Neka je Sn skup rješenja u Z/pnZ. Tada je lim←−Sn ⊆ lim←−Z/p
nZ = Zp

skup rješenja u Zp. Sada imamo lim←−Sn ̸= ∅ ako i samo ako su svi Sn neprazni
po Lemi 7.5.1.

Henselova lema će nam reći da je nešto što je "blizu" rješenja polinomijalne
jednadžbe može "popraviti" do egzaktnog rješenja.

Teorem 7.5.3: Henselova lema

Neka je fp ∈ Zp[x]. Pretpostavimo da je f(a) ≡ 0 (mod p) i f ′(a) ̸≡ 0
(mod p). Tada postoji jedinstveni b ∈ Zp, b ≡ a (mod p) takav da je
f(b) = 0.

Dokaz. Neka a1 = a i definiramo za n ≥ 1

an+1 = an − f(an)/f ′(an).
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Dokazujemo indukcijom da za svaki n ≥ 1 vrijedi

f ′(an) ̸≡ 0 (mod p), (7.1)

f(an) ≡ 0 (mod pn). (7.2)

Primijetimo da (7.1) osigurava da je f ′(an) ∈ Z×
p , pa je an+1 dobro definiran

element iz Zp. Definicija od an+1 skupa s (7.1) i (7.2) osiguravaju da je an+1 ≡
an (mod pn), što znači da niz (an mod pn) definira element b ∈ Zp za koji
vrijedi f(b) = 0 i b ≡ a1 ≡ a (mod p).

Za n = 1 tvrdnja očito vrijedi, pa pretpostavimo da (7.1) i (7.2) vrijede za
an. Tada an+1 ≡ an (mod pn), pa je f ′(an+1) ≡ f ′(an) ̸≡ 0 (mod p). Dakle
(7.1) je zadovoljen za sve n ∈ N. Da bi pokazali (7.2), napravimo Taylorov
razvoj od f oko an:

f(x) = f(an) + f ′(an)(x− an) + (x− an)2g(x),

za neki g(x) ∈ Zp[x]. Uvrštavajući x = an+1, dobivamo

f(an+1) = f(an) + f ′(an)(an+1 − an) + (an+1 − an)2g(an + 1).

Iz definicije an+1 imamo f ′(an)(an+1 − an) = −f(an), pa je

f(an+1) = (an+1 − an)2g(an+1).

Pošto je an+1 ≡ an (mod pn), slijedi da je f(an+1) ≡ 0 (mod pn+1), pa (7.2)
vrijedi za an+1.

Pošto f(x) = 0 ima jedinstveno rješenje u Z/pnZ kongruentno s a modulo p
(jer (7.1) povlači da je f ′(an) ̸≡ 0 (mod pn), pa je an jednostruka nultočka od
f (mod pn)), slijedi da niz (an) definira jedinstveno rješenje u Zp.

7.6 Struktura od Z×p
Restrikcija projekcije πn : Zp → Z/pnZ na Z×

p definira surjektivni homomorfi-
zam

Z×
p → (Z/pnZ)×.

Jezgra ovog preslikavanja je Un := 1 + pnZp. Dakle, vrijedi

Z×
p /Un ≃ (Z/pnZ)×,

pa je
Z×
p ≃ lim←−(Z

×
p /Un) ≃ lim←−(Z/p

nZ)×.

primijetimo da je (Un) padajući niz podgrupa od Z×
p :

· · · ⊂ U3 ⊂ U2 ⊂ U1 ⊂ Z×
p .
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Lema 7.6.1

Vrijedi:

(1) Z×
p /U1 ≃ (Z/pZ)×.

(2) Un/Un+1 ≃ Z/pZ.

Dokaz. Prvu tvrdnju smo već dokazali. Za drugu, promotrimo preslikavanje

Un → Z/pZ,
1 + pnz 7→ (z mod p).

To preslikavanje je surjekcija, te je jezgra Un+1.

Korolar 7.6.2

Grupa U1/Un ima pn−1 elemenata.

Propozicija 7.6.3

Neka je µp−1 skup rješenja jednadžbe xp−1 = 1 u Z×
p . Tada je µp−1 s

operacijom množenja grupa izomorfna s (Z/pZ)×, te je Z×
p = U1×µp−1.

Dokaz. Skup µp−1 je jezgra homomorfizma potenciranja na (p−1)-vu potenciju
sa Z×

p u Z×
p , pa je grupa. Neka je f(x) = xp−1 − 1. Po Malom Fermatovom

teoremu, svaki element ̸= 0 iz Z/pZ je korijen ovog polinoma, te vrijedi f ′(x) ̸≡
0 (mod p) za sve x ∈ {1, 2, . . . , p − 1}. Sada po Henselovoj lemi, za svaki
x ∈ {1, 2, . . . , p − 1} postoji jedinstveni a ∈ Zp takav da je f(a) = 0. Također,
ne postoji element iz µp−1 koji je kongruentan 0 modulo p. Slijedi da je redukcija
modulo p izomorfizam µp−1 → (Z/pZ)×.

Primijetimo sada da je U1 ∩ µp−1 = {1}, pošto je 1 očito rješenje, a po
Henselovoj lemi, rješenje kongruentno 1 mod p je jedinstveno. Također, vrijedi
da je U1 · µp−1 = Z×

p , pošto se bilo koji element a ∈ Z×
p može podijeliti s

elementom iz µp−1 koji je kongruentan s a modulo p da bi dobio element iz U1.
Slijedi da je direktan produkt U1 × µp−1 izomorfan Z×

p .

Lema 7.6.4

Neka je p prost broj. Ako je p ̸= 2, neka je n ≥ 1, a ako je p = 2, neka
je n ≥ 2. Ako je x ∈ Un\Un+1, tada je xp = Un+1\Un+2.

Dokaz. Neka je x ∈ Un\Un+1, dakle x = 1+ pnk, za neki k koji nije djeljiv s p.
Tada je

xp = 1 +

(
p

1

)
kpn +

(
p

2

)
k2p2n + · · · kppnp ≡ 1 + kpn+1 (mod pn+2).
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Slijedi da je xp ∈ Un+1\Un+2.

Propozicija 7.6.5

Ako je p ̸= 2, tada je U1 ≃ Zp. Ako je p = 2, tada je U1 = {±1}×U2, te
je U2 ≃ Z2.

Dokaz. Neka je prvo p ̸= 2, te neka je α = 1 + p ∈ U1\U2. Koristeći prethodnu
lemu, zaključujemo da je αpi ∈ Ui+1\Ui+2. Neka je αn slika od α u U1/Un.
Tada je αpn−2

n ̸= 1, ali je αpn−1

n = 1, pa onda α ima red točno pn−1. Dakle
U1/Un je ciklička grupa generirana s α. Slijedi da imamo izomorfizam inverznih
sistema

· · · −−−−→ Z/pnZ −−−−→ Z/pn−1Z −−−−→ · · ·y y
· · · −−−−→ U1/Un+1 −−−−→ U1/Un −−−−→ · · ·

Nakon što primijetimo da je lim←−(U1/Un) = U1, slijedi da je U1 ≃ Zp.
Za p = 2, isti argument s izborom α = 1 + 4 dokazuje da je U2 ≃ Z2.

Koristeći da {±1} i U2 imaju trivijalan presjek (tj. −1 /∈ U2, te pošto njihov
produkt generira U1 (jer je [U1 : U2] = 2), slijedi da je {±1} × U2.

Teorem 7.6.6

Vrijedi:

(1) Grupa Z×
p je izomorfna s Z/(p− 1)Z×Zp za p ̸= 2, te s Z/2Z×Z2

za p = 2.

(2) Grupa Q×
p je izomorfna s Z × Z/(p − 1)Z × Zp ako je p ̸= 2, te s

Z× Z/2Z× Z2 ako je p = 2.

Dokaz. Tvrdnja (1) slijedi iz Propozicije 7.6.3 i 7.6.5.
Da bismo dokazali (2), promotrimo preslikavanje

Z× Z×
p → Q×

p

(n, u) 7→ pnu,

te primijetimo da je to izomorfizam grupa. Korištenjem (1), tvrdnja slijedi.

Propozicija 7.6.7

Za p ̸= 2 i prirodan broj m postoji primitivni m-ti korijen iz jedinice u
Q×

p (tj. element reda m) ako i samo ako m|p − 1, te su u Q×
2 elementi

−1 i 1 jedini korijeni iz jedinice.
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Dokaz. Neka je prvo p ̸= 2. Da postoje m-ti korijeni iz jedinice kada m|p − 1
smo vidjeli u Korolaru 7.6.3. S druge strane, kada bi za m ̸ |p− 1 postojao m-ti
korijen iz jedinice ζm, tada bi µm = {1, ζm, ζ2m, . . . , ζn−1

m q} činili podgrupu reda
m od Z×

p , što je u kontradikciji s Teoremom 7.6.6, (2).
U Z2 je očito da su ±1 korijeni iz jedinice. Iz strukture od Z×

2 opisane u
Teoremom 7.6.6, vidimo da su to jedini elementi konačnog reda u Q×

2 .

Korolar 7.6.8

Neka su p i q različiti prosti brojevi. Tada polja Qp i Qq nisu izomorfna.

Dokaz. Tvrdnja direktno slijedi iz prošle propozicije, pošto polja imaju korijene
jedinice različitog reda.

Napomena 7.6.9

Neka je p neparan. Tada će se element −1 nalaziti u podgrupi µp−1, koja
je ciklička reda p− 1, te je −1 reda 2. Element −1 će dakle biti kvadrat
u Q×

p ako i samo ako u µp−1 postoji element reda 4, tj. kada je p ≡ 1
(mod 4).
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