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Gravity-wave breaking: Linear and primary nonlinear dynamics
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Abstract

In a summary of recent work on the breaking of gravity waves (GWs) and the corresponding onset of turbulence the question of crit-
ical thresholds is given a systematic discussion. Contrary to a widespread belief static and dynamic stability do not indicate a GW’s sta-
bility against breaking. Low-frequency inertia–gravity waves can be destabilized by singular vectors even if their amplitude is too weak to
produce local Richardson numbers less than a quarter. High-frequency gravity waves have horizontal gradients strong enough so that
even at statically and dynamically stable amplitudes they are destabilized by normal modes. The dynamics of the processes is discussed
within a framework which takes a careful path from linear stability analyses to direct numerical simulations. The latter show that sub-
critical GW breaking can lead to turbulence of a strength as observed in the middle atmosphere. In many cases the GW amplitude is
reduced way below the conventional thresholds of static or dynamic instability.
� 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Gravity waves (GWs) are thought to be a key element in
the generation of oceanic turbulence which again seems to
be vital for keeping the thermohaline circulation in motion
(Müller et al., 1986; Staquet and Sommeria, 2002; Wunsch
and Ferrari, 2004). Moreover, their relevance for an under-
standing of the general circulation in the middle atmo-
sphere has been established for quite a while (Hines,
1960; Houghton, 1978; Lindzen, 1981; Holton, 1982,
1983; Garcia and Solomon, 1985). Due to various pro-
cesses GWs are radiated from the troposphere and strato-
sphere. In the course of their upward propagation they
are amplified since energy is conserved in an ambient med-
ium with decreasing density. At some stage they are too
strong to sustain themselves and begin depositing momen-
tum, thus driving the global circulation in the mesosphere.
Although there is a general agreement on this overall pic-
ture many uncertainties remain. These are well docu-
0273-1177/$30 � 2007 COSPAR. Published by Elsevier Ltd. All rights reserv

doi:10.1016/j.asr.2007.03.078

* Tel.: +49 38293 68340; fax: +49 38293 6850.
E-mail address: achatz@iap-kborn.de.
mented, e.g. by a considerable number of schemes
available for the parameterization of GWs in general circu-
lation models (Lindzen, 1981; Medvedev and Klaassen,
1995; Hines, 1997a,b; Alexander and Dunkerton, 1999;
Warner and McIntyre, 2001). They differ in the basic pic-
ture of GW dynamics in the middle atmosphere, and no
consensus has been found yet on which of them is the cor-
rect one. Even worse, each scheme offers a nonnegligible set
of free parameters which are today mainly used as tuning
parameters.

One among the numerous causes for this situation is
that there are still open questions concerning the condi-
tions under which a GW will begin depositing its momen-
tum in the ambient larger-scale flow, and how this wave
breaking proceeds (Fritts and Alexander, 2003). Moreover,
the knowledge which has already been gathered has not
completely found its way into any up-to-date parameteriza-
tion, partly due to the seemingly too complex picture
drawn by respective studies. This is indeed a very hard
problem, but at least in respect to the interpretation of
observations we might make more immediate use of the lat-
est findings. Often one still sees turbulence onset in the
atmosphere being discussed in terms of a wave crossing
ed.
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Fig. 1. Sketch of a GW exhibiting a phase propagation at an inclination
angle H with respect to the horizontal, indicated by the x-axis. Lines of
constant GW phase are indicated in blue. The group velocity cg is directed
upward, while the phase velocity cp points downward. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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the threshold of static instability, corresponding to an over-
turning of contours of potential density or potential tem-
perature, or dynamic instability, where the local vertical
gradient of the horizontal wind causes the local Richardson
number to fall below 1/4. In fact, these are misleading con-
cepts in the context of wave breaking. They neglect the
impact of horizontal gradients in the wave, and they also
do not take the possibility of nonmodal instabilities into
account. It is important for the observational community
to recognize this so as to avoid misinterpretations of their
data. On this background the purpose of this review is two-
fold: (1) It summarizes the most important aspects of our
knowledge under which conditions a GW will start break-
ing, and (2) it gives a summary of recent respective work of
the author which hopefully might also help getting a clearer
conceptual picture of GW breaking itself (Achatz, 2005;
Achatz and Schmitz, 2006a,b; Achatz, 2007a,b). The cen-
tral paradigm of wave-turbulence interaction addressed in
this work is the breaking of a single wave, leaving aside
the dynamics of a whole spectrum of GWs. In this context
a major theme is to carefully take the path from linear sta-
bility analyzes to direct numerical simulations (DNS) of
GW breaking. By first identifying the dynamically most rel-
evant perturbations and then distinctly perturbing the GW
by these in a DNS one can improve our understanding of
typical features of the breaking process. This knowledge
is to be used as complementary information to the one
gained already from three-dimensional (3D) DNS where
the GW is perturbed by random noise (Fritts et al., 2003,
2006).

With this purpose the article is structured as follows:
Section 2 discusses some general aspects of the linear
dynamics of GW breaking. Section 3 summarizes the linear
dynamics of inertia–gravity-wave breaking, with a special
focus on singular vectors (SVs), and the primary nonlinear
dynamics developing after perturbing the IGW by its lead-
ing normal modes or SVs. An analogous discussion of the
dynamics of high-frequency gravity-wave breaking can be
found in Section 4. Section 5 gives a short synthesis and
discussion. Due to the author’s background the focus is
more on the atmosphere than on the ocean, but the dis-
cussed dynamics is certainly also part of oceanic GW
dynamics.

2. General aspects of the linear dynamics of GW breaking

The analyzed situation is sketched in Fig. 1. A GW
exhibits phase propagation at an inclination angle H with
respect to the horizontal. Note that due to the dispersive-
ness of GWs the phase propagation actually points down-
ward while the group velocity is directed upward. The
following considerations assume that all interesting pro-
cesses happen within an altitude range of the order or less
than an atmospheric scale height so that the Boussinesq
approximation can be used. The coordinate system moves
with the ambient flow (assumed to be constant), so that
within this framework the wave frequency is given by
x ¼ � f 2 sin2 Hþ N 2 cos2 H: ð1Þ

Here f is the local Coriolis parameter, and N the Brunt–
Vaisala frequency. At positive vertical wavenumber the po-
sitive (negative) branch has upward (downward) phase
propagation, so that in the atmospheric context the latter
is the more interesting one. GWs are influenced both by
the earth‘s rotation and by the stratification of the ambient
medium. According to the respective relevance of these fac-
tors GWs can be subdivided into two classes. At steep
phase propagation (jtanHj > N/f) rotation is relevant, and
the approximate dispersion relation is x � ±f[1 + (N2/2
f2)cot2H]. These long-period waves are known as inertia–

gravity waves (IGWs). An important property of them is
that their horizontal velocity field has an elliptic polariza-
tion which becomes increasingly circular as H! ±p/2.
The other class, here called high-frequency gravity waves

(HGWs), has less steep phase propagation (jtanHj < N/f),
so that x � ±NcosH. These have a linearly polarized
velocity field which lies in the x–z-plane of wave propaga-
tion. Note that usually N� f so that the range of inclina-
tion angles for IGWs is very small.

The linear stability analysis asks about the fate of any
infinitesimally small perturbation of a GW. This question
can be posed in various ways. In one variant one deter-
mines the normal modes (NMs) of the problem. As
sketched in Fig. 2 these have, within the limits of linear the-
ory where all nonlinear interactions potentially leading to a
turbulent cascade are neglected, a rather simple time
dependence of their amplitude or energy. It is strictly expo-
nential. A NM either decays exponentially, has constant
amplitude, or it grows exponentially. A NM analysis deter-
mines at least the leading NMs, i.e. with the largest growth
rate. If any NM with positive growth rate is found, the
result of the analysis is an instability of the basic gravity
wave. In the opposite case the diagnosis is that the wave
can continue propagating without any interaction with
the ambient flow, neglecting the effects of viscosity and dif-
fusion. A limitation of NM analyses is that they can only
be done for a basic state which is time independent. As seen
below, this is no problem for a monochromatic GW.



Fig. 2. Sketch of the time dependence of the energy of a normal mode
(NM) or a singular vector (SV) within linear theory. The optimization
time for the SV is t = s.

cp

Fig. 3. Sketch of the transformed coordinate system used for the linear
stability analysis of a GW (phase lines in blue). The perturbation (purple)
is a monochromatic wave in the plane spanned by the n-axis, i.e. the
rotated x-axis, and the y-axis. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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One should also be aware that the well-known conven-
tional instability thresholds have been derived from just
such analyses, assuming a basic state without wave, but a
purely vertically dependent stratification and horizontal
velocity field. Under such conditions one can show easily
the existence of growing NMs if there is a static instability

so that at least at one altitude the total static stability
becomes negative, i.e.

N 2
tot ¼ N 2 þ db

dz
< 0: ð2Þ

Here bðzÞ ¼ gðh� hÞ=h0 is the buoyancy, to be determined
from the deviation of the potential temperature h from a
reference profile h. The latter also determines the Brunt–
Vaisala frequency via N 2 ¼ ðg=h0Þdh=dz, with h0 being a
constant representative value, while g is the gravitational
acceleration. Oceanographers would rather define buoy-
ancy and N2 via (potential) density profiles, i.e.
b ¼ ðg=q0Þðq� qÞ and N 2 ¼ �ðg=q0Þdq=dz. Since static
instability is a very important concept it is often used to de-
fine the GW amplitude a. If a > 1 there is a least one phase
in the GW where N 2

tot < 0, with the buoyancy field taken
from the GW. Taking also the horizontal velocity field into
account, it was shown by Howard (1961) and Miles (1961)
that, if there is a growing NM, then at least at one altitude
the local Richardson number is less than a quarter, i.e.

Ri ¼ N 2
tot

ðdu=dzÞ2 þ ðdv=dzÞ2
<

1

4
: ð3Þ

Here u and v are the basic state horizontal velocity compo-
nents in x- and y-direction, in the present context given by
the corresponding GW fields. This is the condition for dy-

namic instability. It is a necessary condition for instability,
not a sufficient one. Note that both of the two instability
concepts have been derived under the assumption that
either u, v, or b have any horizontal gradients! This is most
problematic in an application of these concepts to the
instability of a HGW, which does have considerable hori-
zontal gradients in all its dynamical fields. Indeed, as will
be discussed below, HGWs turn out to be unstable at
amplitudes way below any of the two thresholds.

An alternative concept to normal modes is that of opti-
mal growth of singular vectors (SVs). Given a predefined
optimization time s the corresponding leading singular vec-
tor maximizes the ratio E(s)/E(0) between the perturbation
energy at this time and its initial value (Boberg and Brosa,
1988; Farrell, 1988a,b; Trefethen et al., 1993). As shown in
Fig. 2, typically the energy of an SV, once again within lin-
ear theory, exhibits quite rapid growth between t = 0 and
t = s, then decays again, and finally approaches asymptot-
ically the time dependence of the leading NM. Two inter-
esting things can happen: (1) It is conceivable that the
leading SV grows so strongly that it can initiate an irrevers-
ible nonlinear development before the more slowly growing
NM has had time to do so. This might be relevant at suf-
ficiently strong initial perturbation amplitudes. (2) Even
more interesting is that SVs can grow even when there is
no growing NM at all. Thus, in situations where a NM
analysis would diagnose stability of a GW, a SV analysis
can help us understanding situations where turbulence
onset is observed in spite of the NM stability. As will be
shown below this can be relevant for the breaking of IGWs.
For a more thorough discussion of NMs and SVs, and the
difference between the two one could also consult Farrell
and Ioannou (1993b,a), Achatz (2005), and Achatz and
Schmitz (2006a,b).

In the specific situation to be analyzed here the calcula-
tions can be simplified by a useful coordinate transforma-
tion (see Fig. 3). One rotates the x- and z-axis about the
y-axis by H� p/2, so that the new, slanted, vertical axis is
parallel to the direction of phase propagation of the GW.
The coordinate system is then also moved downward by
the GW’s phase velocity, so that the new reference system
is described by the coordinates n along the rotated x-axis,
y, and the wave phase /. Within this reference system the
GW is time independent. This enables a classic NM
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analysis. It also only depends on one spatial coordinate, the
GW phase. The symmetry of this basic state with respect to
the slanted horizontal coordinates n and y has the immedi-
ate consequence that both the NMs and the SVs are mono-
chromatic waves in the slanted horizontal plane, i.e. their
velocity field v 0 and buoyancy b 0 can be written as

ðv0; b0Þðx; tÞ ¼ R ðbv; bbÞð/; tÞeiðjnþkyÞ
h i

: ð4Þ

The problem is decoupled with respect to different slanted
horizontal wave numbers of the perturbation, which are of-
ten also expressed in terms of the corresponding wave-
length ki and azimuth angle a between the perturbation
wave vector and the n-axis via (j,k) = (2p/ki)(cosa, sina).
The monochromatic character of the perturbations is in
interesting agreement with the ripple structure often seen
in conjunction with GWs in the mesospheric OH airglow
(Hecht et al., 1997, 2000; Hecht, 2004; Taylor et al., 1997).
3. Inertia–gravity waves

For IGW packets the linear instability has been exam-
ined in various investigations (Fritts and Yuan, 1989; Yuan
and Fritts, 1989; Dunkerton, 1997; Kwasniok and Schmitz,
2003), and a study for monochromatic IGWs has been
done by Yau et al. (2004). At statically unstable wave
amplitudes, rapidly growing leading NMs are found, with
a direction of propagation in the slanted horizontal with
respect to the IGW which changes from transverse to par-
allel as the gravity wave inclination angle gets more and
more vertical. At statically and dynamically stable ampli-
tudes NM growth is, even in the inviscid-nondiffusive limit,
at most rather weak, unless the IGW inclination angle is
extremely steep. An open question here was, however, the
potential relevance of SVs for the stability of an IGW. Also
had DNS of a breaking IGW not been done yet. The study
coming nearest to this is the one by Lelong and Dunkerton
(1998a,b). These authors have simulated IGW breaking in
Fig. 4. In dependence on the slanted horizontal wavelength ki and the azimuth
statically and dynamically stable IGW grows within 5 min. All NM growth fa
a large-eddy simulation (LES) without explicit treatment of
the turbulent scales. With the intention of reducing the hor-
izontal scale of the IGW they have also used a ratio f/N
which exceeds typical values for the mesosphere by about
an order of magnitude.
3.1. Linear theory

To begin with a statically and dynamically stable IGW,
Fig. 4 shows the factor by which either the leading NM or
the leading SV grows within an optimization time
s = 5 min (Achatz, 2005). The IGW has a wavelength
K = 2p/K = 6 km, an inclination angle H = 89.5�, and
amplitude a = 0.87, the ambient Brunt–Vaisala frequency
is N = 2 · 10�2 s�1 (so that s = 5 min roughly corresponds
to one Brunt–Vaisala period), the f-plane is centered at lat-
itude 70�N, so that the smallest Richardson number in the
wave is Ri = 0.28. Since the IGW has a nearly vertical
phase propagation, the classic instability thresholds hold
approximately, and there are no growing NMs. Whatever
weak NM instability might exist in the inviscid-nondiffu-
sive limit (Yau et al., 2004) is damped by viscosity and dif-
fusion. This does not mean, however, that there is no
instability at all, since the SVs can grow by a factor larger
than 7 for parallel (a = 0�) propagation in the slanted hor-
izontal plane. Even transverse SVs (a = 90�) can grow by a
factor larger than 5.

A better understanding of the mechanisms at work can
be obtained within the framework of a shear-layer approx-
imation of the IGW, allowing a quite extensive analytical
treatment of the problem (Achatz and Schmitz, 2006a,b).
For reasons of simplicity the approximations n � x and
/ � Kz are used in the remainder of this subsection, hold-
ing for steep inclination angles and simulation periods
short in comparison to the IGW period. As shown in
Fig. 5, the phase convention (Yau et al., 2004) is such that
the location in the IGW where the total static stability min-
imizes is at / = 3p/2 (see the marker). In its neighborhood
angle a, the factor by which the respective leading NM or leading SV of a
ctors are smaller than 1. The IGW parameters are given in the main text.



Fig. 5. Within one wavelength of a statically and dynamically stable IGW,
the phase (i.e. approximately vertical) dependence of the buoyancy
(normalized by the ambient Brunt–Vaisala frequency) and the horizontal
flow fields in x-direction, i.e. the horizontal direction of propagation of the
IGW, and in y-direction, transverse to the horizontal direction of
propagation of the IGW. Units are in m/s. The location of least static
stability is at / = 3p/2 (see the marker).
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Fig. 6. Within a Boussinesq fluid on an f-plane, the budget for the energy
exchange between the kinetic and the available potential energy of the
slanted horizontal mean (i.e. in the linear limit the basic GW), indicated by
a zero index, and the deviations from the horizontal mean. Diffusive and
dissipative losses are given by D and e.
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one has a locally constant flow u0 = U in x-direction, and a
strongly sheared flow v0 � bz in y-direction. It turns out
that this is the region where the SVs grow initially, so that
a stability analysis has been done of a stratified shear layer
with

u0; v0; w0; N 2
tot

� �
¼ U ; bz; 0; N 2ð1� aÞ
� �

: ð5Þ

Within this framework one finds that a parallel SV is a
monochromatic wave in the x- and z-direction, and that
the corresponding perturbation flow can be expressed via
a stream function w 0 as (u 0,w 0) = i(�l,j)w 0, where l is
the perturbation wave number in the vertical direction. In
the limits b2/jNtotj2� 1� jNtotj2/N2 the structure of the
parallel SV is then for a < 1 approximately

w0

v0

b0

0
B@

1
CA/ eiðjxþlz�jUtÞ�mk2t �1

2
e�ibxt

W

1

B

0
B@

1
CA�1

2
eibxt

�W

1

B

0
B@

1
CAþ

0

1

0

0
B@

1
CA

2
64

3
75;
ð6Þ

where k2 = j2 + l2 is the squared total wavenumber of the
perturbation, bx ¼ N totj=k the intrinsic frequency of a GW
in the shear layer, and W = Ntot/(kb), and B ¼ N 2

tot=b. The
Doppler term in the frequency of the SV results from the
advection of the structure by U. The internal structure is gi-
ven by the superposition of two GWs, with intrinsic fre-
quencies �bx, and a steady geostrophic mode. All
components are damped by viscosity and diffusion m (as-
sumed to be equal). Nonetheless the energy in the structure
grows: Initially the three modes interfere such that there is
an exact cancellation in w 0 and v 0. Since the time depen-
dence of the three modes is different this destructive inter-
ference vanishes with progressing time, so that the SV
starts growing. This is the statically enhanced roll mecha-

nism which turns out to be a quite strong process.
Its energetics is also worthwhile looking at. For a gen-

eral basic state depending only on the vertical one finds
for the tendency of the perturbation energy

dE
dt
¼ � u0w0

du0

dz

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

P x

� v0w0
dv0

dz

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

þP y

� 1

N 2
w0b0

db0

dz

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

þC

: ð7Þ

Here viscosity and diffusion are neglected, and angle brack-
ets indicate a global average. The two first terms in the bal-
ance are shear production terms causing E to grow due to
counter-gradient fluxes of horizontal momentum in x- or y-
direction. The last contribution is the convective produc-
tion term which acts via counter-gradient fluxes of buoy-
ancy. In the case of a time-dependent horizontal mean
(u0,v0,w0,b0), i.e. the nonlinear case, one obtains a general
budget for the exchange between the kinetic energy
of the horizontal mean K0 and that of the perturbations
K, the available potential energy of the perturbations
A = b

02/(2N2) and that of the horizontal mean A0, as indi-
cated in Fig. 6. Convective production describes an ex-
change between A0 and A, shear production an exchange
between K0 and K, and there also is the important buoyant
exchange Æw 0b 0æ between A and K. Within this framework
the energetics of the statically enhanced roll mechanism is
shown in Fig. 7. Instead of the time derivatives of the
energy the instantaneous growth rate C = (1/2E)dE/dt is
shown in its straightforward decomposition into the rele-
vant contributing terms, such that e.g. Cy = Py/(2E) and
Cc = C/(2E). Fig. 7 shows a succession of two processes,
another third one can only be seen by additionally looking
at the decomposition of K into the components due to u 0,
v 0, and w 0 (not shown). Initially the SV grows due to a con-
vective exchange. This process gets especially efficient as



Fig. 7. The instantaneous growth rate for the parallel SV of a statically
stable stratified shear layer, driven by the statically enhanced roll
mechanism. Shown is the decomposition into the contributions from
shear production due to counter-gradient fluxes of horizontal momentum
transverse to the horizontal direction of propagation of the SV, Cy, and
that one due to counter-gradient buoyancy fluxes, CC. The optimization
time is s = 5 min.

Fig. 8. For the leading transverse SV of a statically and dynamically stable
IGW, the growth-rate decomposition (top panel) and the dependence of
the slanted-horizontal average of the energy density e = (1/2)(jv 0j2 + b

02/
N2) (bottom, linear color scale in meaningless units). The optimization
time is s = 5 min. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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N 2
tot ! 0, so that one might speak of a statically enhanced

trigger. However, this does not lead to growth in A since
the energy is immediately tunnelled by the buoyant ex-
change into kinetic energy in w 0. Provided a favorable ini-
tial perturbation in v 0 exists, a positive Cy (as seen in the
figure) can lead to strong growth in the kinetic energy in
v 0 (not shown).

An idea about the dynamics of the leading transverse SV
can be obtained by considering Fig. 8. There one sees the
growth-rate decomposition and the horizontally averaged
density of the perturbation energy for the transverse SV
of the IGW without shear-layer approximation. The early
dynamics is that of a statically enhanced Orr mechanism

which can also be discussed nicely within the shear-layer
approximation (Achatz and Schmitz, 2006a,b). It is
marked by an analogous static trigger as in the correspond-
ing roll mechanism, followed by growth due to Cy. The lat-
ter has a different dynamics here, since the horizontal
direction of propagation is parallel to the sheared velocity
field in the basic state, just as in a Kelvin–Helmholtz insta-
bility. The interesting aspect about the transverse SV is that
finally Cx takes over. This is because the SV radiates out-
ward from the statically least stable phase region (see the
energy density), so that it gets into contact with regions
where du0/dz 6¼ 0. Note that the SV propagates in y-direc-
tion. We thus again have the situation under which the roll
mechanism can act (vertical shear in a horizontal flow
transverse to the horizontal direction of propagation of
the perturbation), and indeed it starts working. Fig. 9
shows the decomposition of the perturbation energy into
the four contributing terms, clearly indicating that after a
rise of the energy in w 0 most of the energy ends up via
the roll mechanism in u

02/2. One can thus call the mecha-
nism driving this SV a statically enhanced mixed Orr and

roll mechanism.
3.2. Primary nonlinear dynamics

Having analyzed the linear dynamics of IGW stability
one is in a much better position for understanding the
results from DNS of actual IGW breaking initialized by
distinctly perturbing the wave by one of the leading NMs
or SVs (Achatz, 2007a). In these calculations one makes
use of the fact that the spatial dependence of the initial
state is two-dimensional. Rotating the two axes in the
slanted horizontal plane (the n- and y-axis) so that the
rotated n-axis is along the (slanted) horizontal direction
of propagation of the perturbation one obtains a coordi-
nate system within which the IGW only depends on its
phase /, and the perturbation on / and the coordinate xi
along the rotated n-axis. The equations conserve this sym-
metry, unless there is a secondary perturbation with a spa-
tial dependence transverse to the xi–n-plane. Since the
velocity field is fully 3D, and the spatial dependence is
not that of a conventional 2D case with dependence only
on x and z, the calculations are called 2.5D. It should be
stressed that the focus on the 2.5D dynamics is by intention
since it highlights the primary nonlinear dynamics of the
GW-breaking process, which can be used as a reference
for fully 3D simulations.

Fig. 10 shows the decay of the wave amplitude after per-
turbing a statically unstable IGW by its leading parallel or



Fig. 9. For the leading transverse SV of a statically and dynamically stable IGW (as in Fig. 8), the time dependence of the slanted-horizontally averaged
perturbation energy density in the three velocity fields, and in the buoyancy. The color scale is linear in meaningless units. The optimization time is
s = 5 min. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. The time dependence of the amplitude (with respect to the overturning threshold) of a statically unstable IGW (left panel) or a statically and
dynamically stable IGW (right panel) in a DNS after having been perturbed by its leading parallel (a = 0�) or transverse (a = 90�) NM or SV. The wave
period is P = 7.87 h. The optimization time is s = 5 min.
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transverse NM or SV, and that of the amplitude of the stat-
ically and dynamically stable IGW analyzed above after a
perturbation by its leading parallel or transverse SV.1

Two aspects should be noted: (1) It is not only the statically
unstable IGW which decays, and that to a level way below
1 The optimization time for all SVs is s = 5 min. Although the linear
theory indicates a global optimal at s = 30 min, the impact of nonlinear-
ities prevents the corresponding SVs from undergoing their full linear
growth phase, so that the SVs discussed here turn out to be the most
relevant ones (Achatz, 2005; Achatz, 2007a).
all NM instabilities, but also the statically and dynamically
stable IGW. It thus is no surprise that measurements of
middle atmosphere turbulence cannot always relate the
observed turbulence to a static or dynamic instability (Lüb-
ken, 1997; Müllemann et al., 2003). (2) It is also interesting
that in both cases the most effective perturbation is a trans-
verse one. Indeed, the literature seems to indicate that in
cases where ripples are observed simultaneously with a
statically unstable IGW (Hecht et al., 1997, 2000) they have
a tendency to propagate in a more or less transverse hori-
zontal direction with respect to the IGW. The wavelength
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of these structures is below 10 km. A simulation of ripples
from a statically unstable IGW has been done by Fritts
et al. (1997), where the IGW (plus an additional HGW)
has been perturbed by random noise. The results here,
where the leading transverse NM appears as the most effec-
tive perturbation of an IGW with a > 1, might give an
explanation for why the occurring ripples have the
observed direction of propagation. Additional support
for this hypothesis might come from the wavelength of
the NM (about 8 km) which is consistent with the empirical
results. The weak impact of the leading transverse SV on
the statically unstable IGW is mostly due to its sharp spa-
tial confinement. It can thus only act locally on the IGW, in
contrast to the NM (not shown).

The nonlinear dynamics of the leading transverse SV of
the statically and dynamically stable IGW deserves a some-
what closer discussion. The major reason that this mode is
more effective than the leading parallel SV is that it has lar-
ger spatial scales, and thus is less prone to be destabilized
by secondary shear instabilities. It also produces turbulence
of a strength as observed. Measurements suggest that the
turbulent dissipation rates in the mesosphere are some-
where in the range between 1 and 103 mW/kg (Lübken,
1997; Müllemann et al., 2003). The DNS here shows that
indeed the dissipation rate gets locally close to 103 mW/kg.
A snapshot is given in Fig. 11. Some other interesting fea-
tures can be seen there, too. There seems to be a barrier
near / = p/2 (see the marker), which the turbulence cannot
cross, and the turbulence seems to accumulate somewhere
above and below the statically least stable phase range.
Looking at the time dependence of the slanted horizontal
average of the four contributions to the turbulent energy
(Fig. 12) helps us understanding why. One sees a picture
very reminiscent of Fig. 9. So indeed it is again the mixed
Orr and roll mechanism which is at work here, and the
accumulation of the turbulent energy at the observed max-
Fig. 11. The spatial dependence of the turbulent dissipation rate having
developed in a DNS 15 min = 3s after a perturbation of the statically and
dynamically stable IGW by its leading transverse SV. The location / = p/2
is indicated by a marker.
ima is due to the strong growth of u
02/2 by the roll mecha-

nism at the flanks of the statically least stable location,
where the vertical gradient in the IGW wind in n-direction
is sufficiently large. Also the barrier near / = p/2 can be
understood based on the linear dynamics (Achatz, 2005;
Achatz and Schmitz, 2006a,b; Achatz, 2007a). This is a
critical line where the IGW wind in y-direction vanishes.

4. High-frequency gravity waves

As discussed above, for HGWs with a non-vertical incli-
nation angle the criteria of static and dynamic instability
are not applicable. Indeed we know by now that these
waves show instabilities at all amplitudes, unless damped
by viscosity (Mied, 1976; Klostermeyer, 1982, 1983, 1991;
Lombard and Riley, 1996a; Sonmor and Klaassen, 1997).
As shown by Lombard and Riley (1996a) it is neither the
wave-related shear nor the corresponding stratification
which are solely responsible for the growth of linear
NMs, but a mixture of the two. The orientation of the lead-
ing NM’s slanted horizontal direction of propagation with
respect to that of the wave depends on the wave amplitude:
For statically stable HGWs the instability is predominantly
2D, i.e. the NM propagates in the same plane as the HGW.
Statically unstable HGWs have leading NMs propagating
transversely with respect to the wave. So far, however,
the relevance of SVs for the destabilization of HGWs was
still an open question. Studies of the nonlinear wave break-
down have focussed up to now on the behavior of a HGW
subject to a small-amplitude random perturbation. While
the first of these studies have been done at Reynolds num-
bers well below realistic values or using sub-grid scale mod-
els for the small-scale turbulent fluctuations (Winters and
D’Asaro, 1994; Andreassen et al., 1994; Fritts et al.,
1994; Isler et al., 1994; Lombard and Riley, 1996b), direct
numerical simulations (DNS) with near-realistic Reynolds
numbers and explicitly resolved turbulence have only
recently become possible (Fritts et al., 2003, 2006). They
show that the breaking of a HGW typically results in wave
decay to amplitudes well below the conventional instability
thresholds. The breaking of a statically and dynamically
stable HGW can lead to the original wave being replaced
by another secondary wave in the course of a resonant
wave–wave interaction related to a parametric subharmon-
ic instability (McComas and Bretherton, 1977; Klostermey-
er, 1991; Thorpe, 1994; Vanneste, 1995). What had not
been settled yet was the question whether this behavior
can be tied to the HGW being perturbed by a distinct
NM or SV.

4.1. Linear theory

To set the stage for the nonlinear dynamics, Fig. 13
shows for a HGW with H = 70� (wave period P = 920 s)
the growth factors of the leading parallel and transverse
NMs in dependence on the wave amplitude (Achatz,
2005, 2007b). At this inclination angle NMs or SVs at



Fig. 12. Similar to Fig. 9, but now from a DNS, the time dependence of the slanted-horizontally averaged perturbation energy density in the three velocity
fields, and in the buoyancy, after a perturbation of the statically and dynamically stable IGW by its leading transverse SV. All values have been normalized
by the initial energy density of the IGW itself. Contours are in steps of 0.1, starting at 0.1. The optimization time is s = 5 min.

Fig. 13. For HGWs with amplitude a between 0.2 and 1.4, the growth rate of the leading parallel (a = 0�) or transverse (90�) NM with slanted horizontal
wavelength ki and corresponding wavenumber ki = 2p/ki. Wavelength and inclination angle for all HGWs are (K,H) = (6 km,70�). K = 2p/K is the
wavenumber of the HGW.
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intermediate azimuth angles are found to be mere transi-
tions between the parallel and transverse cases. In agree-
ment with the previous studies the statically unstable
HGW is most unstable to growth of transverse NMs. As
a! 1 from above, the growth rates of these become, how-
ever, negligible, and the remaining growing NMs are the
parallel ones. As will be shown below (Figs. 16 and 18)
the reason for this is contrary to what one would expect
from the amplitude with respect to the overturning thresh-
old: At the statically unstable amplitudes it is an especially
positive contribution from the shear production which
causes the transverse NMs to grow more rapidly then the
parallel ones. At the statically stable amplitudes it is the
convective production which especially causes the parallel
NMs to grow. Both of these effects are certainly due to
the horizontal gradients in the basic wave. The reader
should also note the secondary growth-rate peak for paral-
lel NMs at large wavelengths. As will be seen below the
corresponding NMs can be quite relevant for low-ampli-
tude HGWs.

Once again one finds the SVs to grow over a finite time
more rapidly than the corresponding NMs (Achatz, 2005).
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This might not be so interesting since there is NM growth,
but a relevant aspect could be the spatial distribution of the
SVs. Fig. 14 shows as an example the growth-rate decom-
position and slanted-horizontally averaged energy density
of the leading parallel and transverse SV of the same
HGW as above, with a = 1.0. While the NMs are rather
broad structures which are spread more or less smoothly
over the whole phase range of the HGW (not shown),
the SV is a very localized feature. In the chosen reference
frame it seems to move upward, but one should recall that
this coordinate system moves downward at the phase
velocity of the HGW. So actually the SV is frozen in the
flow while the HGW moves over it, repeatedly exciting
and damping the perturbation, again depending on the
phase of the HGW which the SV is exposed to. Here the
growth-rate decomposition is to be understood as above,
so that e.g. CP ¼ �hv0u0/ � Kdv0=d/i with u/ being the
velocity in /-direction, and a zero index indicating
the mean over the slanted-horizontal coordinates, i.e. in
the linear limit the HGW fields.

4.2. Primary nonlinear dynamics

In their 3D DNS of a randomly perturbed HGW Fritts
et al. (2003, 2006) found that the wave falls in its amplitude
well below expected thresholds. An initially statically
unstable HGW ends up at an amplitude a � 0.3, while an
initially statically stable HGW is completely replaced by
a secondary GW with steeper phase propagation. The
Fig. 14. Time-dependence of the amplification-rate decomposition (top row) a
from 30-min integrations of the leading parallel (a = 0) and transverse (a = 90
wave period is P = 920 s. (For interpretation of the references to colour in th
question was whether 2.5D DNS can reproduce this
behavior and thus tie it to the wave being distinctly per-
turbed by a dynamically meaningful NM or SV. Fig. 15
shows the HGW amplitude as it develops in such simula-
tions after the wave has been perturbed by either its leading
parallel or transverse NM (Achatz, 2007b). At the lowest
chosen initial wave amplitude also the effect of a perturba-
tion by the leading large-scale NM is shown. One sees that
the results from Fritts et al. (2003, 2006) seem to be repro-
duced. On top of these the 2.5D DNS tell us that the break-
ing of a statically unstable HGW is triggered by its leading
transverse NM, and that the nonlinear dynamics of an ini-
tially statically stable HGW is correctly captured in a 2.5D
DNS describing the turbulent interaction between the
HGW and its leading large-scale parallel NM.

The time-dependent growth rate decomposition in
Fig. 16 for the eddies (i.e. the deviations from the slanted
horizontal mean) in the DNS of the statically unstable
HGW after a perturbation by its leading transverse NM
gives some information about the dynamics of the breaking
process. Although initially a > 1, it is not the convective
production which then has the largest effect, but the shear
production. This is a good example how misled we can be
by expectations from traditional considerations which only
take the vertical gradients into account. In the later phase
damping by diffusion and dissipation take the lead which
is a sign that sufficiently small-scale structures have devel-
oped via a turbulent cascade. A snapshot of the turbulent
dissipation rate at the time t = 1200 s � 1.3P of largest
nd energy density (bottom, contours and color scale in meaningless units)
�) SV (optimization time s = 5 min) for a HGW with (H,a) = (70�, 1). The
is figure legend, the reader is referred to the web version of this article.)



Fig. 15. From simulations of the nonlinear development of HGWs with initial amplitude a between 0.7 and 1.4 after a perturbation by the leading (and
leading secondary, i.e. large-scale, for a = 0.7) parallel (left panel) or transverse NM (right panel), the amplitude of the basic HGW with respect to its
overturning threshold. The wave period P is 920 s. For easier comparison time has also been normalized by the SV optimization time s = 5 min used
below.

Fig. 16. From the integration of a HGW with initial a = 1.4, perturbed by
its leading transverse NM, the decomposition of the total amplification
rate C into its contributions from convective production CC, shear
production CP, and viscous-diffusive damping CD + Ce. For easier
comparison the time scale has been normalized both by the HGW period
P = 920 s and the SV optimization time s = 5 min used elsewhere.

Fig. 17. From the integration of a HGW with initial a = 1.4, perturbed by
its leading transverse NM, the spatial distribution of the turbulent
dissipation rate at t = 20 min � 1.3P when the viscous-diffusive damping
is largest.
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viscous-diffusive damping in Fig. 17 illustrates this further.
One sees there also that the breaking of a statically unsta-
ble HGW produces a turbulent intensity well consistent
with the upper bounds of available mesospheric
measurements.

The energetics of the breaking of an initially statically
stable HGW after a perturbation by the leading large-scale
parallel NM is illustrated in Fig. 18. Here, too, the initial
linear dynamics is contrary to more conventional expecta-
tions. Although the wave is statically stable, the NM
grows, and the leading contribution to the initial NM
growth is from the convective terms. As is shown by
Achatz (2007b), the 2.5D DNS results in the HGW being
replaced by a secondary wave with steeper phase propaga-
tion, as in Fritts et al. (2006). Important aspects of this are
due to wave–wave interactions, but the process is again
rather turbulent. Fig. 19 shows the spatial distribution of
the turbulent dissipation rate after five HGW periods,
when the viscous-diffusive damping is largest. The turbu-
lence is weaker than in the case of the breaking of a stati-
cally unstable HGW, but the generated values are still
consistent with the measurements. On average one obtains
dissipation rates of several mW/kg. On the whole the most
turbulent phase is more smoothly spread over the phase
range of the HGW than in the other case.



Fig. 18. From the integration of a HGW with initial a = 0.7, perturbed by
its leading large-scale parallel NM, the decomposition of the total
amplification rate C into its contributions from convective production CC,
shear production CP, and viscous-diffusive damping CD + Ce. For easier
comparison the time scale has been normalized both by the HGW period
P = 920 s and the SV optimization time s = 5 min used elsewhere.

Fig. 19. From the integration of a HGW with initial a = 0.7, perturbed by
its leading large-scale parallel NM, the spatial distribution of the turbulent
dissipation rate at t = 5P = 4600 s when viscous-diffusive damping is
largest.

Fig. 20. From the integration of a HGW with initial a = 1.4, perturbed by
its leading transverse SV, the spatial distribution of the turbulent
dissipation rate after one optimization period s = 5 min. The initial
amplitude of the SV is such that its local peak energy density is identical to
the energy density of the HGW.
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A final remark shall also be made about the possible role
of SVs in mesospheric HGW breaking. The 2.5D DNS in
Achatz (2007b) show no major impact of the SVs on the
wave. This is found to be mainly due to the extreme vertical
confinement of these structures so that they can modify the
HGW only very locally. An interesting aspect is, however,
that for this very reason SVs might be an interesting candi-
date for the explanation of the sharp turbulent layers found
sometimes in the measurements (Müllemann et al., 2003).
Indeed, the turbulent dissipation rate from a perturbation
of a statically unstable HGW (a = 1.4) by its leading trans-
verse SV (for s = 5 min) after the optimization time, shown
in Fig. 20, is confined to a layer of about 2–3 km width.
5. Summary and discussion

With the intent to improve our present understanding of
GW breaking in the atmosphere and ocean recent work
summarized in this paper has first delved into the corre-
sponding linear theory, and then moved on to extend its
results to the nonlinear domain. Perhaps a case to be made
on that basis is how helpful it can be to take this kind of
systematic approach. It turned out to be decisive for finally
being able to also interpret many features of the complex
nonlinear simulations.

An extension of the linear theory has been achieved by
the application of generalized stability theory (Farrell and
Ioannou, 1996a,b) to GWs. It is found that quite strongly
growing SVs exist even in cases where, as for statically and
dynamically stable IGWs, no NM instabilities are found.
With regard to the interpretation of turbulence measure-
ments in a statically and dynamically stable environment
(e.g. Müllemann et al., 2003) this enlarges the range of pos-
sibilities we have. So far the only way to understand such
measurements on the basis of GW breaking has been to
assume the existence of a HGW with sufficiently strong
horizontal gradients. The 2.5D DNS show that the break-
ing of statically and dynamically stable IGWs initialized by
SV perturbations can lead to turbulent dissipation rates
consistent with available observations. It also leads to an
IGW decay far below presently employed instability
thresholds which present parameterization schemes do
not yet have on the list. Certainly this is conditioned on
the GW being exposed to perturbations of sufficient initial
strength, but a scenario where this could be the case is that
of the GW moving into a region with fossil turbulence from
a previous breaking event.

Conceptually the linear theory turns out to be quite
enlightening. Especially attractive is the possibility to
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understand important aspects of the core dynamics of SVs
for IGWs on the basis of an analytic theory for a stratified
shear layer with reduced static stability. The fundamental
processes at work are found to be the statically enhanced
Orr and roll mechanism, each of them interacting in a spe-
cific way with the shear in the wave, but substantially aided
in doing so by a vertical convective transport due to the
reduced static stability. Based on the analytic theory
important aspects of the non-simplified optimal-growth
process can be understood, be it with regard to the depen-
dence on the optimization time (not discussed here), the
detailed mechanisms, or the NM interference (between
two GWs and a geostrophic mode) at the heart of the
whole.

Special emphasis should be given to the importance of
the roll mechanism. It turns out that the spatial distribu-
tion of the turbulence in a decaying IGW is to a large part
controlled by the action of this mechanism in the ellipti-
cally polarized flow field of the IGW. A specific feature
resulting from this is that a perturbation preferentially
grows in turbulent energy in the horizontal flow compo-
nent transverse to its direction of propagation, but parallel
to the sheared wind, perhaps offering the possibility of an
experimental test.

Similarly, the decay of HGWs can also be understood
better on the basis of the linear theory. In agreement with
corresponding predictions transverse NMs turn out to be
most important for the breaking of a statically unstable
HGW, and parallel NMs take this role for statically stable
HGWs. Due to its strong local confinement the SV feed-
back on the HGW is rather weak. As also visible in the lin-
ear theory, however, the SVs take the character of thin
turbulent layers frozen in the flow, with dissipation rates
which can, depending on the initial perturbation level, be
sufficiently strong so that SVs might contribute to the
explanation of the conspicuous layering of turbulence often
seen in the middle atmosphere (e.g. Müllemann et al., 2003;
Strelnikov et al., 2003).

A special case shall also be made for the type of DNS
reported here. Based on the linear results it is 2.5D, i.e. the
GW is perturbed specifically by either a NM or a SV, so that
the spatial dependence is restricted to the direction of phase
propagation of the GW and the slanted horizontal direction
of propagation of the perturbation. The simulated velocity
field, however, is fully 3D, and one is not limited to the sim-
ulation of the impact of perturbations propagating in the
same plane as the GW. True, one might expect that 3D sec-
ondary instabilities will eventually modify the results from
these DNS, but the latter provide a reference frame within
which fully 3D simulations can be discussed more easily.
As an example, several findings from the 3D DNS of break-
ing HGWs by Fritts et al. (2003, 2006) are reproduced, with
the difference that we can now say which perturbation they
can be attributed to. This is not to say that 3D simulations
are not necessary, on the contrary they are indispensable
for providing a complete picture, but 2.5D DNS seem to
be an additional helpful tool.
An important message from the theory to observers and
experimentalists is that the concepts of static and dynamic
stability are not appropriate criteria for the exclusion of the
possibility of GW breaking and corresponding onset of tur-
bulence. On the contrary (1) it is found that statically and
dynamically stable IGWs can be destabilized by SVs, and
(2) statically and dynamically stable HGWs have long been
known to be unstable to NMs. In the latter case it is the
horizontal gradients in the GWs which are indispensable
for a complete picture. So, as attractive as it might be to
have a criterion which only relies on vertical gradients,
there seems to be a growing need to gather as much infor-
mation as possible on the horizontal dependence of the
ambient large scale (i.e. mesoscale) fields so as to be really
able to understand where observed turbulence comes from.
An important step here would be simultaneous measure-
ments of all GW parameters (horizontal and vertical wave-
length, and the amplitude) together with the turbulence.
Linear stability analyses as described here could provide
first clues as to where the turbulence onset comes from,
to be later accompanied by DNS of the nonlinear behavior.

What have we learned so far which might be relevant for
parameterizations? Again perhaps the most important mes-
sage is that wave breaking sets in earlier, and that GWs
deposit much more of their momentum than typically
assumed nowadays. Partly this was already clear from
the previous literature on the linear theory of NM instabil-
ities of HGWs and corresponding 3D DNS, but it is sup-
plemented by the additional option of IGW decay due to
the impact of nonmodal perturbations, and as a whole
none of these findings has yet found its way into a param-
eterization scheme. Unfortunately, a major problem
remaining is the question as to whether it is possible to
understand and predict the final amplitude of the GW,
and whether and which other GWs it produces in the
course of the process. Next to the GW properties, this also
seems to be sensitively dependent on the specific initial per-
turbations and their strength. Much work remains to be
done here.

Nonetheless, it is the author’s belief that the systematic
approach taken here, from the linear theory to the 2.5D
DNS, was already able to shed more light on the GW sta-
bility problem. It seems worthwhile to continue following
this path. An important aspect to be studied systematically
are secondary instabilities indeed, to all expectations lead-
ing to a full three-dimensionalization of the turbulent fields
(Klaassen and Peltier, 1985; Winters and D’Asaro, 1994;
Andreassen et al., 1994; Fritts et al., 1994). Another task
that deserves attention in the future is the certainly difficult
one of the parameterization of turbulence in breaking
GWs. The available DNS data might be used for testing
and improving corresponding sub-grid scale schemes so
that eventually LES models (e.g. Germano et al., 1991;
Lilly, 1992; Ferziger, 1996; Meneveau et al., 1996) might
be available which could be applied with confidence to
the problem. This might then open the option of studies
of whole GW spectra developing both in space and time,
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a scenario which is presumably of great relevance. Once
this is possible, but probably only then, we might gather
new hope for more trustworthy GW parameterization
schemes than the ones we have at present.
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