
2.1 Inertial frames in Newtonian spacetime 
 

By the early years of the 20th century, the notion of inertial system seems to have been 

widely accepted as the basis for Newtonian mechanics. In writing “On the electrodynamics of 

moving bodies” in 1905, Einstein took it to be obvious to his readers that classical mechanics 

does not require a single privileged frame of reference, but an equivalence-class of frames, all 

in uniform motion relative to each other, and in any of which “the equations of mechanics hold 

good.” Two inertial frames with coordinates (x, y, z, t) and (x′, y′, z′, t′) are related by 

the Galilean transformations, 

 

x′=x−vt 

y′=y 

z′=z 

t′=t 

 

(assuming that the x-axis is defined to be the direction of their relative motion). These 

transformations clearly preserve the invariant quantities of Newtonian mechanics, i.e. 

acceleration, force, and mass (and therefore time, length, and simultaneity). As far as 

Newtonian mechanics was concerned, then, the problem of absolute motion was completely 

solved; all that remained was to express the equivalence of inertial frames in a simpler 

geometrical structure. 

The lack of a privileged spatial frame, combined with the obvious existence of 

privileged states of motion — paths defined as rectilinear in space and uniform with respect to 

time — suggests that the geometrical situation ought to be regarded from a four-

dimensional spatio-temporal point of view. The structure defined by the class of inertial frames 

can be captured in the statement that space-time is a four-dimensional affine space, whose 

straight lines (geodesics) are the trajectories of particles in uniform rectilinear motion. See  

Figure 4. 

 

 
Figure 4: Inertial Trajectories as Straight Lines of Space-time 

 

That is, space-time is a structure whose automorphisms — the Galilean transformations that 

relate one inertial frame to another — are affine transformations: they take straight lines into 

straight lines, and parallel lines into parallel lines. The former condition implies that an inertial 

motion in one frame will be an inertial motion in any other frame, and likewise for an 



accelerating or rotational motion. The latter implies that uniformly-moving particles or 

observers who are relatively at rest in one frame will also be relatively at rest in another. An 

inertial frame can be characterized as a family of parallel straight lines “filling” space-time, 

representing the possible trajectories of a family of free particles that are relatively at rest. See 

Figure 5. Therefore, to assert that an inertial frame exists is to impose a global structure on 

space-time; it is equivalent to the assertion that space-time is an affine space that is flat. 

 

 
Figure 5: Each of these families of straight lines, F1 and F2, represents the trajectories of a 

family of free particles that are relatively at rest, and therefore each defines an inertial frame. 

Relative to each other, the frames defined by F1 and F2 are in uniform motion. 

Each of the surfaces S is a “hypersurface of absolute simultaneity” representing all of space at 

a given moment; evidently (given the Galilean transformations) two inertial frames will agree 

on which events in space-time are simultaneous. 

 

The form of the Galilean transformations shows that, in addition to being affine 

transformations, they also preserve metrical relations on time and space. Distinct inertial frames 

will agree on simultaneity, and on (ratios of) time-intervals; they will also agree on the spatial 

distance between points at a given moment of time. Therefore, in the four-dimensional picture, 

the decomposition of space-time into hypersurfaces of absolute simultaneity is independent of 

the choice of inertial frame. Another way of putting this is that Newtonian space-time is 

endowed with a projection of space onto time, i.e. a function that identifies space-time points 

that have the same time-coordinate. Similarly, absolute space arises from a projection of space-

time onto space, i.e. a function that identifies space-time points that have the same spatial 

coordinates. See Figure 6. 



 
Figure 6 

 

But Galilean relativity implies that this latter projection is arbitrary. While it assumes that we 

can identify the same time at different spatial locations, Newtonian mechanics provides no 

physical way of identifying the same spatial point at different times. Thus the equivalence of 

inertial frames can be thought of as the arbitrariness of the projection of space-time onto space. 

Any such projection is, essentially, the arbitrary choice of some particular inertial frame as a 

rest-frame. In the relativized version of Newton’s theory, then, the class of inertial frames 

replaces absolute space, while absolute time remains. The structure of Newtonian space-time 

(also known as Galilean space-time, or neo-Newtonian space-time) expresses this fact in a 

direct and obvious way).  

 

 

Figure 7: (a) Here is a space-time diagram of motions relative to the inertial frame in 

which O1, O2, and P1 are at rest. This can be seen as arising from the projection of each of their 

inertial trajectories onto a single point of space. O3 is in uniform motion. O4 is accelerating any 

old way. O5 and O6 are revolving around their common center of gravity P1, which (as noted 

above) is at rest. O7 and O8 are revolving around their center of gravity P2, which is in uniform 

motion. 

(b) Here is the same situation viewed from an inertial frame in which O3 and P2 are at rest. 

Now O1, O2, and P1 are in uniform motion. O4 is accelerating any old way. O5 and O6 are 

revolving around their common center of gravity P1, which is in uniform motion. O7 and O8 are 

revolving around their center of gravity P2, which (as noted above) is at rest. 
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