1950

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 36

Evidence for a k™53 Law Inertial Range in Mesoscale
Two-Dimensional Turbulence

K. S. GaGe
Aeronomy Laboratory, NOAA, Boulder, CO 80303
(Manuscript received 6 October 1978, in final form 28 February 1979)

ABSTRACT

The observational evidence for £-%3 law behavior in the atmospheric kinetic energy spectrum is re-
viewed. This evidence includes the results of atmospheric wind variability studies and the observed
scale dependence of atmospheric dispersion. It is concluded that k=5 law behavior for time and space
scales greater than those that can be three-dimensionally isotropic is probably a manifestation of the
two-dimensional reverse-cascading energy inertial range.

1. Intreduction

Several theoretical models have been used to
describe the behavior of atmospheric turbulence.
These include the three-dimensional inertial range
model (k~%® law), the two-dimensional energy
inertial range model (k%3 law), and the two-dimen-
sional enstrophy inertial range model (k= law).
The turbulence models listed above have been
used in theoretical investigations of the predict-
ability of atmospheric motions (Lorenz, 1969; Leith
and Kraichnan, 1972). They also form the basis for
parameterizing subgrid-scale motions in numerical
prediction models (Kraichnan, 1976; Basdevant et
al., 1978). Whereas the different models lead to dif-
ferent results in predictability studies, subgrid-
scale modeling and in describing atmospheric trans-
port, it is important to determine, as precisely as
possible, the range of atmospheric scales to which
each model is relevant.

The three-dimensional inertial range theory is the
original theoretical model considered by Kolmo-
goroff (1941) to describe the statistical small-scale
behavior of locally isotropic, homogeneous turbu-
lence. Although the relevance of three-dimensional
turbulence theory to the atmosphere has been the
subject of much debate, it now appears that its
relevance is limited to spatial scales typically on the
order of 100 m or less. Under disturbed conditions
such as in convective storms where the vertical
velocity component has considerable energy the
three-dimensional inertial range model may be rele-
vant out to scales on the order of 1-10 km. Never-
theless, numerous studies of atmospheric spectra
have shown a £~%° law behavior out to much
larger scales. Ellsaesser (1969a), for example,
applied three-dimensional turbulence theory to ob-

tain estimates of the eddy dissipation rate from an
analysis of the variability of synoptic-scale winds.
This approach was justified by Ellsaesser on the
grounds that the wind variability o, followed a 7'/
power law consistent with the k=53 law. Also, scale-
dependent diffusivity K o« L3 (Richardson, 1926)
and dispersion x? « 13 (Bauer, 1974; Gifford, 1957,
1977) are consistent with k~%® law inertial range
behavior.

Two-dimensional turbulence theory has attracted
widespread interest among meteorologists in the
past decade following the work of Kraichnan (1967)
and others. Although Kraichnan discussed two
formal inertial ranges: a k=5 law energy cascading
range and a k% law enstrophy cascading range, most
attention has been focused on the k2 law enstrophy
range appropriate for geostrophic turbulence
(Charney, 1971; Tennekes, 1978). Several authors
have provided evidence for the existence of the
k=3 law in large-scale atmospheric spectra (A > 1000
km) (Wiin-Nielsen, 1967; Julian et al., 1970;
Desbois, 1975). Also, Morel and Larcheveque (1974)
have reported indirect evidence that the relative
dispersion of Eole balloon pairs at 200 mb in the
Southern Hemisphere is consistent with a k=3 law
spectra down to 100 km.

Thus, it would appear that there is substantial
evidence -for the relevance of the k=53 law three-
dimensional inertial range on the microscale and
the k=2 law two-dimensional enstrophy inertial
range on the macroscale. Evidence will be presented
here to substantiate k~%° law behavior for inter-
mediate scales and it will be suggested that this
behavior is consistent with the existence of a meso-

§cale., two-dimensional, reverse-cascading energy
inertial range.
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2. The variability of mesoscale winds and the £ 3 law

The variability of the wind has been related to
turbulence theory by Ellsaesser (1969b). Temporal
wind variability, the variability of wind with time ata
fixed point and altitude, has been the subject of
most wind variability research. It can be defined as

o, = {[v(®) — v(t + NP}, n

where + is the lag time. For stationary turbulence
the velocity structure function D,(7) is given by

D7) = o2 = 20)°[1 — R, 2

where R(7) is the Eulerian autocorrelation function
defined by

V'Ot + 1)
(')?

R(7) = ©))

and v’ = v — D. .
In the spatial domain the k=5 law takes the form

E(k) OC. E2/3k—5/3’ (4)

where E is the spectral density, e the eddy dissipa-
tion rate per unit mass, and k the wavenumber
{k = 2w/\). The k573 law of Eq. (4) is of the same
form in two and three dimensions. For some
purposes the structure function is more con-
venient, i.e.,

Dy(r) = A3

D{r) = A, 2323

where D, and D, are the Eulerian structure functions
for the longitudinal and transverse components of
velecity, respectively. According to theory A; and
A, in Eq. (5) are universal constants. A4, is close to
1.75. Kolmogoroff (1941) demonstrated that for an
incompressible fluid in three dimensions -

. )

A, =4A,/3. ©)
In two dimensions a similar derivation yields
A, = 5A,/3, @

which was recognized by Hutchings (1955).

By employing Taylor’s transformation, it is
possible to relate space and time variations. Thus,
if » = pr is used in Eq. (5) we find

Dyr) = Al(é)2’3€2’372’3]
D7) = A[D)23223

It follows that the temporal variability (which is
proportional to the square root of the structure
function) of both horizontal components of velocity
wili follow a 7'/® power law provided Taylor’s trans-
formation is valid. Also, the ratios of variabilities
of the transverse and longitudinal components of
velocity should be close to 1.165 (=V4/3) and 1.29
V' 5/3) in three and two dimensions, respectively.

®)
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\
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Taylor’s transformation plays an important role
in relating frequency and wavenumber spectra.
Its use, is widespread in micrometeorology and in
wind tunnel studies of turbulence. Hutchings (1955),
Pinus (1968) and Ellsaesser (19692) have even
used the Taylor transformation for studies of synop-
tic-scale turbulence.

The validity of the Taylor transformation re-
quires the advection of turbulent structure past a
sensor with the velocity © of the mean flow. The
time 7, = A/? it takes an eddy of length scale A to
be advected past the sensor must be much less than
the decay time 74 ~ A[(v')?]~'2 for the eddy. This
requirement implies that [(v')%]'? < .

Experimentally, the Taylor transformation can be
tested by comparing simultaneous measurements of
temporal and spatial correlation functions. This has
been done with positive results for microscale
turbulence in the wind tunnel and in the atmospheric
boundary layer. The same experiment cannot easily
be done on the mesoscale especially in the free
atmosphere.

Ogura (1953) and Gifford (1956) have further
considered the validity of Taylor's transformation.
They found that if it is assumed the spatial structure
function obeys an r%® law the temporal structure
function will be proportional to 7 with 28 < m < 1
according to how large [(v')*]"? is relative to ©. This

- leads to an m only slightly greater than %5 for

normal atmospheric conditions when [(v')?]Y2 <
(Ellsaesser, 1969a). Thus, with some reservations,
it appears reasonable to use the Taylor transforma-
tion on the mesoscale.

On the synoptic scale there is reason to suspect
the validity of the Taylor transformation. For large-
scale atmospheric motion Kao and Wendell (1970)
and XKao et al. (1970) found markedly different
power law dependence for the wavenumber and fre-
quency spectra. One explanation for the failure of
the Taylor transformation on the synoptic scale is
that the disturbance kinetic energy is largely due to
Rossby waves which move with a wavelength-
dependent phase velocity and are thus not simply
advected by the mean flow.

3. Evidence for the existence of a &5 law two-di-
mensional inertial range

Several authors have studied synoptic-scale wind
variability and atmospheric Kinetic energy spectra
in the light of turbuience theory. Hutchings (1955)
considered the variability of wind in two sets of
data: 500 mb radar (balloon) winds for Larkhill,
England, taken at 6 h intervals from December 1944
to February 1945, and 300 mb radar (balloon) winds
for Auckland, New Zealand, for the winter period
from June to August 1952. The first set of data yielded
wind variability for both zonal and meridional com-
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Fic. 1. Average u# and v component wind variability
o(m s™1) from high-resolution balloon soundings. Variabilities
averaged over fifty 100 m intervals. Power laws of 73 and
7!2 are shown for reference (after Gage and Jasperson, 1978).
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ponents'very consistent with the 7!/3 power law out
to lags of 36 h. The second set of data yielded %44
for the lag variability of both wind components.
Pinus (1968), employing Taylor’s transformation,
determined wavenumber spectra of synoptic-scale
atmospheric kinetic energy over the Moscow area
by means of a time series analysis of routine upper
wind observations spaced 6 h apart during the period
March 1965-March 1966. The data were analyzed
by season for 11 altitudes in the range 0-20 km.
The resulting spectra exhibited a k5% law inertial
range behavior over much of the wavenumber range.

Mesoscale wind variability has recently been
studied below 5 km using accurate high-resolution
wind soundings in Minnesota (Gage and Jasperson,

1979). Fig. 1 shows the lag variability obtained
during a 7 h experiment on 31 March 1976 in which
balloons were launched at 30 min intervals. The
variability data plotted in Fig. 1 is the mean vari-
ability obtained by averaging together the variabili-
ties obtained for each wind component for fifty

100 m height intervals. The resulting mean wind
variability for both wind components follows the

73 Jaw out to 150 min. With a mean wind of*
about 10 m s™! this implies energy inertial range
behavior out to ~100 km.

For the data set of 31 March the mean wind was

nearly from the south. The ratio of west wind
varlablhty to south wind varlablhty for this data
set gives 1. 19 (from 30 to 180 min lag) without

correction for the departure of the south wind
from - the longitudinal direction. Correcting for
the departure of the south wind from the direction
_of the mean wind increases the ratio and makes it
more consistent with the value 1.29 predicted for
two-dimensional turbulence.

t
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The variability of jet stream winds using VHF
Doppler radar has been studied by Gage and Clark
(1978). The radar sampled the south wind about
once a minute on 15—-16 April 1976 over an altitude
range from 5 to 13 km during the passage of a polar
front jet stream. Unfortunately, in order to sample
the south wind as rapidly as possible, the west wind,
was sampled only hourly. Fig. 2 reproduces the
mean variability obtained by averaging the vari-
abilities for each height. The mean variability fol-
lows the 73 law out to at least 4 h in lag time.
Since the mean wind was on the order of 30 m s™!,
this implies energy inertial range behavior out to
horizontal distances on the order of 400 km or
more. However, a systematic trend in the power
law dependence for variabilities at individual heights
makes the precision of agreement shown here some-
what fortuitous. Nevertheless, lag variability at alti-
tudes in close proximity to the strong shear zones
above and below the jet maxima was quite con-
sistent with the 713 law.

The dispersion of tracers in the atmosphere also

“supports the k=33 law inertial range behavior in

mesoscale atmospheric turbulence. The dispersion
of particles for the k=5 law inertial range is
governed by dx?/dt o« x¥3 and x% « ¢3, Here, (x%)"2 is
the cloud width and ¢ is travel time. Gifford (1977)
in a comprehensive review of tropospheric rela-
tive diffusion finds x* « #* out to 1-3000 s with a
somewhat slower rate of diffusion out to 10° s
Lin (1972) raised the possibility that the relative
dispersion of particles could be consistent with the
k~3 law inertial range for which dx?/dt = x% and

x2 o« exp(t). Although Lin (1972) and Morel and

Larcheveque (1974) give evidence of this behavior
from Eole data for travel times >1 day and for cloud
widths >50 km, Gifford (1977) found no evidence
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FIG. 2. Average variability of radar observed south wind
during a jet stream passage. The power law 7!/® is shown for
reference (after Gage and Clark, 1978).
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of an accelerated rate of diffusion in tropospheric
data for travel times of up to one day and cloud
widths of up tc 180 km.

4, Discussion

Theoretical studies (Kraichnan, 1967; Leith, 1968;
Lilly, 1989) of two-dimensional turbulence have
shown that a source of energy and enstrophy isc-
lated at wavenumber k; leads to a wavenumber
spectrum with a discontinuity at k;. For k < k;
energy is cascaded to lower wavenumbers and
E(k) « ¢ k=53 and for k > k; enstrophy is cas-
caded to large wavenumbers and E(k) « 7?3 k=3,
where 7 is the enstrophy cascade rate. The net
resuit is a spectrum with A5 behavior at the low-
wavenumber end and k~% behavior at the high-
wavenumber end.

In applying the two-dimensional turbulence model
to the atmosphere it is reasonable to consider two
scurce regions in the wavenumber domain. On the
macroscale at hemispheric wavenumbers near 6
(~450¢ km) baroclinic instability provides a source
of energy (and enstrophy). For hemispheric wave-
numbers > 10 (~3000 km), an approximate k3 spec-
trum is found presumably associated with this
source. A second source is found at small scales
wiere microscale turbulence is generated. Micro-
scale turbulence is usually thought to lose its energy
to viscous dissipation by means of a tkree-dimen-
sional cascade of energy into the high-wavenum-
ber end of the spectrum. However, the existence
of a k513 law inertial range extending to larger scales
implies that some of the microscale turbulent
kinetic energy is being cascaded to lower wave-
numbers consistent with the reverse cascade of
two-dimensional turbuience theory. According to
this view, enstrophy is being cascaded down the
spectrum from the macroscale source and energy
is being cascaded up the spectrum from the micro-
scale source.

The concept of an enstrophy cascading k=3 spec-
trum at low wavenumbers acting simultaneously
with a reverse energy cascading k~* spectrum at
high wavenumbers raises guestions of consistency
with two-dimensional turbulence theory. Kraichnan
(1967) demonstrated that energy could not be cas-
caded through the k~2 spectrum and that enstrophy
could not be cascaded through the k=33 spectrum.
it follows that there must be a sink of energy and
enstrophy at the wavenumber (or wavenumber
range) of transition between the two ranges. Other-
wise, one or both of these spectral ranges cannot
be true manifestations of the formal inertial ranges
of two-dimensional turbulence theory.

In light of the above, it is of interest to consider
what possible sink there may be for energy and
enstrophy cn the 1000 km scale which, it seems
likely, separates the enstrophy and energy cascading
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ranges. A possible candidate would appear to be
the extratropical cold-core vortices associated with
the decaying stage of the cyclone life cycle. The
energetics of these vortices is not well understood
but it does appear that some of their kinetic
energy is converted into available potential energy
(Palmén and Newton, 1969). The substantiation of
the possible role of the cold-core vortices in the
realization of the inertial ranges discussed here
must await further research.

5. Concluding remarks

In this paper the evidence for energy inertial range
behavior at time and space scales which are too
large to be isotropic in three dimensions has been
summarized. The interpretation has been offered
that the reason for the k%3 law behavior at such
scales is the existence of an energy cascading,
two-dimensional inertial range. The two-dimen-
sional, energy cascading inertial range is associ-
ated with the transfer of energy from small scales to
large scales: the reverse of the traditional energy
cascade in three dimensions. Thus, it is conceivable
that microscale energy sources (e.g., wind shear,
breaking waves, thunderstorms, etc.) could cascade
energy both ways in wavenumber space: to smaller
scales consistent with three-dimensional turbulence
theory and to larger scales consistent with two-
dimensional turbulence theory. According to this
view, k=33 law behavior could be expected to extend
well into the mesoscale and possibly to 1600 km
or more—especially when the small-scale energy
sources are very pronounced.
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