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ProucCavanje povezanosti izmedu kontinuiranih
varijabli - korelacija i regresija

lzv.prof. Rosa Karli¢
Predavanje 9, MZIRuB 2025/2026
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Dva moguca cilja

* Opisati odnose izmedu dvije ili vise kontinuiranih
varijabli

 Koristiti navedene odnose za predvidanje
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Kovarijanca

* Kovarijanca — koliko se jedna varijabla mijenja kad
se druga varijabla mijenja oy,
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* Kovarijanca uzorka: syy =




Kovarijanca

Covariance is —5.4
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Covariance is -3

Covariance is 0
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Izvor: https://stats.stackexchange.com/questions/18058/how-would-you-explain-covariance-to-someone-who-understands-only-the-mean

* Proporcionalna skali na kojoj su mjereni XiY

* Osjetljiva na outliere (netipi¢ne vrijednosti)
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Covariance is 2
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Korelacija

Korelacija — kovarijanca
normalizirana standardnom
devijacijom

Koeficijent korelacije — mjeri
snagu odnosa izmedu dviju
varijabli (raspon od -1 do 1)

Pearsonov koeficijent .
korelacije (r)— linearni odnosi

Nulta hipoteza: nema B
linearnog odnosa izmedu dvije
varijable

_ Cov(X,Y)

OxOy

—

Correlation 0.95

Correlation -0.66




Spearmanov koeficijent korelacije
(rho, p)

Pearson Correlation 0.94 Pearson Correlation 0
Spearman Correlation 1 Spearman Correlation 0

200
100

* Pearsonov
koeficijent korelacije
nakon sto su
vrijednosti varijabli . . ;
pretvorene u
rangove

* Nulta hipoteza:
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/nacajna povezanost medu
varijablama?

h Ly ABSOLUTE VALUE OF R INTERPRETATION
9 . ° 10 <0.19 Slight; almost no relationship
e 91 0.20-0.39 Low correlation; definite but small relationship
> 61 ° * °s * o > 81 0.40-0.69 Moderate correlation; substantial relationship
. ¢ .: 7 0.70-0.89 High correlation; strong relationship
31 6- 0.90-1.00 Very high correlation; very dependable relationship
e * =0.30 Practically significant relationship
® 51{R=0.97,p=0.17
1 2 3 4 5 1 2 3 4 5 Izvor: https://doi.org/10.4102/sajhrm.v7i1.175
X X

* Koeficijent determinacije = r? jaCina povezanosti (R?) — proporcija
varijabilnosti u jednoj varijabli koja je objasnjena drugom varijablom
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Korelacija u bioloskim
eksperimentima

a. Operon vs Incyte b. Affy vs Incyte c. Affy vs Operon
O DI =TT y-108875-0162 R=0.767 y-09565x-0.1258 R=0813
» a-f. Scatter plot analysis to determine correlation
coefficients between and within platforms using
Jurkat RNA as an example. Correlations for all cell
lines are given in Table 4. (a) Operon versus Incyte (b)

Oy

e Affymetrix versus Incyte (c) Affymetrix versus Operon
d. Replicate Incyte GEM2 e: Replicate Operon V2 f. Replicate HG-U133A (d) GEM2 Versus GEM2 repllcate Correlatlon (e)
y=0913-00438 R=0M3  y=10048-00301 R=0938 y=09541x- 00075 R=09550 Operon versus Operon (f) HG-U133A versus HG-

U133A

Petersen, D., Chandramouli, G., Geoghegan, J. et al. Three microarray platforms: an analysis of their concordance in
profiling gene expression. BMIC Genomics 6, 63 (2005). https://doi.org/10.1186/1471-2164-6-63
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https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-6-63#Tab4

Korelacija u biolos

Replicate 2

Replicate 2

Dark, R*2= 0.9561

15m, RA2=0.9571
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Figure 1 Comparison of RNA-seq replicate experiments. The FPKM for biological replicate 1 is plotted against biological replicate 2 for each gene,
demonstrating strong correlation between replicate experiments at each time point. The correlation coefficient, R, is shown for each time point.
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Paznja kod izracuna korelacija — uzorkovanje iz vise razlicCit
populacija
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FIGURE 2

variables x and y
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https://www.frontiersin.org/articles/10.3389/fsysb.2023.1042156/full
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Paznja kod izracuna korelacija — uzorkovanje iz vise razlicitih
populacija
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FIGURE 4

Res! cena

https://www.frontiersin.org/articles/10.3389/fsysb.2023.1042156/full
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Paznja kod izraCuna korelacija — utjecaj netipicnih tocaka
(outliers)

Pearsonov koeficijent Spearmanov koeficijent
korelacije korelacije
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https://www.frontiersin.org/articles/10.3389/fsysb.2023.1042156/full
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Paznja kod izraCcuna korelacija —
uzorci nisu medusobno neovisni

415
- ® Independent observations
@ Repeated observations
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https://www.frontiersin.org/articles/10.3389/fsysb.2023.1042156/full



Linearna regresija

e Jednostavan kvantitativni model

e Zavisnu varijablu (output, response)
pokusavamo modelirati kao linearnu
kombinaciju jedne ili viSe nezavisnih varijabli

(input, predictor)

* Cilj je pronadi linearni model koji najbolje
opisuje nase podatke:

21.01.2026.

Body mass (g)

Yi = Po + Bix; + €

n
N

214

254

nN
s

nN
w

Daily calorificinput  Body mass

(kcal) (8)
1 8.6 221
2 2.9 21.1
3 4.4 223
4 4.9 22.2
5 9.7 253
6 9.7 24.5
7 6.3 23.6
8 4.7 225
9 7.2 24.3
10 6.9 225

Mice on different diets

10

Daily calorific input (kcal)

Adapted from https://dag.compbio.dundee.ac.uk/workshops/statistics_lectures/13_Linear_models.pdf
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Linearna regresija

> f <- 1lm(mass ~ kcal, data=ms)
> summary (f)

Call:
Im(formula = mass ~ kcal, data = ms)

Residuals:
Min 1Q Median 3Q Max
-1.8462 -0.2947 0.1323 0.5608 0.9667

Coefficients:

qtd. Error t value
(Intercept) | 20.1813 0.8750 23.065
kcal 0.4378 0.1269 3.449

Signif. codes: @ “***’ p§.@E1l “**’ @.01

254

Body mass (g)

N
N
"

Pr(>|tl)
1.33e-08 ***
0.00871 **

** 9.05 .7 0.1 °° 1

N
EN
f

n
w
L

214

4 6 8 10
Daily calorific input (kcal)

B, - odsjecak na osi Y, prosjecna vrijednost Y ako su svi X jednaki 0, u naSem primjeru predstavlja predvidenu

tjelesnu masu (u gramima) kada je unos kalorija nula.)

B; - prosjeéno povecanije Y kad se X; poveca za 1 jedinicu i svi ostali X su konstantni, u nasem primjeru
prosjecna promjena tjelesne mase (u gramima) povezana s povec¢anjem unosa kalorija za jednu jedinicu (1 kcal).

21.01.2026.

Adapted from https://dag.compbio.dundee.ac.uk/workshops/statistics_lectures/13_Linear_models.pdf
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Linearna regresija

> f <- 1lm(mass ~ kcal, data=ms)
> summary(f)

Call:
Im(formula = mass ~ kcal, data = ms)

Residuals:
Min 1Q Median 3Q Max
-1.8462 -0.2947 ©0.1323 0.5608 0.9667

Coefficients:

Estimate Std. Error t value
20.1813 0.8750 23.065
0.4378 0.1269 3.449

(Intercept)
kcal

Signif. codes: @ “***’ @.@01 ‘**’ @.01

Residual standard error: 0.8862 on 8 degrees of freedom

Adjusted R-squared:

p-value: ©.008709

Multiple R-squared: [0.5979,
F-statistic: 11.9 on and 8 DF,

R? nam govori koliko dobro nas model objasnjava

podatke.

21.01.2026.

varijanca objasSnjena modelom

ukupna varijanca

i)

. RZ=1 —
251 Xy =)
D 241
[}
1]
£
>‘23-
°
o)
m
224
Pr(>|t]) 21l
1.33e-08 *** T M s 10
0.00871 ** Daily calorific input (kcal)
¥ @.05 .7 9.1 <’ 1
R2 =0.97

Adapted from https://dag.compbio.dundee.ac.uk/workshops/statistics_lectures/13_Linear_models.pdf
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Linearna regresija

* Dodavanje parametara (prediktora) uvijek povecava R?
* Zbog toga se koristi prilagodeni R?

Polynomial fit degree 1 Polynomial fit degree 4 Polynomial fit degree 20
Training error: 0.4 Training error 10.14 Training error: 0.07
Generalization error 0.42 Generalization error 0.17 Generalization error 2000
o.. . 12 1 ./.\".,f
2 “
¥ \ . 1 . \0 1 ‘\'
¢ b 4
\
P 4 \
. 2 P
19 o* o ® 108l . ‘V
- /
a
: Pl \ s ‘\ A/
el . e *
. v . - ‘ v v v
X X X
Underfit Good fit Overfi

* Kod jednostavne linearne regresije (jedan prediktor) R?
je jednak kvadratu Pearsonovog koeficijenta korelacije



« V| . . Body mass (g) Diet e
Kategoricki prediktori i m—
Az 6]
2 20.9 norm @ 301
©
Kategoricki prediktori moraju se kodirati 3 25.8 hifat £ ] °
ewv] e .o . . . ie)
numerickim vrijednostima kako bi se 4 38.0 hifat 3
mogli koristiti u linearnoj regresiji 5 316 hifat 201
(dummy coding) ° _
norm hifat
Jedna kategorija je referentna (baseline) i kodira se sa 0, a Rezultat analize:
.. > f1 <- lm(mass ~ diet, data = mdat)
druga kategorijasa 1 > summary (1)
Estimate Std. Error t value Pr(>|t]|)
Nas primjer: ,normalna” dijeta se kodira sa 0, a , hifat” sa 1 (Intercept)  18.900 3.768  5.098 0.0146
diethifat 12.900 4,787 2.695 0.0741 .
Ho: effect size is equal zero
Inte rp retaciia koeficiienata: dietfat = difference between normal and high-fat diet

B, Srednja vrijednost tjelesne mase za skupinu na "Normalnoj" prehrani.

B, Srednja razlika u tjelesnoj masi izmedu skupine s ,hifat" prehranom i skupine s "normalnom"
prehranom. (Razlika u usporedbi s referentnom kategorijom).

Npr. Srednja vrijednost razlike u tjelesnoj masi miseva na ,hifat” prehrani u usporedbi s misSevima na
,hormalnoj” prehrani je 12.9 g (ali koeficijent nije statisti¢ki znacajan - ne bismo ga trebali tumaciti!)

Adapted from https://dag.compbio.dundee.ac.uk/workshops/statistics_lectures/13_Linear_models.pdf



Vise od jednog prediktora

Body Diet Sex
mass
(g)

1 16.9 norm f
2 209 norm f
3 15.8 norm f
4 28.0 norm m
5 21.6 norm m
6 159 norm m
7 32.4 hifat f
8 337 hifat f
9 329 hifat f
10 285 hifat m
11 376 hifat m
12 319 hifat m

21.01.2026.
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norm_f  hifat f norm_m hifat m

Rezultat analize:

> f <- 1lm(mass ~ diet + sex, data = mds)
> summary(f)
Estimate Std. Error t value Pr(>|t])

(Intercept) 18.942 2.805 9.448 5.73e-06 ***
diethifat 12.983 2.315 5.608 0.0008331 ***
sexm 1.817 2.315 ©.785 0.452780 «

U linearnoj regresiji mozemo
koristiti i viSe od jednog
(numerickog ili kategorickog)
prediktora — viSestruka regresija

MozZe doci do promjene
vrijednosti i/ili p-vrijednosti
koeficijenta u usporedbi s
jednostavnom regresijom (samo 1
prediktor)

Adapted from https://dag.compbio.dundee.ac.uk/workshops/statistics_lectures/13_Linear_models.pdf
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Linearna regresija s interakcijama

* Moguce je kao prediktore ukljuciti i interakcije
prediktorskih varijabli (npr. Ako o¢ekujemo da
prehrana ima razli¢it utjecaj ovisno o spolu miseva)

> f <- 1Im(mass ~ diet + sex + diet:sex, data = mds)

> summary(f)$coefficients
Estimate Std. Error t value Pr(>|t])

(Intercept) 17.867 2.335 7.652 6.01e-05 ***

diethifat 15.133 3.302 4.583 0.00179 **

sexm 3.967 3.302 1.201 ©0.26400 Interaction not
diethifat:sexm -4.300 4.670 -0.921 0.38407 < significant, we are

overfitting

Adapted from https://dag.compbio.dundee.ac.uk/workshops/statistics_lectures/13_Linear_models.pdf



Pregled reziduala

YA

* Reziduali sadrze informacije o tome zasto model | 557
mozda ne odgovara podacima

* Reziduali— uocene pogreske ako je model to€an
* Pretpostavke o pogreskama:
e PogresSke su neovisne

 Slijede normalnu distribuciju sa
srednjom vrijednoSCu O i
konstantnom varijancom o2

* Nakon ispitivanja reziduala g ~\(0,5%)
mozemo zakljuciti vrijede li ove
pretpostavke ili ne




Testiranje normalnosti reziduala

* Graficke metode:
* Histogram

* Kvantil-kvantil prikaz s obzirom na standardnu normalnu
distribuciju

 Testovi za hormalnost

* Anderson-Darling test, Shapiro-Wilk test, Lilliefors test
(adaptacija Kolmogorov-Smirnoff testa), D’Agostino-
Pearson test...



Je li linearan model prikladan za
sljedece analize?




Graficki prikaz reziduala

Residuals vs Fitted Normal Q-Q
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Ne-linearni odnosi

Residuals vs Fitted
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Standardized residuals

Standardized residuals

Naormal Q-Q

014 40
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Theoretical Quantiles

Residuals vs Leverage
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High leverage points (tocke

. k t . .
g J o
Residuals vs Fitted Normal Q-Q
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Opservacije Ciji je utjecaj (leverage) prevelik (izvan iscrtanih crvenih
linija) treba dodatno pregledati i potencijalno iskljuciti iz analize
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Provjeriti vremenske ucinke, nestalnu varijancu, potrebu za transformacijom i
zakrivljenost

e Zadovoljavajuci dijagram reziduala trebao bi pokazivati slucajni uzorak

* Nezadovoljavajudi prikazi reziduala: R

21.01.2026. 27



LogistiCka regresija

Predvidanje kategorickih zavisnih varijabli

Npr. Zelimo na temelju genotipa (G/G, G/A, A/A) boluje li ispitanik od
neke bolesti (slucaj, case) ili ne (kontrola, control)

Predvidamo p(X) = Pr(Y =1 | X) — vjerojatnost da ispitanik boluje od
proucavane bolesti (vjerojatnost da pripada u kategoriju slucaj/case) s

obzirom na genotip

Studija sluc¢aja s kontrolom
(Case/control study)

Controls O Cases \:|

B
@ () [oA

.
E E

G alel je povezan s boleScu

Adapted from https://wwvs%cﬁorado.ed u/ibg/i

21.01.2026.

Zavisna varijabla: Y (1 ako je slucaj,
0 ako je kontrola)

Prediktor: X (0, 1ili 2 pojavljivanja
alela G)

B B X

p(X) — 1 + eBo+61X

Probability of
disease 1.0 4

0.8 4
06 4
0.4 4
0.2 4

0.0

X

p(X) \ _
ln(l——p(X)> = ,30 +,81X+S
log odds ratio

B, = razlika u logaritmu omjera izgleda (log odds ratio) za slucajeve u

usporedbi s kontrolama

elP) = razlika u izgledima = omjer izgleda (Odds Ratio, OR)

Efekt alela je OR:

OR > 1 povecani izgledi da bude sluc¢aj (odnosno da boluje od bolesti)

<1 smanjen L%%Iﬁdi d

g-wor i

ISgw-on ine-resource

bude slyc 28

Ccaj
5'7L1-ir‘troduction-gwas-part-l



Literatura:

Korelacija:

* Saccenti E. What can go wrong when observations are not independently and
identically distributed: a cautionary note on calculating correlations on combined
data sets from different experiments or conditions. Front Syst Biology. Jan. 2023;3.

* Udovici¢ M, Bazdarié¢ K, Bilié¢-Zulle L, Petrovecki M. What we need to know when
calculating the coefficient of correlation?. Biochem Med (Zagreb). 2007;17:10-15
Regresija:

* Dunn, P.K. (2019) Scientific Research Methods: An introduction to quantitative
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* Poglavlje 35, regression: https://srm-course.netlify.app/regression
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