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1. INTRODUCTION 

 Ambient air pollution remains one of the most pervasive environmental threats to human 

health. Pollutants such as particulate matter (PM), nitrogen dioxide (NO2), ozone (O3), volatile 

organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs) have been consistently 

linked to adverse health outcomes, including respiratory and cardiovascular disease, cancer, and 

neurodevelopmental impairment (de Bont et al., 2022; Låg et al., 2020; Lelieveld et al., 2023; 

Serafini et al., 2022). However, traditional epidemiological approaches often focus on end-stage 

clinical outcomes rather than the early biological processes that precede them. In response, research 

has increasingly shifted toward uncovering early biological effects—molecular and cellular 

alterations that occur before disease onset. These include oxidative stress pathways, DNA integrity, 

and epigenetic patterns, which serve as critical early indicators of environmental toxicity (Delfino 

et al., 2011; Kazensky et al., 2024; Lodovici and Bigagli, 2011; Prunicki et al., 2021). However, 

linking complex environmental exposures to early biological responses presents several 

methodological challenges. First, air pollution is not a single agent but a dynamic mixture of co-

occurring pollutants that often vary by source, season, and spatial scale (Pehnec et al., 2020; Račić 

et al., 2025). Many of these pollutants are strongly correlated, complicating efforts to disentangle 

their individual contributions. Second, these complexities introduce substantial statistical 

challenges. Correlated exposures increase multicollinearity, reduce model stability, and limit the 

interpretability of single-pollutant associations. Moreover, subtle effects may be masked by noise, 

and traditional models are often not equipped to detect indirect or mediated relationships (Wang et 

al., 2020). Finally, exposure–response relationships may be modulated by a range of demographic, 

behavioral, and environmental factors, complicating interpretation.  

 Understanding how these diverse pollutants interact biologically requires an integrative 

approach that considers not only external exposures but also internal markers of exposure, 

physiological response, and early biological effects (Brucker et al., 2020). This is particularly 

relevant in urban settings, where individuals are exposed to complex combinations of pollutants 

from traffic, residential heating, and industrial activity—each with distinct chemical signatures and 

biological implications (Jakovljević et al., 2018; Piracha and Chaudhary, 2022). Although human 

biomonitoring (HBM) has significantly advanced the measurement of various biomarkers, 

comprehensive studies that integrate air pollution exposure with both exposure and effect 
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biomarkers using statistically robust frameworks remain limited. In particular, population-level 

biomonitoring studies have yet to fully leverage advanced statistical methods—such as clustering 

methods, composite score generation, and multivariate and mediation modeling—which offer 

powerful tools to address challenges like multicollinearity, variable redundancy, and indirect 

pathways of association. 

1.1. Study Objectives  

To address these limitations, this study was designed to integrate air pollution exposure 

monitoring with biomarker-based assessments in an urban cohort, sampled during two contrasting 

seasons. The study pursued the following core objectives: 

1. Characterize exposure to ambient air pollution using clustering techniques 

• Capture temporal and seasonal structure in pollutant behavior. 

• Apply hierarchical clustering to ambient pollutant data to reduce dimensionality and define 

composite exposure clusters. 

• Examine the influence of meteorological parameters on pollutant cluster behavior to better 

understand environmental drivers of exposure. 

2. Assess internal exposure using biomonitoring approaches 

• Measure internal levels of: benzene, toluene, ethylbenzene, and xylene (BTEX) in blood, 

PAH metabolites in urine, essential and toxic metals in blood and plasma. 

• Evaluate seasonal variation and pollutant-specific correlations between internal and 

external exposure. 

3. Assess associations between exposure and early biological effect biomarkers 

• Measure biomarkers of: 

o Local airway inflammation, 

o Oxidative stress: panel of pro-oxidant products and antioxidant defense markers, 

o Genotoxicity: DNA damage and genomic instability. 

• Apply multivariate regression and mediation models to: 

o Identify associations between exposure and effect biomarkers, 

o Assess airway inflammation and oxidative stress scores as mediators, 

o Control for demographic, meteorological, and lifestyle confounders. 
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By integrating external pollutant profiles, internal exposure biomarkers, and biological 

effect markers within a statistically robust framework, this thesis provides a multidimensional view 

of how complex urban exposures influence early biological responses. Through the combined use 

of hierarchical clustering, composite score generation, and mediation modeling—still rarely 

applied in population-based biomonitoring—this work advances methodological and mechanistic 

understanding in environmental health and strengthens the link between exposure science and 

human risk assessment.  
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2. LITERATURE REVIEW 

2.1 Air pollution  

Air pollution is one of the largest environmental health risks in Europe and a significant 

global concern, affecting both human health and ecosystems. Although air pollution emissions 

have declined over the past two decades, leading to improved air quality, it remains a persistent 

threat. Between 2005 and 2022, deaths in the EU attributable to fine particulate matter (PM2.5) 

decreased by 45%, bringing the EU closer to its goal of a 55% reduction by 2030, as outlined in 

the Zero Pollution Action Plan, a key component of the EU Green Deal (EEA, 2024). This broader 

strategy aims to minimize pollution’s impact on health and the environment through stricter 

regulations and cleaner energy transitions (EU, 2021). Despite this progress, exposure to pollutants 

such as PM2.5, O3, and NO2 at levels exceeding World Health Organization (WHO) 

recommendations was responsible for an estimated 239,000, 70,000, and 48,000 premature deaths, 

respectively, in 2022 (EEA  2024). Globally, the estimates are even more alarming, indicating that 

air pollution causes 8.34 million premature deaths annually (Lelieveld et al., 2023), with more than 

90% of the world’s population living in areas where air quality does not meet WHO standards 

(WHO, 2021). Over 50% of the global population resides in urban areas, where pollution levels 

are highest due to the extensive combustion of fossil fuels (EEA, 2021). In addition to human 

activities, natural factors such as humidity, temperature, seasonal variations, and geographical 

location influence the dispersion, transformation, and persistence of air pollutants in the 

atmosphere, ultimately shaping local air quality (Liu et al., 2020). Air pollution affects multiple 

human organ systems (Figure 1). One of the most significant health impacts is its negative effect 

on the respiratory system. Individuals chronically exposed to polluted air are at an increased risk 

of developing various respiratory diseases or exacerbating pre-existing conditions, including 

asthma, bronchitis, emphysema, and chronic obstructive pulmonary disease (COPD) (Liu et al., 

2020). Additionally, long-term exposure to air pollution can increase the risk of cardiovascular 

diseases such as heart attack, stroke, high blood pressure, and arrhythmias (de Bont et al., 2022). 

According to WHO estimates, air pollution is responsible for approximately 29% of lung cancer 

deaths, 43% of COPD-related deaths, about 25% of deaths from ischemic heart disease, and 24% 

of stroke-related deaths (WHO 2024).  
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Figure 1. Health impacts of air pollution, highlighting key air pollutants associated with specific 

health outcomes. Particulate matter (PM) with a diameter of 2.5 µm or less (PM2.5), particulate 

matter with a diameter of 10 µm or less (PM10), ozone (O3), nitrogen dioxide (NO2), 

benzo[a]pyrene (BaP) and sulphur dioxide (SO2). Adapted from EEA (2024).  

Moreover, prolonged exposure to airborne pollutants can reduce life expectancy by an average of 

2.9 years (2.3–3.5 years), which is approximately twice as high as earlier estimates and even 

exceeds the impact of tobacco smoking (Lelieveld et al., 2020). Air pollution impairs immune 

function primarily through oxidative stress and inflammation, as exposure to pollutants such as 

PM2.5 and O3 generates reactive oxygen species (ROS) that trigger inflammatory pathways, weaken 

host defenses, and increase susceptibility to infections and allergic diseases (Glencross et al., 2020; 

Lodovici and Bigagli, 2011; Serafini et al., 2022; Tuazon et al., 2022). Ural et al. (2022) have 

revealed that inhaled PM tends to accumulate in lung-draining lymph nodes, especially after the 

age of 40. There, the particles become sequestered in specific macrophage subsets located within 

T cell zones, leading to impaired T cell activation, reduced production of pro-inflammatory 

cytokines, and diminished phagocytic activity. This accumulation disrupts the normal structure and 

organization of the lymphoid tissue, essential for effective immune surveillance in the respiratory 

tract, underscoring the importance of maintaining optimal air quality to safeguard immune health 
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against both current and emerging pathogens. Furthermore, recent research suggests that long-term 

exposure to air pollution increases the risk of developing various types of cancer, including lung, 

throat, and bladder cancer (Chen et al., 2022; Turner et al., 2020; Wang et al., 2023b). Turner et al. 

(2020) reviewed multiple meta-analyses, which indicate that for every 10 µg/m³ increase in PM2.5, 

lung cancer incidence or mortality rises by approximately 9% to 14%. Based on global exposure 

estimates, where the average population-weighted PM2.5 concentration worldwide is around              

46 µg/m3 (compared to the WHO guideline of 10 µg/m3), which corresponds to an estimated 60% 

increased risk of all-cause mortality. A similar analysis for PM10 reported an 8% increase in 

mortality risk per 10 µg/m3 increment (Turner et al., 2020). Furthermore, data from the UK 

Biobank demonstrate that long-term exposure to ambient air pollutants (including NO, NO2, PM2.5, 

and PM10) is associated with an elevated risk of laryngeal cancer. This association is particularly 

pronounced in individuals with pre-existing risk factors such as female sex, smoking, elevated 

systolic blood pressure (≥120 mmHg), diabetes, or higher genetic susceptibility (Wang et al., 

2023b). Beyond its health effects, air pollution significantly impacts the economy by increasing 

healthcare costs, reducing life expectancy, and causing lost workdays across various sectors (EEA, 

2023). Between 2014 and 2021, the annual economic burden of air pollution in the EU was 

estimated at €770 billion, equivalent to 6% of the EU’s gross domestic product (GDP), aligning 

with previous estimates by the World Bank and the European Commission, which placed annual 

costs between €330 billion and €940 billion (European Commission, 2022; Mejino-López & Oliu-

Barton, 2024). Taken together, the staggering health risks and economic burdens imposed by air 

pollution underscore the need for rigorous measures to reduce emissions and improve air quality, 

thereby safeguarding public health, supporting economic stability, and ensuring a sustainable 

future for all.  

2.1.1. Particulate matter 

Particulate matter (PM) consists of a heterogeneous mixture of solid and liquid particles 

suspended in the air, varying in chemical composition, morphology, and size. According to the 

U.S. Environmental Protection Agency (EPA), these particles can be grouped into two main 

categories. Coarse particles (PM10) are those with diameters generally larger than 2.5 µm but 

smaller than or equal to 10 µm (with particles larger than 10 µm typically classified separately as 

large coarse particles). Fine particles (PM2.5) are defined as particles with diameters of 2.5 µm or 
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less; this category also encompasses ultrafine particles and nanoparticles (PM0.1), which are 

generally classified as having diameters less than 0.1 µm (US EPA) (Figure 2).  

 

Figure 2. Size comparison for coarse particles (PM10) and fine particles (PM2.5) alongside 

representative sizes of eukaryotic cells, prokaryotic cells, and virus particles. Adapted from See 

the Air  (2022). 

PM originate from a range of sources, including industrial processes, traffic, household activities 

(such as heating and cooking), agriculture, as well as natural phenomena like soil erosion and 

volcanic eruptions. Their ability to penetrate biological tissues depends largely on their size. For 

instance, PM10 tend to deposit in the upper airways and are largely cleared via mucociliary 

mechanisms, though their soluble components can still interact with epithelial cells and elicit local 

biological responses (Misiukiewicz-Stepien and Paplinska-Goryca, 2021). In contrast, PM2.5 and 

especially PM0.1 are of particular concern because their small size enables them to evade the 

respiratory system's natural defense mechanisms. These particles can penetrate deep into the 

alveolar regions of the lungs and, in some cases, cross the alveolar-capillary barrier to enter the 
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bloodstream (Figure 3) (Agudelo-Castañeda et al., 2017; Jaafari et al., 2020; Thangavel et al., 

2022). Acute exposure to elevated PM levels has been associated with acute respiratory and 

cardiovascular events—including asthma exacerbations, bronchitis, arrhythmias, and myocardial 

infarction—linked to immediate cellular stress responses (Thangavel et al., 2022). Chronic 

exposure to elevated levels of PM is especially concerning. For instance, long-term exposure to 

PM2.5 concentrations exceeding WHO guideline thresholds, typically in the range of 5–10 µg/m³ 

annually, has been consistently linked to increased risks of respiratory, cardiovascular, and 

neoplastic diseases (Guo et al., 2023). These adverse outcomes are mediated by multiple 

mechanisms, including the generation of ROS, DNA damage, mitochondrial disruption, and 

impaired cellular repair processes (Shan et al., 2022; Wang et al., 2021b). Additionally, the metallic 

components of PM2.5 have been associated with cellular deformation, inhibited proliferation, and 

further DNA damage, ultimately leading to cell cycle arrest or apoptosis (Dong et al., 2019). High 

concentrations of PM2.5 have also been shown to affect genetic pathways in bronchial cells and 

peripheral blood samples, particularly those related to inflammation and immune responses 

(Corsini et al., 2009; Feng et al., 2016; Michael et al., 2013; Mostafavi et al., 2018). Nevertheless, 

emerging research indicates that even very low concentrations of PM can adversely affect human 

health, particularly with chronic exposure. Acute exposure at low concentrations may not result in 

overt clinical symptoms in healthy individuals; however, sensitive populations (e.g., children, the 

elderly, and those with preexisting respiratory or cardiovascular conditions) may still experience 

subtle respiratory irritation and transient declines in lung function (Aithal et al., 2023; Simoni et 

al., 2015; Wang et al., 2023d). Persistent low-level exposure—even at concentrations below former 

“acceptable” thresholds—can lead to subclinical inflammation, cumulative DNA damage, and 

gradual impairment of cardiovascular and pulmonary function. For instance, the revised WHO air 

quality guidelines now recommend an annual PM2.5 mean of around 5 µg/m3, reflecting mounting 

evidence that adverse health effects occur at lower exposures than previously recognized 

(Hoffmann et al., 2021). In fact, epidemiological studies have long demonstrated that even modest 

increases in PM concentrations are associated with measurable increases in mortality and 

morbidity. Study by Pope et al. (2002) and subsequent work by Brook et al. (2010) have linked 

long-term exposure to fine particles with heightened risks of cardiopulmonary diseases and lung 

cancer, even when exposure levels are relatively low. These findings underscore that there is 

essentially no “safe” threshold for PM exposure, as both acute high-level and chronic low-level 
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exposures contribute substantially to the global health burden. Notably, the International Agency 

for Research on Cancer (IARC) classifies outdoor air pollution, with PM as a major component, as 

carcinogenic to humans (Group 1). A comprehensive understanding of the health impacts and 

biological mechanisms of PM is crucial for establishing the theoretical foundation necessary for 

early prevention strategies and the identification of biomarkers for air pollution-related diseases. 

Furthermore, PM can act as a carrier for a variety of harmful substances and pollutants, including 

PAHs, toxic metals, organic compounds, sulfates, nitrates, as well as bacteria and allergens. 

 

Figure 3. Schematic illustration of particulate matter (PM) translocation through the lung–blood 

barrier. The diagram classifies PM by aerodynamic diameter into three groups: PM0.1 (particles 

≤0.1 μm), PM2.5 (particles <2.5 μm), and PM10 (particles <10 μm). It shows that while larger PM10 

particles are predominantly deposited in the upper airways and cleared by mucociliary 

mechanisms, finer particles (PM2.5 and PM0.1) can reach the alveolar spaces. Once in the alveoli, 

these small particles may cross the alveolar epithelial layer and capillary endothelium, thereby 

entering systemic circulation. Adapted from Misiukiewicz-Stepien and Paplinska-Goryca (2021). 
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2.1.2. Polycyclic Aromatic Hydrocarbons 

Polycyclic aromatic hydrocarbons (PAHs) are a complex mixture comprising more than 

100 different organic compounds, each consisting of two or more aromatic rings (Figure 4). These 

compounds are ubiquitous environmental pollutants that originate from both natural and 

anthropogenic sources, predominantly from the incomplete combustion of organic materials such 

as coal, oil, and fuel (e.g., vehicle exhaust) as well as from biomass burning (wood, animal dung, 

etc.) (Patel et al., 2020; Peng et al., 2011). Exposure to PAHs can occur through ingestion, 

inhalation (mostly particle-bound PAHs), and dermal absorption, with the severity of toxic effects 

depending on both the duration of exposure and the received dose (Choi H et al., 2010; Tong et al., 

2018). Regarding respiratory pathophysiology, inhalation of PAHs is associated with reduced lung 

function, exacerbation of asthma, and a higher incidence of COPD and cardiovascular conditions 

(Zhang et al., 2021a). Several studies have demonstrated a correlation between PAH exposure and 

the development of asthma, as well as an increase in asthmatic symptoms in children. For instance, 

PAHs such as benzo[a]pyrene (BaP) are metabolized by cytochrome P450 enzymes into reactive 

intermediates that can bind to DNA and form adducts, leading to measurable increases in 

biomarkers of DNA damage, such as 8-hydroxy-2′-deoxyguanosine (8-OHdG). This genotoxic 

stress not only triggers pro-inflammatory pathways but also contributes to airway remodeling and 

hyperresponsiveness, thereby heightening the risk and severity of asthma in children (Hu et al., 

2021; Låg et al., 2020). WHO has underscored the need for additional epidemiological and 

experimental studies to fully clarify the potential impact of ambient PAH exposure on conditions 

such as asthma and other non-malignant respiratory diseases (WHO, 2021). Moreover, 

epidemiological studies, reviewed by Kelly et al. (2021) and recognized by WHO (2021), have 

consistently demonstrated that chronic PAH exposure is associated with higher incidences of lung, 

skin, and bladder cancers, thereby establishing the causal link between PAHs and increased cancer 

risk. The IARC and the IARC Monographs program (IARC, 2010) have evaluated experimental 

data on a total of 60 individual PAHs. Many of these compounds have been classified either as 

carcinogenic or as potential carcinogens and mutagens. Specifically, benzo[a]pyrene is classified 

as carcinogenic to humans (Group 1), while other PAHs—such as benzo[a]anthracene (BaA), 

dibenzo[a,h]anthracene (DahA), benzo[b]fluoranthene (BbF), benzo[j]fluoranthene (BjF), 

benzo[k]fluoranthene (BkF), and indeno[1,2,3-cd]pyrene (IP)—are classified as probably 

carcinogenic to humans (Group 2A) or possibly carcinogenic to humans (Group 2B). Other PAHs, 
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such as benzo[ghi]perylene (BghiP), cannot be classified (Group 3) due to insufficient evidence. 

The carcinogenic and mutagenic potential of PAHs and their metabolites primarily arises from their 

ability to bind to DNA and form adducts, which can lead to genotoxic and cytotoxic effects (Ewa 

and Danuta, 2017). Upon entering the human body, PAHs undergo metabolic activation primarily 

via cytochrome P450 enzymes (especially CYP1A1 and CYP1B1), forming hydroxylated 

metabolites (OH-PAHs). These are then conjugated with glucuronic acid or sulfate by phase II 

enzymes and excreted through urine. A variety of urinary PAH metabolites can be detected, 

including monohydroxy derivatives of phenanthrene, fluoranthene, pyrene, chrysene, and 

naphthalene. However, three metabolites—1-naphthol, 2-naphthol, and 1-hydroxypyrene (1-

OHP)—are most frequently measured in human biomonitoring studies due to their relatively high 

excretion rates, analytical stability, and linkage to prevalent PAH sources. Specifically, 1- and         

2-naphthol reflect exposure to naphthalene, while 1-OHP is a commonly used surrogate for overall 

PAH exposure, as pyrene is present in most PAH mixtures and strongly correlates with other 

carcinogenic PAHs (IARC, 2013; Meeker et al., 2007; Zhu et al., 2021). 

 

Figure 4. Structural formulas of selected polycyclic aromatic hydrocarbons (PAHs). This figure 

displays the structural formulas of 11 PAHs, present in the ambient air of Zagreb, chosen for their 

diverse number (4, 5 or 6) of aromatic rings. According to carcinogenic classifications by IARC, 

this selection includes Group 1 compounds (e.g., benzo[a]pyrene), as well as PAHs classified as 

Group 2A and 2B, and Group 3. 



12 

 

2.1.3. Toxic Metals 

Exposure to toxic metals occurs primarily through the ingestion of contaminated food and 

water; however, inhalation of PM-bound metals also substantially contributes to the overall body 

burden, especially in urban environments (Guo et al., 2021). Toxic metals present in the air, such 

as Pb, Cd, As, Ni, Mn, Cu, and Fe, originate from diverse sources including industrial emissions, 

traffic-related pollution, waste incineration, and natural processes like soil dust resuspension and 

volcanic activity and have serious adverse effects on human health (Joshirvani et al., 2021; Pandey 

et al., 2013). Lead is commonly released from industrial processes, deteriorating lead-based paints, 

and the historical use of leaded gasoline. It can cause neurological disorders, kidney damage, and 

reproductive pathologies, posing a particular threat to children who are especially vulnerable to its 

effects (Gatzke-Kopp et al., 2021; Rasnick et al., 2021). Cadmium is primarily emitted from 

industrial operations, waste incineration, and contaminated soils. It accumulates in the kidneys and 

has been linked to renal diseases, osteoporosis, and various cancers (Genchi et al., 2020b; Qu and 

Zheng, 2024). Arsenic, which may be released from smelting operations as well as occurring 

naturally in groundwater and soils, is well known for its carcinogenic properties. It is associated 

with an increased risk of skin, lung, bladder, and liver cancers and is classified by the IARC as a 

Group 1 carcinogen (IARC, 2012; Speer et al., 2023). Nickel is emitted from industrial processes 

and fossil fuel combustion. It can trigger allergic reactions, exacerbate asthma, and elevate the risk 

of lung cancer. Certain nickel compounds are also classified as Group 1 carcinogens by IARC 

(Genchi et al., 2020a; IARC, 2012). Manganese is released mainly from mining activities and the 

combustion of fossil fuels. Although it is an essential trace element, higher exposures can cause 

neurotoxicity and damage the nervous system (Ávila et al., 2021; Cheng et al., 2023). Copper is an 

essential element that plays a critical role in antioxidant defense by serving as a cofactor for 

enzymes such as superoxide dismutase (SOD). However, at elevated concentrations—often 

originating from mining, smelting, brake wear, and corrosion of copper-containing infrastructure—

copper can induce gastrointestinal distress and liver damage (Taylor et al., 2020). In fact, Pujol et 

al. (2016) reported that airborne copper exposure in school environments is associated with poorer 

motor skills and alterations in the basal ganglia in children. Iron, although vital for numerous 

physiological processes, can also be harmful when present in excess. Iron is abundant in urban dust 

and is released from industrial and construction activities; excess iron can lead to oxidative stress 

and has been linked to cardiovascular diseases (Li and Zhang, 2021; Morgan et al., 2020; Yan et 
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al., 2022). These metals are often bound to PM. Upon inhalation, they can enter the bloodstream, 

where they may induce oxidative stress, inflammation, and a cascade of adverse health effects—

including respiratory and cardiovascular diseases as well as an increased risk of cancer (Lequy et 

al., 2023). Although the toxic potential of airborne metals is well documented, their combined 

exposure, whether through additive or synergistic effects, may further amplify their adverse health 

impacts, making them a significant public health concern, particularly in densely populated urban 

areas where industrial and traffic-related emissions contribute to higher ambient concentrations. 

2.1.4. Volatile Organic Compounds 

Volatile organic compounds (VOCs) include all organic chemicals that have a high vapor 

pressure and become gaseous under elevated temperatures and pressures (Atkinson, 2000). 

Although VOCs are emitted from both natural and anthropogenic sources, human activities, such 

as fossil fuel combustion, industrial processes, and solvent use, are the dominant contributors to 

ambient VOC levels, particularly in urban and industrialized areas. However, certain VOCs, such 

as isoprene, limonene, and pinene, are predominantly emitted from biogenic sources, particularly 

vegetation (Zhang et al., 2019). Among the various VOCs, benzene, toluene, ethylbenzene, and the 

xylene isomers (o-, m-, and p-xylene)—collectively known as BTEX—account for nearly 80% of 

total VOC emissions. These compounds mainly originate from vehicle exhaust, tobacco smoke, 

gasoline, paints, adhesives, and solvents (Dimitriou and Kassomenos, 2020; Padhi and Gokhale, 

2017).  Because many VOCs do not reach detectable levels in ambient air, BTEX compounds serve 

as reliable indicators of overall VOC emissions (Bulog et al., 2011). Moreover, since BTEX 

compounds are not produced endogenously, their measurement in biological samples is considered 

a specific marker of exposure. Benzene is the most extensively studied compound in this group, 

primarily because of its well-documented carcinogenicity—especially in the context of 

occupational exposure as demonstrated in numerous epidemiological studies in occupational 

medicine (Chiavarini et al., 2024; Scholten et al., 2020; Wan et al., 2024; Zhou et al., 2020). In 

urban outdoor environments, the primary sources of benzene are crude oil, gasoline, and industrial 

emissions, whereas tobacco smoke is the predominant indoor source. In non-smokers, benzene 

exposure is mainly related to ambient environmental levels, but in smokers, approximately 90% of 

the benzene in the body is derived from tobacco smoke (Brajenović et al., 2015; Brčić, 2004). In 

Central European urban areas, annual average ambient benzene concentrations are reported to be 
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around 2–5 µg/m3 (Sekar et al., 2019). The IARC classifies benzene as a Group 1 and ethylbenzene 

as a Group 2B carcinogen (IARC, 2000, 2018). At low concentrations, benzene exposure can cause 

headaches and nausea, while long-term and high-level exposure has been associated with the 

development of leukemia. In the human body, benzene is metabolically oxidized in the liver into 

phenol, catechol, and hydroquinone. These metabolites accumulate in the bone marrow and are 

directly linked to leukemogenesis (Sekar et al., 2019). Ethylbenzene may lead to respiratory issues 

and irritation of the eyes and throat; chronic exposure can result in hearing loss and liver damage 

(ATSDR, 2010). Although toluene and xylenes are not classified as carcinogens by IARC, their 

ingestion or inhalation can still cause systemic toxicity. Reported adverse effects include nausea, 

skin inflammation, nervous system impairment, and damage to the kidneys and liver, among other 

health issues (Dehghani et al., 2022).  

2.1.5. Other Chemical and Biological Air Pollutants 

Beyond the previously discussed air pollutants, including PMs, VOCs, and toxic metals, air 

pollution also encompasses a variety of gaseous pollutants that play a crucial role in shaping overall 

air quality. For example, O3, carbon compounds—primarily carbon monoxide (CO) and carbon 

dioxide (CO2)—and nitrogen oxides (NOx, including nitric oxide (NO) and NO2) are ubiquitous 

in both urban and rural atmospheres (Safieddine et al., 2013). Anthropogenic emissions, primarily 

from the combustion of fossil fuels, are responsible for the majority of NOx, CO, and previously 

covered VOCs present in the atmosphere. The interactions between these pollutants in the 

atmosphere, including the photochemical formation of ground-level O3 from VOCs and NOx, 

further complicate air quality management and contribute to the broader environmental and health 

challenges associated with air pollution (Figure 5) (Zhang et al., 2019). 
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Figure 5. Formation of ground-level O3 through photochemical reactions involving VOCs and 

nitrogen oxides, emitted from both anthropogenic (e.g., vehicle exhaust, industrial activities) and 

biogenic sources (e.g., vegetation). When exposed to sunlight, these precursors react to produce O3 

in the troposphere. Additionally, O3 can descend from the stratosphere through stratosphere-

troposphere exchange, contributing to its ground levels. VOC – volatile organic compound,           

CO – carbon monoxide, NO – nitric oxide, NO2 – nitrogen dioxide, HO – hydroxyl, H2O – water, 

O3 – ozone, PM2.5 – particulate matter < 2.5 μm 

High concentrations of O3 can cause irritation of the airways, coughing, reduced lung function, and 

the exacerbation of asthma. Moreover, even relatively low doses of O3, when experienced over a 

prolonged period, can negatively affect lung function in children and older adults (Holm and 

Balmes, 2022). Chronic exposure to elevated O3 levels has been associated with the development 

of chronic lung diseases and an increased risk of mortality from both respiratory and cardiovascular 

causes (Kazemiparkouhi et al., 2019; Turner et al., 2016). NO2, which primarily originates from 

vehicle emissions and power plants, can cause airway irritation and worsen asthma symptoms, 

effects that are especially pronounced in children and the elderly (Kowalska et al., 2020). He et al. 

(2020) investigated the association between short-term NO2 exposure and mortality. They observed 

a significant cumulative effect on non-accidental mortality over a period of up to seven days, with 

an increase of over 3% in respiratory-related deaths for every 10 µg/m3 increment in NO2. When 
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examining cumulative exposure over 30 days, a similar trend was observed, though the increase 

did not reach statistical significance. Furthermore, Huangfu and Atkinson (2020), using a meta-

analytical approach, found a positive association between long-term NO2 exposure and mortality, 

while the evidence for O3 was more limited. The high heterogeneity in these results underlines the 

need for multipollutant models to better understand the combined effects of these pollutants and 

more accurately assess their relationships with health outcomes. 

In addition to these chemical pollutants, biological agents such as pollen also play a critical 

role in air quality. Pollen consists of fine dust (microscopic grains produced by plants for 

reproduction) that is dispersed by air currents and can trigger allergic reactions in sensitive 

individuals (Kitinoja et al., 2020). When airborne pollen interacts with urban pollutants such as 

PM, O3, and NO2, it undergoes physical and chemical modifications. These interactions can 

damage the pollen's outer surface, making it more fragile and promoting the release of smaller sub-

pollen particles that can penetrate deeper into the respiratory tract (Capone et al., 2023). In parallel, 

air pollutants can alter the biochemical profile of pollen, increasing the expression of allergenic 

proteins and enhancing its immunogenicity (Venkatesan et al., 2024). These combined effects are 

believed to amplify the severity and prevalence of allergic diseases, including asthma and rhinitis. 

In line with these mechanisms, the global burden of allergic respiratory conditions has risen 

dramatically in recent decades, especially in industrialized regions, with an estimated 400 million 

people affected by allergic rhinitis and over 260 million living with asthma (Abbafati et al., 2020; 

Nur Husna et al., 2022). While global asthma incidence declined between 1990 and 2021, 

projections indicate that the age-standardized incidence rate will stabilize at relatively high levels 

from 2022 to 2050, particularly among adults (20–80 years), highlighting asthma as an ongoing 

public health concern despite previous reductions (Yuan et al., 2025). Although this issue is most 

pronounced in industrialized regions, developing countries also face serious health challenges due 

to the interaction between polluted air and pollen, which exacerbates allergic diseases. Climate 

change, rising CO2 levels, and extreme weather conditions further influence pollen production and 

distribution, leading to increased sensitivity and a higher incidence of asthma (Zhang and Steiner, 

2022). In Croatia, the annual asthma incidence rate is approximately 3,000 per 100,000 inhabitants, 

with about 12,000 new cases each year (HZJZ, 2022). This figure is close to the global asthma 

prevalence reported by Yuan et al. (2025), estimated at 3,340 cases per 100,000. However, 

Croatia’s adult asthma prevalence is estimated at 5% (5,000 per 100,000), placing it within the 
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broader European range of 5.1% to 8.2% (Eurostat, 2021; Wecker et al., 2023). This contrast 

highlights that Croatia, and Europe more broadly, faces a disproportionately higher asthma burden 

than the global average. These national differences in prevalence are shaped not only by 

environmental exposures such as air pollution and aeroallergens but also by underlying genetic 

susceptibilities, diagnostic practices, and access to healthcare, all of which influence how asthma 

is detected, managed, and reported across regions. Monitoring pollen trends throughout the year is 

particularly relevant for asthma management; a pollen calendar helps individuals with asthma 

identify periods of high pollen concentrations (expressed as the number of grains per m3), thereby 

enabling them to take preventive measures and adjust their daily activities to reduce exposure and 

better manage their symptoms (Figure 6). 

 

Figure 6. Pollen Calendar of the City of Zagreb. Based on the original 10-year results from the 

Teaching Institute for Public Health "Dr. Andrija Štampar" (NZJZ, 2020). It outlines the seasonal 

occurrence and peak periods of allergenic tree, grass, and weed pollens, with defined concentration 

thresholds.  
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2.1.6. The Impact of Meteorological Conditions and Seasonal Variations 

Meteorological conditions can significantly influence air pollution in various ways. For 

instance, high temperatures can increase air pollution, especially in urban areas where urban heat 

island effects are common (Piracha and Chaudhary, 2022; Wang et al., 2021a). Urban heat islands 

occur when densely built-up areas retain heat, which can elevate the concentration of pollutants in 

the air, such as O3 and secondary aerosols (Deilami et al., 2018). Conversely, low temperatures 

during winter are often accompanied by temperature inversions, wherein a layer of warm air traps 

cooler air near the ground, preventing pollutant dispersion and leading to higher concentrations of 

PM2.5 and PM10 particles (Nejad et al., 2023). These inversions also promote the transformation of 

primary emissions, such as NOx and SO2, into secondary pollutants like nitrates and sulfates, 

further increasing PM concentrations (Wang et al., 2023a). Strong winds can dilute pollutants by 

dispersing them, thereby reducing their local concentrations (Liu et al., 2020). However, wind can 

also transport pollutants from one area to another, potentially increasing pollution levels in regions 

far from the original source (Xie et al., 2022). Rain and snow help remove pollutants from the air 

by washing out particles and gases and depositing them on the ground (Tian et al., 2021; Wang et 

al., 2023b). On the other hand, precipitation can create favorable conditions for the formation of 

certain types of pollution, such as acid rain (Payus et al., 2020). Moreover, high humidity can 

contribute to the formation of some pollutants, including sulfates and various aerosols (Fang et al., 

2019; Flueckiger and Petrucci, 2024).  

Seasonal variations also have a significant impact on air pollution levels due to changes in 

weather conditions and human activities throughout the year. During winter, the frequent 

occurrence of temperature inversions exacerbates air pollution by trapping pollutants near the 

surface. The use of heating systems, particularly those that burn fossil fuels or biomass, increases 

emissions of PM, SO2, NOx, VOCs, PAHs, and other pollutants (Mahmoud et al., 2021). In Croatia, 

studies have demonstrated that wintertime pollution levels are largely influenced by residential 

heating, particularly the combustion of wood and solid fuels, which significantly contributes to 

ambient PM and PAH concentrations (Godec et al., 2016; Pehnec et al., 2020). Additionally, traffic 

emissions play a substantial role in urban areas, as colder temperatures and adverse weather 

conditions lead to increased vehicle use and prolonged engine idling, further elevating pollution 

levels (Jakovljević et al., 2018; Pehnec and Jakovljević, 2018). However, shorter days and lower 
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levels of sunlight reduce the rate of photochemical reactions, resulting in lower levels of secondary 

pollutants, such as O3 (Al-Qassimi and Al-Salem, 2020). In spring, an increase in pollen levels 

occurs; although pollen is not a classical pollutant, it affects air quality and the health of allergy 

sufferers (Figure 6). Springtime conditions, with moderate temperatures and increased humidity, 

can enhance the formation of secondary organic aerosols (SOAs) from VOC oxidation. These 

reactions contribute to PM2.5 concentrations, particularly in areas with high biogenic VOC 

emissions from vegetation (Madronich et al., 2023; Mahilang et al., 2021). During summer, higher 

temperatures and increased solar radiation accelerate photochemical reactions, leading to elevated 

ground-level O3 and smog, especially in urban areas with heavy traffic (Al-Qassimi and Al-Salem, 

2020). The photochemical formation of O3 occurs when NOx and VOCs react under sunlight, a 

process intensified during heatwaves and stagnant air conditions (Wang et al., 2023a). 

Additionally, air conditioning systems, particularly older or less efficient models, boost energy 

demand, which in turn results in greater fossil fuel consumption by power plants and increased 

emissions of NOx and VOCs. In autumn, agricultural fires frequently occur, releasing large 

quantities of PM2.5 and other pollutants into the atmosphere (Pinakana et al., 2024; Sopčić et al., 

2025). By understanding these seasonal variations, policymakers and environmental agencies can 

better design and implement strategies to reduce air pollution and protect public health throughout 

the year. 

2.1.7. Air Quality Monitoring 

Air pollution in Europe and around the world is monitored through a network of various 

measurement stations and surveillance systems. In Europe, the European Environment Agency 

(EEA) coordinates the collection, analysis, and publication of air quality data through the European 

Air Quality Monitoring Network. This network comprises thousands of monitoring stations spread 

across Europe, which track various air pollution parameters, including PM, NOx, O3, and other 

harmful substances (data available at: https://airindex.eea.europa.eu/AQI/index.html). In addition, 

national monitoring systems exist in each European Union (EU) member state to complement the 

EU-level data. Worldwide, similar monitoring networks are present in most developed countries, 

and data are frequently shared via international programs and organizations such as the WHO and 

the United Nations Environment Programme (UNEP), facilitating a global understanding and 

management of air pollution. These monitoring systems enable informed decision-making to 

https://airindex.eea.europa.eu/AQI/index.html
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protect public health and the environment by identifying pollution sources, tracking trends, and 

assessing the effectiveness of emission reduction measures. In Croatia, air quality monitoring is 

carried out through a national network of measurement stations coordinated by the Environmental 

Protection Agency (EPA). In Zagreb, local monitoring is conducted by a network of stations 

managed by the Teaching Institute of Public Health "Dr. Andrija Štampar". The Croatian 

Meteorological and Hydrological Service (Croat. DHMZ) operates a network of six monitoring 

stations to track air quality in Zagreb. The data collected are integrated into the national air quality 

monitoring system and made available to the public via the DHMZ website 

(https://meteo.hr/index_kz.php?tab=kz). In addition to air quality monitoring, DHMZ conducts 

other meteorological and hydrological measurements and provides relevant information and 

forecasts to the public and pertinent institutions. The Institute for Medical Research and 

Occupational Health (IMROH) plays a significant role in researching the impact of air pollution 

on human health and in providing expert analyses and recommendations to improve air quality in 

Zagreb and beyond. This station contributes to comprehensive urban air quality surveillance and is 

part of the AirQ project (https://www.airq.hr/o-projektu/)—an international initiative conducted in 

collaboration with the EU aimed at improving air quality and reducing air pollution in cities across 

Europe. It is important to note that in 2021, according to WHO guidelines (Table 1), 76% of the 

urban population in the EU was exposed to PM10 concentrations exceeding recommended levels, 

while this percentage was 97% for PM2.5 and 64% for BaP (EEA, 2023).  

  

https://meteo.hr/index_kz.php?tab=kz
https://www.airq.hr/o-projektu/
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Table 1. Threshold and proposed limit values for outdoor air pollutants. 

Pollutant Averaging 

period  

Threshold limit value Threshold limit value Guideline 

  Current EU Directive Proposed EU Directive WHO 2021 

Benzene Annual average 

 

5 µg/m3 

  

 

Alignment with WHO 

guidelines by 2030  

No safe level: 

recommended 

as low as 

possible 

 

Toluene NA 

No specific limit in ambient 

air 

No new specific 

proposals 

  

260 µg/m3  

(1-week) 

 

Ethylbenzene NA 

No specific limit in ambient 

air 

No new specific 

proposals  

 

Not specified 

 

Xylene NA 

No specific limit in ambient 

air 

No new specific 

proposals 

 

100 µg/m3     

(24 h) 

 

O3 8 h 

120 µg/m3 

(*more than 25 times a year) 

120 µg/m3 

(*more than 18 times a 

year) 

100 µg/m3 

(*more than 3-

4 times a year) 

PM10 
24 h 

50 µg/m3 

(*more than 35 times a year)  

45 µg/m3 

(*more than 18 times a 

year) 

45 µg/m3 

(*more than 3-

4 times a year) 

 

Annual average 40 µg/m3 20 µg/m3 15 µg/m3 

PM2.5 
24 h 

 
25 µg/m3 

(*more than 18 times a 

year)  

15 µg/m3 

(*more than 3-

4 times a year) 

 

Annual average 25 µg/m3 10 µg/m3 5 µg/m3 

NO2 

1 h 

200 µg/m3 

(*more than 18 times a year) 

200 µg/m3 

(*more than 18 times a 

year) 

 

200 µg/m3 

 

24 h 

 50 µg/m3 

(*more than 18 times a 

year) 

 

25 µg/m3 

(*more than 3-

4 times a year) 

 

 Annual average 40 µg/m3 20 µg/m3 10 µg/m3 

* should not be exceeded more than 

 

However, under EU directives, the proportion of the urban population exceeding regulatory limits 

was significantly lower—10% for PM10, less than 1% for PM2.5, and 14% for BaP.  According to 

EEA (2023) report on air quality in Europe, air pollution levels in Croatia, as in many other 

European countries, have occasionally exceeded regulatory thresholds, particularly during winter 

months. While annual average PM10 concentrations generally remained below the EU limit value 

of 40 µg/m3, daily PM10 levels sometimes surpassed the EU 24-hour limit value of 50 µg/m3, which 
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is permitted to be exceeded on no more than 35 days per year. Similarly, instances of PM2.5 levels 

exceeding the EU annual limit value of 25 µg/m3 were reported, though compliance with this 

standard was more frequent compared to the stricter WHO guideline of 5 µg/m3. Additionally, 

monitoring stations in Zagreb recorded annual BaP concentrations exceeding the EU target value 

of 1 ng/m3 in 2021 (EEA, 2023). While air pollution levels in Croatia have occasionally exceeded 

regulatory thresholds, particularly during winter months, long-term monitoring data indicate a 

general downward trend in PM concentrations in Zagreb. Lovrić et al. (2022) conducted a 

comprehensive analysis of PM concentrations over a 12-year period (2009–2020), demonstrating 

that annual averages of PM10 and PM2.5 remained below the Croatian and EU regulatory limits. 

Since 2017, the daily EU 24-hour limit value for PM10 has not been exceeded at the monitored 

location. This progress reflects broader historical improvements: ambient PM and Pb 

concentrations in Zagreb have been decreasing steadily since the late 1970s, driven by industrial 

restructuring, fuel quality improvements, and the phase-out of leaded gasoline (Šega and Hršak, 

1995; Vadjić et al., 2009). However, not all pollutants follow this downward trend. For example, 

O3 and NO2 have exhibited either stable or increasing concentrations in some areas, particularly 

near traffic corridors and during summer months, due to secondary pollutant formation and 

continued vehicular emissions (Matasović et al., 2021; Pehnec et al., 2011). These divergent trends 

highlight the need for pollutant-specific strategies in air quality management, particularly as urban 

areas continue to grow and climate-related factors influence emission dynamics and atmospheric 

chemistry. 

2.2. Human Biomonitoring and Biomarkers of Toxicity  

Human biomonitoring (HBM) is crucial for assessing exposure to biological, chemical, and 

physical agents present in the environment. This interdisciplinary approach combines chemical 

(and physical) analyses to determine the concentrations of chemical compounds with biological 

analyses that measure the organism’s responses to pollution, thereby reflecting the biologically 

available fraction of pollutants (Angerer et al., 2007). In addition to quantifying exposure, HBM 

can also assess, where applicable, some of the biological effects triggered by these exposures, 

contributing to a more comprehensive understanding of their potential health implications. The 

primary goal of HBM is to evaluate the levels of various pollutants within the human body, 

providing valuable data on exposure to harmful substances (Ladeira and Viegas, 2016; Zare Jeddi 
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et al., 2021b). HBM research is becoming increasingly important due to growing concerns about 

environmental and occupational exposures. By monitoring the presence of various substances in 

the human body, researchers can establish reference values and identify populations that are at a 

greater risk. For example, the Human Biomonitoring for Europe (HBM4EU) initiative has 

prioritized several substances of concern—including toxic metals, PAHs, bisphenols, and 

phthalates—highlighting the necessity of systematic biomonitoring for public health protection 

(HBM4EU, 2024). This information is vital for public health, as it aids in the assessment of 

potential health risks and the formulation of regulatory policies to reduce exposure to hazardous 

substances (Zare Jeddi et al., 2022). One significant advantage of HBM is its ability to provide 

direct evidence of exposure, often with greater accuracy than indirect methods such as 

environmental monitoring or questionnaires. However, interpreting HBM data can be complex  

(Zare Jeddi et al., 2021b). It involves comparing biomonitoring results with health-based reference 

values and considering factors such as individual variability and mixed exposures to multiple 

chemicals. HBM also faces ethical challenges, particularly concerning informed consent, data 

privacy, and the communication of results to participants. Adhering to proper ethical guidelines 

ensures that participants’ rights are respected and that the collected data are used responsibly. 

Taken together, the HBM approach is extremely important in environmental health research, as it 

provides insights into exposure levels and supports public health protection through informed 

decision-making and regulatory actions (WHO, 2015). 

Biomarkers are substances, structures, or processes that can be quantified within an 

organism or its by-products. A biomarker indicates a change in the biological response, which may 

include molecular, cellular, physiological, and behavioral alterations associated with exposure to 

and the toxic effects of specific agents (Strimbu and Tavel, 2010). Biomarkers can be measured at 

various biological levels, from molecules and cells to populations and ecosystems. According to 

the WHO, biomarkers encompass all measurable functional and physiological, biochemical, and 

molecular interactions between a biological system and a potentially harmful agent of chemical, 

biological, or physical nature. Ideally, biomarkers are easily accessible, non-invasive, simple, and 

inexpensive to test. The development and validation of biomarkers is a lengthy process that 

involves basic research and pilot studies in humans, ultimately culminating in comprehensive 

epidemiological evaluations (WHO and IPCS, 2001). At the molecular and cellular levels, 

biomarkers are especially valuable for measuring acute, short-term effects because of their high 
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sensitivity and specificity. They also provide a foundation for understanding long-term effects, 

although the sensitivity and specificity in such contexts are generally lower (Van Gestel and Van 

Brummelen, 1996). Biomarkers are classified according to their application into diagnostic, 

monitoring, pharmacodynamic, predictive, prognostic, as well as risk and safety biomarkers. In the 

field of genetic toxicology, biomarkers are usually divided into those that measure exposure, 

susceptibility, and effect (Figure 7) (de Oliveira et al., 2022; Ladeira and Viegas, 2016; WHO and 

IPCS, 2001). 

 

Figure 7. Epidemiological ‘Black Box’ Model Integrating Exposure, Biomarkers, and Adverse 

Outcome Pathways (AOP). This figure illustrates three conceptual models: (1) the classical model 

linking external exposure to the effect. (2) the National Research Council’s (NRC) biomarker 

paradigm, and (3) the Adverse Outcome Pathway framework. Schemes (2) and (3) demonstrate the 

equivalence between the biomarker paradigm and its parallel structure within the AOP framework, 

mapping the continuum from exposure through internal processing to adverse outcomes (AO). The 

model incorporates ADME processes—absorption, distribution, metabolism, and excretion—

which determine the internal dose, followed by a molecular initiating event (MIE) that triggers a 

cascade of key events (KE) leading to the final adverse outcome. This integrated approach 

underscores the critical role of biomarkers in bridging exposure data with biological responses, 

thereby enhancing risk assessment and disease prevention strategies. Adapted from Rodríguez-

Carrillo et al. (2023). 
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2.2.1. Biomarkers of Exposure 

In the context of the intricate interplay between environmental pollutants and human health, 

outlined in the previous sections, exposure biomarkers serve as a critical bridge between external 

environmental monitoring and internal biological response. By quantifying the absorbed dose of 

harmful agents, these biomarkers provide direct evidence of exposure, enhancing our 

understanding of the toxicological impact of various chemicals. Biomarkers of exposure are 

measurable indicators that provide information on an individual's contact with specific agents (e.g., 

chemicals, toxins, drugs, or environmental agents) or quantify their absorption into the biological 

system. This is crucial for monitoring environmental conditions, occupational diseases, and clinical 

research (Madden and Gallagher, 1999). Chemical biomarkers assess exposure to particular 

chemicals, while metabolites indicate exposure through degradation products. Some of these 

chemicals are lipophilic, necessitating further metabolic transformation via Phase I and Phase II 

metabolism (Wang and Zang, 2023). In terms of detecting airborne pollutants, biomarkers of 

exposure are classified into internal dose markers and effective dose markers: the former indicates 

the occurrence and extent of an organism’s exposure, while the latter reflects the exposure at the 

level of a targeted molecule, structure, or cell. For example, the presence of benzene can be tracked 

by measuring its concentration in blood, whereas its metabolite, trans,trans-muconic acid (t,t-MA), 

can be detected in urine (Madden and Gallagher, 1999). Glutathione conjugates and urinary 

biomarkers—such as 1-OHP, 1-hydroxynaphthalene, and 2-hydroxynaphthalene—are examples of 

internal dose biomarkers for exposure to PAHs, while BTEX in blood serve as indicators of 

exposure to aromatic hydrocarbons. Effective dose biomarkers, such as DNA and protein adducts, 

assess the biologically active fraction of xenobiotics (Decaprio, 1997). These biomarkers aid in 

risk assessment, regulatory decision-making, epidemiological studies, and the development of 

strategies to reduce health risks associated with exposure. 

2.2.2. Biomarkers of Susceptibility 

Biomarkers of susceptibility provide information about inherent or acquired characteristics 

that may predispose an individual to a higher risk of developing disease upon exposure to 

environmental hazards. These biomarkers are broadly categorized into genetic and environmental 

types (Pedrete and Moreira, 2018). Genetic biomarkers include variations in the genotype, such as 

single nucleotide polymorphisms (SNPs) and genetic mutations that increase the risk for diseases. 
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These variations are often identified through approaches like Genome-Wide Association Studies 

(GWAS) and are linked to heightened susceptibility to conditions such as cancer, cardiovascular 

diseases, and neurodegenerative disorders (Uffelmann et al., 2021). Environmental susceptibility 

biomarkers reflect how external factors (e.g., exposure to toxins, pollutants, or radiation) and 

lifestyle behaviors (such as diet, physical activity, and smoking) modulate an individual’s risk of 

developing disease. For instance, baseline inflammatory markers (e.g., levels of certain cytokines) 

may indicate a predisposed physiological state that enhances sensitivity to environmental 

exposures, even though these markers are less specific than genetic or epigenetic indicators 

(Pedrete and Moreira, 2018). 

2.2.3. Biomarkers of Effect 

Building on the insights provided by exposure and susceptibility biomarkers, biomarkers 

of effect serve as the crucial bridge in toxicological assessments by capturing the early biological 

responses to toxic insults. Biomarkers of effect, or biological response biomarkers, have been 

increasingly utilized over the past several decades. They are employed in biomonitoring to 

systematically measure changes at the cellular and molecular levels within biological systems. The 

development of molecular epidemiology has introduced the concept of effect biomarkers to provide 

evidence for the causal relationship between exposure to harmful agents and adverse outcomes—

especially in the early stages before the onset of overt disease, which is crucial for preventive 

interventions (Rodríguez-Carrillo et al., 2023). As previously described, oxidative stress might be 

one of the drivers of air pollution-related toxicity. Exposure to pollutants like PM2.5 and O3 

generates ROS, causing oxidative stress and triggering inflammatory responses. Accordingly, 

oxidative stress biomarkers are among the most widely used indicators of early cellular damage in 

environmental health studies. Common markers such as malondialdehyde (MDA) and 8-OHdG 

reflect lipid peroxidation and DNA damage, respectively (Checa and Aran, 2020; Valavanidis et 

al., 2009). Changes in the activity of key antioxidant enzymes like SOD, glutathione peroxidase 

(GPx), and catalase (CAT) further support the evaluation of oxidative stress (Demirci-Çekiç et al., 

2022). At the molecular level, pollutants can directly modify DNA, leading to genotoxic effects. 

DNA adducts represent chemical modifications of DNA molecules caused by interactions with 

specific substances, serving as crucial indicators of exposure-induced genetic damage (Luo et al., 

2019). DNA methylation alterations, on the other hand, reflect epigenetic modifications that 
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influence gene expression, further linking environmental exposures to disease development 

(Brucker et al., 2020). In the field of genotoxicology, effect biomarkers are essential for assessing 

the biological impact of exposure to genotoxic agents. Damage to genetic material—such as single-

and double- strand DNA breaks, chromosomal aberrations, micronuclei (MNi) formation, and the 

modulation of enzyme activity—can signal early biological responses preceding clinical disease 

(Annangi et al., 2016; Bonassi et al., 2007, 2008, 2016, 2021; Fenech, 2020; Zare Jeddi et al., 

2021a). Similarly, in cytotoxicology, biomarkers of effect are used to measure changes in cellular 

functions. These may include alterations in the activity of specific organelles, such as mitochondria, 

or changes in cellular processes like inflammatory responses and programmed cell death. Such 

biomarkers provide valuable insights into the early biological effects of exposure before the 

manifestation of overt toxicity. Before these biomarkers of effect can be implemented in HBM 

programs, rigorous validation is required. Selected biomarkers must be reliable, easily identifiable, 

and capable of quantifying specific biological changes using precise and dependable testing 

methods (Rodríguez-Carrillo et al., 2023; Zare Jeddi et al., 2021a). Moreover, advances in 

genomics, epigenomics, transcriptomics, lipidomics, proteomics, and metabolomics continue to 

expand the repertoire of effect biomarkers, thereby opening new research avenues in the field of 

biomonitoring. 

2.2.3.1. Epigenetic Biomarkers 

Epigenetics involves modifications in gene function without altering the underlying DNA 

sequence. Such changes, which can affect cellular and physiological characteristics, may occur as 

part of normal developmental processes or be induced by environmental factors. Epigenetic 

variations can thus reveal the systemic effects of environmental exposures, such as air pollution, 

providing valuable insight into individual susceptibility (Mukherjee et al., 2021). DNA 

methylation, the covalent addition of a methyl group to cytosine, is the most extensively studied 

epigenetic modification, particularly within cytosine-guanine dinucleotides (CpG) (Wu et al., 

2021). Early studies have indicated that air pollution can influence global methylation levels in 

peripheral blood, often assessed using repetitive elements such as long interspersed nuclear 

elements (LINE-1) (Alfano et al., 2018; Baccarelli et al., 2012; Lee et al., 2017; Wang et al., 2020). 

Sequence-specific analyses have further revealed differential methylation in gene regions—such 

as those associated with inducible NO synthase (iNOS), intercellular adhesion molecule-1, Toll-
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like receptor 2, interferon-γ, and interleukin-6 (Bind et al., 2014; Coull et al., 2015; Rider and 

Carlsten, 2019). Mostafavi et al. (2018) demonstrated that individual exposure to PM2.5 is 

associated with methylation changes at specific CpG sites and differentially methylated regions 

(DMRs). Moreover, recent research has linked air pollution, particularly exposure to CO and O3, 

with alterations in the expression or function of the FOXP3 gene, which plays a key role in 

regulating immune responses and maintaining self-tolerance (Kohli et al., 2012; Prunicki et al., 

2021; Rider and Carlsten, 2019). Pollutants such as PM, VOCs, and toxic metals can disrupt 

immune balance and promote inflammatory responses. Monitoring the expression levels of FOXP3 

or the activity of regulatory T cells (Treg) could serve as a biomarker for assessing the impact of 

air pollution on immune function and the development of diseases such as asthma (Rider and 

Carlsten, 2019; Tuazon et al., 2022). Changes in DNA methylation can affect gene expression and 

have been linked to the development of diseases such as cancer and various other disorders, 

including neurodegenerative conditions (Lu et al., 2020; Martínez-Iglesias et al., 2020; Robertson, 

2005). Methylation profiles can offer insights into an individual's susceptibility to diseases and 

their response to environmental factors. The interaction between genetic predisposition, epigenetic 

changes, and environmental factors is complex, and the presence of susceptibility biomarkers does 

not necessarily imply the eventual development of disease. 

2.2.3.2. Biomarkers of Oxidative Stress 

Biomarkers of oxidative stress are crucial for assessing the balance between ROS and the 

body’s antioxidant mechanisms. ROS include both free radicals and non-radical oxygen 

intermediates (peroxides), such as superoxide radicals (O2•⁻), hydrogen peroxide (H2O2), hydroxyl 

radicals (OH•), and singlet oxygen (1O2). They are generated as by-products of normal metabolism 

or in response to external factors such as air pollution, cigarette smoke, or ultraviolet (UV) radiation 

(Checa and Aran, 2020). Although ROS play an important role in cell signaling and immune 

defense, high concentrations can induce oxidative stress, leading to damage of biomolecules such 

as proteins, lipids, and DNA (Demirci-Çekiç et al., 2022; Jomova et al., 2023; Marín et al., 2023). 

To mitigate oxidative damage, the body employs a complex defense system composed of both 

enzymatic and non-enzymatic components. Among the enzymatic antioxidants, SOD catalyzes the 

dismutation of O2•⁻ into H2O2, which is then neutralized by CAT and GPx, the latter using 

glutathione (GSH) as a reducing cofactor (Demirci-Çekiç et al., 2022; Jomova et al., 2023). GSH 
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itself is a major non-enzymatic antioxidant, acting both as a direct ROS scavenger and as a substrate 

for enzymatic detoxification. The ratio of reduced (GSH) to oxidized (GSSG) glutathione is widely 

used as an indicator of intracellular redox status (Aquilano et al., 2014). Other important non-

enzymatic antioxidants include uric acid, which neutralizes 1O2 and peroxynitrite (ONOO⁻), and 

vitamin C and E, which contribute to plasma antioxidant capacity (Santos et al., 1999). In parallel 

with these defense systems, biomarkers that reflect oxidative damage to biomolecules offer critical 

insight into the severity and biological impact of oxidative stress. Lipid peroxidation is a major 

consequence of ROS attack on polyunsaturated fatty acids in cell membranes, leading to the 

formation of reactive aldehydes such as MDA and 4-hydroxynonenal (4-HNE). MDA, in 

particular, is commonly measured in blood and urine and serves as a reliable indicator of membrane 

damage and oxidative burden (Jomova et al., 2023). Proteins are also vulnerable to oxidative 

damage, with modifications such as carbonylation, disulfide bond formation, and nitration 

impairing function and promoting degradation. Protein carbonyl content is thus a widely used 

biomarker of protein oxidation, associated with both aging and various pathological conditions 

(Song et al., 2020). Oxidative stress also affects nucleic acids, particularly DNA. Guanine bases 

are especially susceptible to oxidation, resulting in the formation of 8-OHdG, a widely validated 

biomarker of oxidative DNA damage. Elevated 8-OHdG levels have been linked to mutagenesis, 

carcinogenesis, and disease progression (Guo et al., 2016; Shukla et al., 2020; Valavanidis et al., 

2009). While not a classical ROS, NO plays a dual role in oxidative biology. Under normal 

physiological conditions, NO regulates vascular tone, immune responses, and neurotransmission. 

However, in oxidative environments, NO can react with O2•⁻ to form ONOO⁻, a highly reactive 

nitrogen species capable of inducing protein nitration and further oxidative damage (Pa´ et al., 

2007). Thus, NO-related biomarkers such as nitrate/nitrite levels or 3-nitrotyrosine may provide 

additional insight into redox-related cellular dysfunction. 

Understanding the mechanisms of oxidative stress and monitoring these biomarkers in 

biological samples is essential for assessing the risk of diseases linked to oxidative stress, such as 

cancer, neurodegenerative disorders, and cardiovascular diseases (Barnham et al., 2004; Hayes et 

al., 2020; Mahmoud and Junejo, 2024). This information is vital for diagnosis, therapy monitoring, 

and the development of preventive strategies against oxidative damage. 
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2.2.3.3. Micronucleus Assay 

The micronucleus (MN) assay is a well-established method for assessing genomic 

instability and DNA damage, making it a valuable tool in biomonitoring individuals exposed to 

genotoxic agents. The presence of MNi serves as an indicator of chromosomal aberrations, 

reflecting both structural chromosome damage and whole chromosome loss due to mitotic errors. 

An increased frequency of MNi in healthy individuals is indicative of genomic instability, which 

heightens the risk of cancer development, making this test a predictive factor in carcinogenesis 

(Bonassi et al., 2007; Fenech et al., 2020; Gajski et al., 2024). This assay is widely applied in 

occupational, environmental, and clinical studies to evaluate baseline DNA damage and the effects 

of exposure to chemical and physical agents (Bolognesi et al., 2015; Bolognesi and Fenech, 2019; 

Fenech, 2020; Gajski et al., 2018, 2022, 2024; Nersesyan et al., 2016).  

2.2.3.3.1. MN Assay in Peripheral Blood Lymphocytes 

The MN assay in peripheral blood lymphocytes is one of the most frequently used 

approaches for genotoxicity and biomonitoring studies. It enables the detection of both structural 

chromosomal damage (MNi formation) and numerical chromosome alterations. The most 

commonly used method is the cytokinesis-block micronucleus (CBMN) assay, in which 

cytochalasin B is added to prevent cell division after one nuclear replication cycle (Fenech, 2007).   

MNi are small extranuclear chromatin bodies that arise when acentric chromosomal 

fragments or whole chromosomes fail to be incorporated into daughter nuclei during mitosis. Their 

frequency serves as a key biomarker of DNA damage, chromosomal instability, and defective 

mitotic segregation (Fenech, 2020; Fenech et al., 2011). In addition to MNi, the assay also detects 

nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) (Figure 8). NPBs connect two nuclei 

within a binucleated cell, reflecting dicentric chromosome formation due to telomere fusion or 

improper chromatid separation. Their presence indicates misrepaired DNA breaks or defective 

recombination mechanisms. NBUDs appear as DNA-containing structures protruding from the 

main nucleus. They are associated with gene amplification, elimination of damaged DNA, or repair 

complexes (Fenech, 2020; Fenech et al., 2011). In addition to genotoxic endpoints, the CBMN 

assay provides insight into both cytotoxicity (apoptosis and necrosis) and cytostasis by calculating 

the mitotic index expressed either as Cytokinesis-Block Proliferation Index (CBPI) or Nuclear 

Division Index (NDI), which reflects the average number of cell divisions that a cell population 
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has undergone. Proliferation index is calculated based on the distribution of mono-, bi-, and 

multinucleated cells and serves as a measure of cell proliferation kinetics under experimental 

conditions. A lower proliferation index may indicate cytostatic effects caused by toxic exposures, 

helping to differentiate DNA damage from general cytotoxicity (Kirsch-Volders et al., 2003; 

OECD, 2023). 

Scoring of MNi, NPBs, and NBUDs is traditionally performed using light microscopy. 

However, manual scoring is time-consuming and requires extensive training. To increase 

throughput and reduce observer bias, automated scoring systems like the Metafer system have been 

developed. These systems use fluorescent dyes e.g. DAPI imaging to detect MNi more efficiently, 

improving reproducibility and standardization (Rossnerova et al., 2011). 

 

Figure 8. Microphotographs of cells analyzed in the CBMN assay, illustrating a mononucleated 

cell (A), a binucleated cell (B), multinucleated cells (C, D), a binucleated cell containing a single 

micronucleus (E), two micronuclei (F), three micronuclei (G), a nuclear bud (H), and a 

nucleoplasmic bridge (I). The microphotographs of cells, stained with 5% Giemsa solution, were 

captured using light microscopy under 400× magnification. 
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2.2.3.3.2. MN Assay in Buccal Epithelial Cells 

Beyond peripheral blood lymphocytes, the MN assay is also widely applied to buccal 

epithelial cells, offering a minimally invasive and easily accessible method for monitoring 

genotoxic effects of environmental pollutants (Bolognesi and Fenech, 2019; Sommer et al., 2020; 

Thomas et al., 2009). Compared to lymphocytes, buccal cells are directly exposed to inhaled 

pollutants and other environmental contaminants, making them a suitable surrogate tissue for 

assessing airborne genotoxicants (Milić et al., 2020). The buccal MN assay is commonly used to 

evaluate exposure to air pollution, toxic metals, and occupational carcinogens (Bolognesi et al., 

2015; Hopf et al., 2019; Panico et al., 2020).  

The buccal MN assay allows for the assessment of various nuclear abnormalities, which 

provide insights into both genotoxicity and cytotoxicity (Figure 9). Among these, condensed 

chromatin cells are characterized by intensely stained, shrunken nuclei, indicative of early 

apoptosis. Karyorrhectic cells display nuclear fragmentation, marking late apoptosis, while 

pyknotic cells show small, highly condensed nuclei, representing early necrotic events. Karyolitic 

cells exhibit faint or absent nuclear staining, a hallmark of late necrosis due to complete DNA 

degradation. Another key feature observed in the buccal MN assay is broken egg nuclei, identified 

by DNA extrusion through a narrow constriction, which suggests chromatin instability and 

potential genotoxic damage. The frequencies of these abnormalities serve as indicators of different 

forms of cell damage and may complement MN frequencies in assessing the overall impact of 

genotoxic agents on epithelial tissues. However, the biological significance of anomalies in buccal 

epithelial cells is not yet fully understood, necessitating further standardization, validation, and 

automation of the test (Fenech et al., 2024). 

While both lymphocyte and buccal MN assays provide valuable insights into genomic 

instability, key differences exist between the two methods. The lymphocyte MN assay requires cell 

culture, cytokinesis-blocking, and specialized conditions, making it a more labor-intensive 

technique, but it allows for systemic genotoxicity assessment. In contrast, the buccal MN assay is 

minimally invasive, requires no cell culture, and reflects direct exposure to inhaled or ingested 

pollutants at the primary site of contact. Some studies suggest a correlation between MN 

frequencies in lymphocytes and buccal cells, despite differences in toxicokinetic and proliferation 

patterns (Ceppi et al., 2010; Haveric et al., 2010; Nersesyan et al., 2025). 
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Figure 9. Microphotographs of cells analyzed in the BMN assay, depicting a normal basal cell (A), 

a normal differentiated cell (B), a binucleated cell (C), a cell with condensed chromatin indicating 

early apoptosis (D), a cell with karyorrhectic chromatin characteristic of late apoptosis (E), a 

pyknotic cell representing early necrosis (F), a karyolytic cell indicative of late necrosis (G), a cell 

containing micronuclei (H), a broken egg formation (I), a cell with a nuclear bud (J), a differentiated 

cell with multiple micronuclei (K), and a highly damaged cell (L). The microphotographs of cells, 

stained with Fast Green were captured using fluorescence microscopy at 1000× magnification 

under green fluorescence. 
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2.2.3.4. Comet Assay 

The comet assay, also known as single-cell gel electrophoresis (SCGE), is a highly sensitive 

method for assessing DNA damage in individual cells and has become a key tool in genotoxicology 

and DNA damage research (Azqueta et al., 2020; Collins et al., 2014, 2023; Milić et al., 2021). The 

method is based on the ability of damaged DNA loops to migrate from the nucleoid toward the 

anode under an electric field. After electrophoresis, the nucleoid appears as a "comet" under a 

fluorescent microscope, with the intensity and length of the comet tail being proportional to the 

extent and size of the DNA damage (Figure 10). The comet assay is widely used in 

genotoxicological studies to assess the effects of chemicals, radiation, and other genotoxic agents, 

as well as in clinical and environmental studies (Azqueta et al., 2020; Ladeira et al., 2024; Møller 

et al., 2020). It is capable of detecting single- and double-strand DNA breaks, alkali-labile sites, 

and incomplete excision repair sites, making it highly informative in the context of environmental 

and occupational exposures (Azqueta et al., 2019; Azqueta and Collins, 2013; Collins and Azqueta, 

2012). In human biomonitoring studies, the assay is commonly performed on peripheral blood 

cells, though it can also be applied to a wide range of other cell types, including cultured epithelial 

cells, animal or plan tissues, and exfoliated cells from buccal or nasal mucosa (Fenech et al., 2024; 

Gajski et al., 2019a, 2019b, 2021; Møller, 2018; Tyutereva et al., 2024). The primary descriptors 

measured include tail intensity (TI), tail length (TL), and tail moment (TM), which quantitatively 

assess DNA damage. Persistent DNA damage compromises genomic stability and increases the 

likelihood of mutations and chromosomal aberrations, which are key mechanisms underlying the 

development of chronic diseases such as cancer, neurodegenerative, and cardiovascular disorders 

(Azqueta et al., 2020; Collins et al., 2014; Ladeira et al., 2024). These conditions often manifest 

years after the initial exposure, contributing to long-term public health burdens, especially in aging 

populations, and placing substantial pressure on healthcare systems (Viegas et al., 2017). Given its 

sensitivity to early DNA damage, the comet assay has been increasingly recognized as a valuable 

tool in preventive strategies aimed at detecting early effects of environmental and occupational 

exposures, particularly in the context of non-communicable diseases (Bonassi et al., 2021). Despite 

its usefulness in evaluating DNA damage at the single-cell level, several factors can introduce 

variability, including protocol differences and data analysis methods, as recognized by the 

Minimum Information for Reporting Comet Assay (MIRCA) guidelines (Møller et al., 2020). 

Additionally, the use of different analysis software can be problematic due to variability in 
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measurement algorithms, leading to inconsistencies and complicating comparisons across studies. 

Therefore, it is important to develop and implement semi/fully automated scoring systems, such as 

the Metafer software, to enhance consistency and reduce subjectivity (Rossnerova et al., 2011). 

A key challenge in comet assay research is the need to analyze large sample sets, 

particularly in biomonitoring and field studies, where sample collection occurs under variable 

conditions. To address this, the assay can be performed on both fresh and frozen blood samples, 

allowing for better sample management, extended storage, and flexibility in experimental design 

(Gajski et al., 2020a; Matković et al., 2024; Møller et al., 2021). This adaptability makes the comet 

assay an invaluable tool for studying genotoxic effects of environmental exposures and cellular 

responses to DNA damage. 

 

Figure 10. Comet assay image. This photograph, captured using the Comet Assay IV Software 

system and stained with ethidium bromide (EtBr), displays a comparison between nucleoids 

exhibiting different levels of DNA migration: (A) an intact nucleoid, (B) a nucleoid exhibiting 

slight DNA migration, and (C) a nucleoid exhibiting extensive DNA migration. The presence and 

extent of the comet tail visually represent DNA strand breaks, serving as an indicator of 

genotoxicity. 

2.3. Data Analysis 

An omics-based approach, including genomics, proteomics, metabolomics, and related 

fields, provides a comprehensive method for understanding the complex interactions between 

environmental factors, such as air pollution, and human health (Gruszecka-Kosowska et al., 2022; 

Kumari et al., 2024). By analyzing large datasets of genes, proteins, and metabolites, scientists can 

identify biomarkers that indicate exposure to pollutants and assess their impact on human health 
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(Wen et al., 2024). Advanced statistical methods and machine learning are becoming crucial for 

processing these complex datasets, enabling the integration of data from diverse sources, including 

environmental monitoring, biological samples, and medical records. Techniques such as regression 

analysis, hierarchical modeling, and Bayesian approaches are employed to identify associations 

and causal relationships between air pollutants and health outcomes (Houssein et al., 2023). 

Complementing these statistical techniques, machine learning algorithms—such as random forests, 

support vector machines, and neural networks—help uncover hidden patterns and make predictions 

from multidimensional data (Peng et al., 2024; Qian et al., 2023). These advanced analytical tools 

not only enhance our understanding of the intricate relationships between environmental exposures 

and biological responses but also support targeted interventions and inform policy decisions aimed 

at reducing the health risks associated with air pollution. 
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3. MATERIALS AND METHODS 

3.1. Air Pollution Measurements 

3.1.1. Study Area and Sampling Network 

The study area encompasses the wide urban region of Zagreb, where air pollution data were 

systematically collected through a multi-tiered network of monitoring stations. The network 

includes six local stations, funded by the City of Zagreb, and four national stations supported by 

the State budget and the Environmental Protection and Energy Efficiency Fund. For this study, 

data were utilized only from eight stations that provided the most complete and relevant 

measurements for our analysis (Figure 11). These stations were strategically selected to represent 

a range of urban environments (urban background, traffic-dense, suburban, and industrial areas) in 

compliance with EU air quality directives. Detailed information regarding station distribution, 

sampling strategies, and monitoring schedules is available on the “Air Quality in Croatia” web 

portal (https://iszz.azo.hr/iskzl/). To ensure the integrity of the data, all monitoring procedures were 

subject to stringent Quality Control and Quality Assurance (QC/QA) protocols. The Division of 

Environmental Hygiene at the Institute for Medical Research and Occupational Health—accredited 

under EN ISO/IEC 17025:2017—serves as the national reference laboratory for PM measurements 

and chemical characterization. This laboratory implements standard operating procedures, regular 

instrument calibrations, and the use of certified reference materials to maintain data accuracy. 

Measurements of gaseous pollutants are performed by the Croatian Meteorological and 

Hydrological Service (https://meteo.hr/index_en.php), which adheres to similarly rigorous QC/QA 

guidelines. In addition to air pollution data, the Croatian Meteorological and Hydrological Service 

provided meteorological parameters, including temperature, relative humidity, wind speed, wind 

direction, atmospheric pressure, global solar radiation, and ultraviolet B (UVB) radiation, ensuring 

a comprehensive assessment of environmental conditions. Together, these integrated measures 

ensure that the collected air quality and meteorological data are both reliable and comparable over 

time, providing a solid foundation for subsequent environmental health assessments. 

https://iszz.azo.hr/iskzl/
https://meteo.hr/index_en.php
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Figure 11. Locations of eight chosen measuring stations for air quality monitoring in the city of 

Zagreb, covering different residential areas, to provide a comprehensive overview of air pollution 

levels across the urban environment. 

3.1.2. Pollutants and Analytical Methods 

This study comprehensively assessed a range of air pollutants to evaluate their potential 

impact on environmental and public health. The measured parameters include: PM10 and PM2.5, 

NO2, O3, BTEX, PAHs (a subset of 11 PAHs within the PM10 fraction), metals (selected metal 

isotopes), and pollen. The PAHs analyzed included fluoranthene (Flu), pyrene (Pyr), 

benzo[a]anthracene (BaA), chrysene (Chry), benzo[j]fluoranthene (BjF), benzo[k]fluoranthene 

(BkF), benzo[a]pyrene (BaP), dibenzo[ah]anthracene (DahA), benzo[ghi]perylene (BghiP), 

benzo[b]fluoranthene (BbF), and indeno[1,2,3-cd]pyrene (IP). The selected PAHs were chosen 

based on their regulatory and environmental relevance and established toxicological profiles. The 

panel included high- and mid-molecular-weight PAHs from the U.S. EPA’s list of priority 

compounds, mandated for monitoring according to Directive (EU) 2024/2881 (EUR-Lex, 2024). 

In contrast, low-molecular-weight PAHs (e.g., naphthalene, acenaphthylene, acenaphthene, 
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fluorene, phenanthrene) were not included, as they predominantly partition to the gas phase under 

ambient conditions and are less stable in the particulate-bound fraction typically analyzed in PM10 

(Račić et al., 2025). 

3.1.2.1. Particulate Matter (PM) 

Twenty-four-hour integrated samples of PM10 and PM2.5 were collected on quartz filters (47 

mm diameter, Whatman, UK) using low-volume samplers (LVS 3, Sven Leckel Ingenieurbüro 

GmbH, Germany) with an airflow of approximately 55 m3/day. Each sampler was equipped with 

an impactor to segregate the desired particle fraction. Gravimetric analysis of the filters was 

conducted using an MX-5 microbalance (Mettler Toledo, USA) in accordance with the EN 

12341:2014 standard for determining PM mass concentration. 

3.1.2.2. Polycyclic Aromatic Hydrocarbons (PAHs) 

Mass concentrations of 11 PAHs in the PM10 fraction were quantified by high-performance 

liquid chromatography coupled with a fluorescence detector (HPLC/FLD; Agilent Technologies, 

USA). The chromatographic separation was performed using a mobile phase composed of 

acetonitrile and water (60:40, v/v) at a flow rate of 1 mL/min. PAHs were first extracted from 

quartz filters using a solvent mixture (cyclohexene:toluene, 3:7, v/v) in an ultrasonic bath. After 

centrifugation, the extract was evaporated under a gentle nitrogen stream and re-dissolved in 

acetonitrile for analysis. Data quality was ensured through the analysis of a certified standard 

solution (EPA 610 PAH mix, Supelco, USA) and a certified reference material (SRM NIST 1649b, 

Urban Dust, Merck, Germany) (Jakovljević et al., 2015; Pehnec and Jakovljević, 2018; Šišović et 

al., 2012). 

3.1.2.3. Toxic Metals 

For the analysis of metals, PM filter samples were digested with 25% nitric acid (v/v) using 

a high-pressure microwave digestion system (Ultraclave IV, Milestone, Italy). The digested 

samples were then diluted with deionized water before analysis. Metal concentrations were 

determined by inductively coupled plasma mass spectrometry (ICP-MS; model 7500cx, Agilent 

Technologies). The following isotopes were selected for analysis: 55Mn, 56Fe, 60Ni, 65Cu, 66Zn, 

75As, 111Cd, and 206Pb. Integration times were set at 0.5 sec for As and Cd and 0.1 sec for the other 

metals, with three acquisition points per peak. Internal standards—Sc, Ge, Rh, and Bi—were added 
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to correct for matrix effects. The ICP-MS was tuned to achieve an oxide ratio and a doubly charged 

ratio below 1.5% and operated in He mode. Instrument parameters were optimized to minimize 

interferences while maximizing sensitivity. Calibration curves were prepared from single-element 

stock solutions (1000 µg/mL, SCP SCIENCE) diluted in 5% HNO3 (v/v) at eight concentration 

levels, with calibration performed immediately before sample analysis. The accuracy of the method 

was verified by analyzing PM10-like reference materials (NIST 1648a and ERM CZ120, Merck) 

processed in the same manner as the samples, achieving recoveries ranging from 87% to 108% for 

the analyzed metals (Beslic et al., 2020; Vađić et al., 2013). 

3.1.2.4. Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) 

Airborne concentrations of BTEX compounds were measured using an automatic gas 

chromatograph (airmoVOC C2C12, Chromatotec, France), following the European standard EN 

14662-3:2015. This instrument utilizes an absorbent trap for sample collection, followed by 

regulated thermal desorption and in situ gas chromatography with a flame ionization detector 

(FID). With two parallel channels operating alternately—each sampling for 15 min and then 

analyzing—the system provides continuous hourly average BTEX concentrations. The detection 

limit is 10 ppt (v/v), corresponding to approximately 0.032 µg/m3 for benzene, 0.038 µg/m3 for 

toluene, and 0.043 µg/m3 for xylenes and ethylbenzene. 

3.1.2.5. Nitrogen Dioxide (NO2) and Ozone (O3) 

NO2 and O3 concentrations were continuously monitored using type-approved 

chemiluminescence and UV photometry instruments, respectively. The monitors operate according 

to the European standards EN 14211:2012 (for NO2) and EN 14625:2012 (for O3). These devices 

sample air automatically every second, and hourly average concentrations are calculated from the 

one-second data. The detection limits are 0.5 ppb (v/v), corresponding to approximately 0.94 µg/m3 

for NO2 and 0.98 µg/m3 for O3 at standard temperature and pressure (25 °C and 101.3 kPa). 

3.1.2.6. Pollen data 

Pollen data were obtained from the official pollen monitoring program managed by the 

Teaching Institute of Public Health “Dr. Andrija Štampar, with funding provided by the Zagreb 

City Office for Social Protection, Health, War Veterans and People with Disabilities. Airborne 

pollen samples were collected using standardized volumetric spore traps (Hirst-type) located at 
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representative urban sites in Zagreb. These traps continuously capture pollen grains over specified 

sampling intervals according to established protocols recommended by the European Aeroallergen 

Network (EAN). Collected samples were processed and analyzed microscopically by trained 

palynologists. Pollen grains were identified to the major taxonomic groups (trees, grasses, and 

weeds) and quantified to generate daily concentration values. These data were then aggregated to 

produce a monthly pollen calendar that details the seasonal dynamics and peak periods of different 

allergenic pollens in Zagreb. The pollen calendar serves not only as a tool for monitoring airborne 

pollen but also aids in assessing potential correlations between pollen levels and respiratory health 

outcomes.  

3.2. Study Participants and Sample Collection 

3.2.1. Participant Recruitment and Eligibility 

Participants were recruited from the general Croatian population residing in Zagreb wide 

urban region for at least one year. Recruitment was mainly conducted via flyers distributed 

throughout the community, which provided detailed information about the study and participation 

instructions. However, we also utilized mailing lists and an established database of volunteers from 

previous projects who had given consent to be contacted for participation in similar biomonitoring 

campaigns. Eligible participants were adults aged 18–55 years, with a body mass index (BMI) 

between 18.5 and 30 kg/m2, and in generally good health at the time of blood sampling, with no 

signs of acute illness. Exclusion criteria included the use of antibiotics, corticosteroids, or cytostatic 

medications within one month prior to sampling, as well as exposure to diagnostic ionizing 

radiation in the same period, to minimize confounding effects on biomarker levels. Occasional or 

over-the-counter medications (e.g., analgesics or anxiolytics) were not considered exclusionary. 

All participants provided written informed consent and completed a comprehensive questionnaire 

capturing socio-demographic details, lifestyle factors (e.g., smoking, alcohol consumption, 

physical activity, time spent outdoors), and occupational and non-occupational exposures to 

potential chemical or physical hazards (including BTEX, pesticides, and radiation). The study was 

conducted in two distinct sampling periods: during the colder months (November–December 2021) 

and the warmer months (May–July 2022) to assess seasonal variations. Note that some participants 

dropped out between the two periods, and these losses were accounted for in the analysis. 
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3.2.2. Ethical Considerations 

This study was approved by the Ethics Committee of the Institute for Medical Research and 

Occupational Health (approval code: 100-21/20-1; approval date: 14 January 2020) and the Ethics 

Committee of the Medical Faculty, University of Zagreb (approval code: 380-59-10106-23-111/70; 

approval date: 20 April 2023). All procedures adhered to ethical standards, ensuring the 

confidentiality and anonymity of participants and compliance with research ethics guidelines. The 

study was conducted following the principles outlined in the Declaration of Helsinki and applicable 

institutional and national regulations. 

3.2.3. Biological Sample Collection and Processing 

Biological samples (blood, urine, and buccal epithelial cells) were collected to enable a 

comprehensive evaluation of exposure and effect biomarkers (Figure 12). Venous blood was drawn 

in the morning by certified medical technicians using both heparin-coated and EDTA-coated tubes 

(Becton Dickinson, UK). Blood collected in heparin-coated tubes (Becton Dickinson) was used 

immediately for the comet assay, MN assay, and for BTEX analysis. The excess blood from the 

heparin-coated tubes was stored at -20 °C and later used for DNA extraction and methylation 

analysis of the FOXP3 gene. From EDTA-coated tubes, 100 μL aliquots were snap-frozen at -80 

°C for subsequent elemental analysis and frozen comet assay. The remaining blood was centrifuged 

(Rotofix 32, Hettich, Germany) at 3000 rpm for 10 min to separate plasma. Plasma aliquots were 

stored at -80 °C for later oxidative stress analysis and additional element measurements. 

Additionally, the first void of the first morning urine was collected in sterile polypropylene 

containers (Deltalab, Spain) and stored at -20 °C until analysis. These samples were used to assess 

urinary PAH metabolites relevant to the study. Besides, buccal epithelial cells were collected using 

minimally-invasive swabs. These cells were immediately processed for the buccal MN assay to 

evaluate cytogenotoxic effects in the oral epithelium. 
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Figure 12. Overview of biological sample collection and processing. Venous blood was collected 

in heparin- and EDTA-coated tubes for various analyses. Heparinized blood was immediately used 

for the comet assay, micronucleus assay, and BTEX analysis, with samples stored at -20 °C for 

DNA extraction and methylation analysis. EDTA blood was aliquoted and snap-frozen at              -

80 °C for elemental analysis and frozen comet assay, while the remaining blood was centrifuged 

to obtain plasma, which was stored at -80 °C for oxidative stress and elemental measurements. 

First-morning urine was collected and stored at -20 °C for PAH metabolite analysis. Buccal 

epithelial cells were collected via non-invasive swabs and immediately processed for the buccal 

micronucleus assay. 

3.3. BTEX Determination in Blood Samples 

Blood concentrations of BTEX compounds were quantified using a modified headspace 

solid-phase microextraction (HS-SPME) method coupled with gas chromatography-mass 

spectrometry (GC-MS), based on the approach described by Karačonji and Skender (2007) (Figure 

13). In brief, 1 mL aliquots of blood were transferred into 6 mL clear glass headspace vials, which 

were then sealed with butyl septa (Supelco) and holed aluminum caps (Macherey-Nagel, 

Germany). The vials were incubated at 50 °C for 1 h, after which a 10 mm silica fiber coated with 
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a 75 μm thick carboxen/polydimethylsiloxane (CAR/PDMS) film (Supelco) was exposed to the 

headspace for 15 min at the same temperature. Following extraction, the fiber was immediately 

inserted into a septum-equipped programmable injector (SPI), where analytes were thermally 

desorbed at 280 °C for 8 min. Chromatographic separation was achieved using a Varian 3400 CX 

gas chromatograph with a Saturn 4D ion trap mass spectrometer (Varian, USA) operating in 

electron impact (EI) mode. An HP-5MS Ultra Inert capillary column (30 m × 0.25 mm i.d., 0.25 

µm film thickness; Agilent Technologies) was employed, with the oven temperature held at 40 °C 

for 1 min and then ramped to 150 °C at 8 °C/min. Helium served as the carrier gas at a constant 

flow rate of 1 mL/min. Ion monitoring was performed at m/z 78 for benzene and m/z 91 for toluene, 

ethylbenzene, and xylenes. Calibration curves were established by analyzing pooled blood samples 

(purged with dry nitrogen at 40 °C for 30 min) spiked with BTEX standards (Merck) over a 

concentration range of 50–1000 ng/L. Since m-xylene and p-xylene co-eluted under the selected 

conditions, they were quantified as a single parameter (m/p-xylene). The method demonstrated 

recovery rates between 90% and 96%, with precision expressed as relative standard deviations 

(RSD) ranging from 4% to 11%. The limits of detection (LOD), determined at a signal-to-noise 

ratio of 3, were 16 ng/L for benzene, 8 ng/L for ethylbenzene, 21 ng/L for toluene, 19 ng/L for 

m/p-xylene, and 14 ng/L for o-xylene. 
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Figure 13. Schematic representation of the analytical setup for benzene, toluene, ethylbenzene, 

and xylenes (BTEX) determination in blood using headspace solid-phase microextraction (HS-

SPME) followed by gas chromatography-mass spectrometry (GC-MS). Analysis was performed 

with a Trace 1300 GC coupled to an ITQ 700 Ion Trap MS (Thermo Fisher Scientific, USA). 

Separation was achieved on a TG-5MS capillary column using helium as the carrier gas. Selected 

Ion Monitoring (SIM) was applied for quantification, with m/z values of 78 for benzene, 91 for 

toluene, and 91 + 106 for xylene isomers. 

3.4. Determination of PAHs in Urine Samples 

Urinary concentrations of 1-hydroxypyrene (1-OHP) and 1- and 2-naphthol were quantified 

using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-

MS/MS). First, samples underwent enzymatic deconjugation with β-glucuronidase (from Helix 

pomatia, ≥100,000 units/mL) (Merck) to release conjugated metabolites according to the method 

of Jongeneelen et al. (1987). The deconjugated samples were then purified by solid-phase 

extraction (SPE) using C18 cartridges (Evolute Express, 60 mg/3 mL, Biotage, Sweden). 

Chromatographic separation was performed on a reverse-phase C18 column (Zorbax Eclipse Plus, 

50 × 3.0 mm, 1.8 μm, Agilent Technologies) under a gradient elution. The mobile phase, consisting 
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of water and acetonitrile (ACN), was delivered at a flow rate of 0.5 mL/min with the following 

gradient: starting at 20% ACN, increasing to 70% over 3.9 min, then ramping to 100% at 4 min 

and held for 1.5 min, before returning to 20% ACN at 5.6 min, for a total run time of 9.6 min. 

Detection was carried out using a high-resolution mass spectrometer (Exploris 120, Thermo Fisher 

Scientific, USA) in multiple reaction monitoring (MRM) mode to enhance sensitivity and 

specificity. The monitored transitions were m/z 217.0659 for 1-OHP and m/z 143.0502 for both 1- 

and 2-naphthol. Calibration curves were constructed using standard solutions of 1-hydroxypyrene 

(100 mg, Merck) and 1 and 2-naphthol (1 mg/mL, Chiron, Norway) over the concentration ranges 

of 0.08–4.0 ng/mL for 1-OHP, 2.0–100 ng/mL for 1-naphthol, and 1.0–40 ng/mL for 2-naphthol. 

Quantification was achieved by comparing the peak areas from the samples to those from the 

calibration standards. The limits of quantification (LOQ) were determined to be 0.08 ng/mL for   

1-OHP, 2 ng/mL for 1-naphthol, and 1 ng/mL for 2-naphthol. 

3.5. Element Analysis in Blood and Plasma 

The concentrations of toxic and essential elements in blood and plasma samples were 

determined using ICP-MS on an Agilent 8800 instrument (Agilent Technologies). Prior to analysis, 

blood and plasma samples were diluted at ratios of 1:70 and 1:20, respectively, using a diluent 

containing 3 μg/L of internal standards, 0.01 mM EDTA, 0.7 mM NH₃, and 0.07% (v/v) Triton X-

100 (Merck) (Sekovanić et al., 2018). Instrument parameters were optimized with a tuning solution 

containing 1 μg/L of 7Li, 59Co, 89Y, 140Ce, and 205Tl. Sample preparation and analysis were 

performed in a laboratory equipped with a Heating, Ventilation, and Air Conditioning (HVAC) 

system combined with High-Efficiency Particulate Air (HEPA) filters to minimize contamination. 

Calibration was carried out using working standards prepared from single-element stock solutions 

at multiple concentration levels, and the method’s accuracy, which ranged from 93% to 115%, was 

verified by analyzing certified reference materials and through regular participation in the UK 

National External Quality Assessment Scheme (NEQAS) Interlaboratory Comparison Program for 

Trace Elements in blood and serum. In whole blood, trace elements measured included Mn, Co, 

As, Cd, Hg, Tl, and Pb, with concentrations expressed in µg/L. In plasma, the analysis focused on 

essential and trace elements, with Mg and Ca reported in mg/L, and Fe in mg/L as well, while Mn, 

Cu, Zn, Se, Mo, I, V, and Cr were quantified in µg/L. These elements were selected based on their 

critical roles in physiological processes and their potential implications for human health.  
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3.6. DNA Extraction and Methylation 

To investigate the potential epigenetic effects of environmental exposures, we focused on 

the methylation status of the FOXP3 gene, a key transcription factor involved in the regulation and 

function of regulatory T cells (Tregs). DNA was extracted from whole blood samples and 

subsequently analyzed for methylation levels at specific CpG sites within the FOXP3 gene. Given 

the critical role of FOXP3 in immune homeostasis, alterations in its methylation profile may 

provide insights into immune dysregulation linked to environmental factors. The following 

sections describe the protocols used for DNA extraction and methylation analysis. 

3.6.1. DNA Extraction from Whole Blood 

Genomic DNA was extracted from whole blood samples using the DNeasy Blood & Tissue 

Kit (Qiagen, Merck) following the “Purification of Total DNA from Animal Blood or Cells (Spin-

Column Protocol)” with minor modifications. The protocol is optimized for the efficient recovery 

of high-quality DNA by utilizing silica-membrane technology within spin columns. All steps were 

performed at room temperature (15–25 °C), and centrifugation steps were carried out using a 

Pico™ 21 Microcentrifuge (Thermo Fisher Scientific). For each extraction, 100 µL of 

anticoagulated whole blood was mixed with 20 µL of Proteinase K in a 1.5 mL microcentrifuge 

tube. To ensure a uniform processing volume, phosphate-buffered saline (PBS: 137 mM NaCl, 10 

mM Na2HPO4, 2.7 mM KCl, and 1.8 mM KH2PO4, pH 7; Kemika, Croatia) was added to reach a 

final volume of 220 µL. Lysis was achieved by adding 200 µL of Buffer AL, which contains 

chaotropic salts to disrupt cell membranes and promote protein denaturation, followed by thorough 

mixing via vortexing. The mixture was then incubated at 56 °C for 10 min to enhance the efficiency 

of cell lysis. After incubation, 200 µL of 96–100% ethanol was added to facilitate DNA 

precipitation and subsequent binding to the silica membrane of the DNeasy Mini spin column. The 

lysate-ethanol mixture was transferred onto the spin column, which was placed in a 2 mL collection 

tube. Centrifugation at ≥6,000 × g (8,000 rpm) for 1 min allowed selective DNA adsorption while 

removing cellular debris and contaminants. The bound DNA underwent two sequential wash steps: 

first, 500 µL of Buffer AW1, a mild chaotropic buffer that removes proteins and polysaccharides, 

was added and centrifuged for 1 min; second, 500 µL of Buffer AW2, an ethanol-based wash buffer 

designed to eliminate residual salts, was applied, followed by centrifugation at 20,000 × g (14,000 

rpm) for 3 min to ensure thorough membrane drying. For DNA elution, the spin column was placed 



48 

 

in a clean 1.5 mL microcentrifuge tube, and 200 µL of Buffer AE (10 mM Tris·Cl, 0.5 mM EDTA, 

pH 9) was applied directly onto the silica membrane. After a brief incubation at room temperature 

(1 min), DNA was eluted by centrifugation at ≥6,000 × g (8,000 rpm) for 1 min. The resulting 

DNA samples were quantified spectrophotometrically, yielding A260/A280 ratios of 1.7–1.9, 

indicating high purity suitable for downstream analyses such as DNA methylation. 

3.6.2. DNA Methylation Analysis 

3.6.2.1 Bisulfite Conversion of Total Genomic DNA 

Genomic DNA isolated from blood was bisulfite converted using the EZ DNA 

Methylation‐Gold Kit (Zymo Research Europe, Germany) according to the manufacturer’s 

instructions. Briefly, 20 µL of DNA was treated with 130 μL of CT conversion reagent. The 

reaction was incubated in a thermal cycler according to the following protocol: 98 °C for 10 min, 

followed by 2 h and 30 min at 64 °C. The reaction mix was loaded onto a Zymo-Spin™ IC Column 

containing 600 μL M-Binding Buffer and centrifuged at 10,000 × g for 30 s. The column was 

washed with 100 µL of M-Wash Buffer. Next, 200 µL of M-Desulphonation Buffer was added to 

the column and incubated at room temperature for 20 min. After the incubation, the column was 

centrifuged at 10,000 × g for 30 s and washed two times by the addition of 200 µL of M-Wash 

Buffer. The column was placed into a 1.5 mL microcentrifuge tube, and the bisulfite-converted 

DNA was eluted in 10 µL of M-Elution Buffer.  

3.6.2.2. PCR Amplification and Pyrosequencing 

The converted DNA was used as a template for PCR amplification. A 197 bp fragment of 

the promotor region of FOXP3 was amplified using primers FOXP3 Fwd (5’ 

GGTGAAGTGGATTGATAGAAAAGGATTAGT 3’) and a biotinylated FOXP3 Rev_B primer 

(5’ TATAAAAACCCCTCCCCACCC 3’) with the PyroMark PCR Kit (Qiagen) according to the 

manufacturer’s instructions. The PCR reaction mix contained 12.5 µL PyroMark PCR Master Mix, 

2.5 µl CoralLoad (10×), 0.5 µL FOXP3 Fwd primer (10 µM) and 0.5 µL FOXP3 Rev_B primer     

(10 µM), 8 µl H2O and 1 µL DNA template, and was carried out with the following settings: initial 

denaturation for 15 min at 95 °C; 50 cycles of 30 s at 95 °C, 30 s at 57 °C and 30 s at 72 °C; final 

extension for 10 min at 72 °C. The PCR products were analyzed by gel electrophoresis in a 1% 

agarose gel containing GelRed (Biotium, USA) for visualization of DNA.  
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The amplified fragments were pyrosequenced on the PyroMark Q24 Advanced instrument 

according to the manufacturer's protocol. First, biotinylated PCR products were immobilized on 

streptavidin coated Sepharose beads (Streptavidin Sepharose High Performance, GE Healthcare, 

USA). The immobilization mixture consisted of 1 µL Streptavidin Sepharose High Performance 

beads, 39 µL PyroMark Bindinig Buffer, 30 µL H2O and 10 µL of the PCR product. The mixture 

was incubated for 10 min at room temperature with agitation and then processed on the PyroMark 

Q24 Vacuum Workstation. The sequencing primer was diluted to 0.3 µM in Annealing Buffer, and 

25 µL of the diluted primer solution was added to each well of a PyroMark Q24 Plate. The 

sepharose beads containing the processed PCR product were released into the primer solution by 

gentle shaking. The sequencing primer was annealed by incubating the PyroMark Q24 Plate on the 

PyroMark Q24 Plate Holder at 80 °C for 2 min. After cooling, the samples were run on the 

PyroMark Q24 Instrument. The results of the pyrosequencing reactions were analyzed with the 

PyroMark Q24 Advanced Software, and the level of methylation of each CpG is shown as a 

percentage.   

  

 

Figure 14. Position of PCR and sequencing primers in relation to exon 1 of the FOXP3 gene. 

Analyzed CpG dinucleotides are shown in green. TIS – transcription initiation site. Image was 

created using the SnapGene® software (from Dotmatics; available at snapgene.com). 
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Figure 15. Pyrogram of the FOXP3 PCR product using the FOXP3 seq2 sequencing primer. 

Methylation of CpG dinucleotides is expressed as a percentage, and the blue squares indicate the 

highest quality assessment. Bisulfite conversion treatment control (C) is shown in orange highlight. 

The pyrogram is created using the PyroMark Q24 Analysis Software (QIAGEN). 

 

3.7. Biomarkers of Oxidative Stress 

To assess the biochemical impact of environmental exposures, a range of oxidative stress 

biomarkers in plasma were quantified. These biomarkers reflect both the direct damage caused by 

ROS and the capacity of the body's antioxidant defenses. In this chapter, the methodologies used 

to measure key parameters such as superoxide radicals, GSH, MDA, and the activities of 

antioxidant enzymes, including SOD, CAT and GPx, in addition to NO, are described.  

3.7.1. Reactive Oxygen Species Determination in Plasma 

The measurement of superoxide radicals was conducted using a dihydroethidium (DHE)-

based fluorescent assay, following the protocol by Vujčić Bok et al. (2023) with minor 

modifications. A stock solution of DHE (Merck) was first prepared in dimethyl sulfoxide (DMSO) 

(Kemika) and then diluted to a final working concentration of 20 μM. Due to its sensitivity to 

oxidation and light exposure, the DHE solution was protected from light by wrapping the container 

in aluminum foil. Prior to the assay, plasma samples were gently thawed at room temperature and 

centrifuged at 10,000 rpm for 7 min to remove any cellular debris and ensure a clear matrix. For 

the assay, 50 μL of each plasma sample was dispensed in duplicate into black-bottom 96-well 
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plates, and an equal volume (50 μL) of the DHE working solution was added to each well. Blanks 

were prepared by combining 50 μL of water with 50 μL of DHE to correct for background 

fluorescence. The plates were then incubated at room temperature in the dark, and fluorescence 

was measured using a SpectraMax iD3 microplate reader (Molecular Devices, USA) with an 

excitation wavelength range of 480–520 nm and an emission wavelength range of 570–600 nm. 

Each plate was read twice to obtain technical replicates, and the final relative fluorescence unit 

(rFU) values were determined by averaging the replicates and subtracting the mean blank value for 

each plate. 

3.7.2. Reduced Glutathione Determination in Plasma 

The concentration of GSH in plasma was determined using a spectrophotometric assay, 

following the protocol by Duka et al. (2020) with minor modifications. This method is based on 

the reaction of GSH with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB, Merck), also known as 

Ellman's reagent. In slightly alkaline conditions (pH 7–8), DTNB reacts with the thiol (-SH) groups 

of GSH to form a yellow-colored 2-nitro-5-thiobenzoate (TNB) anion (Figure 16). The intensity of 

this yellow color, measured at 412 nm using a SpectraMax iD3 microplate reader, is directly 

proportional to the GSH concentration in the sample, as calculated via Lambert–Beer’s law: 

𝑐 =
𝐴

𝜀
 

Where c is GSH concentration, A is absorbance measured in the sample, and ε is the extinction 

coefficient for DTNB at 25 °C (14,150 M⁻¹ cm⁻¹) (Eyer et al., 2003). 

 

Figure 16. Ellman’s Reagent Reaction. Under slightly alkaline conditions, 5,5′-dithiobis(2-

nitrobenzoic acid) (DTNB) reacts with the free thiol group (R–SH) of reduced glutathione to yield 

the yellow-colored 5-thio-2-nitrobenzoate (TNB) and the corresponding disulfide (R–SS–R).  
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For the assay, plasma samples were gently thawed at room temperature and then analyzed 

in transparent-bottom 96-well plates (Greiner, Austria). In each well, 25 μL of plasma was mixed 

with 100 μL of PBS containing 0.1 mM EDTA (Merck), used to chelate metal ions and prevent 

GSH autoxidation, and 40 μL of a freshly prepared 1 mM DTNB solution (diluted in 1 M K-

phosphate buffer). The reaction was allowed to proceed at room temperature, and absorbance was 

measured in duplicate. Blank wells (containing buffer and DTNB without plasma) were used to 

correct for background absorbance. The final GSH concentration was determined from the mean 

corrected absorbance value. 

3.7.3. Malondialdehyde Determination in Plasma 

The concentration of MDA in plasma was determined using a spectrophotometric assay, 

following the protocol by Domijan et al. (2015) with minor modifications. This method is based 

on the reaction of MDA with 2-thiobarbituric acid (TBA, Merck) under acidic conditions (Figure 

17). In these conditions, TBA reacts with MDA to form a red-colored MDA-TBA2 adduct, whose 

absorbance is measured at 532 nm. A 0.6% TBA solution was prepared by dissolving 0.6 g of TBA 

in 100 mL of distilled water with gentle heating to ensure complete dissolution. For the assay,        

50 µL of plasma was mixed with 100 µL of the freshly prepared TBA reagent. From this mixture, 

70 µL aliquots were pipetted into wells of a transparent 96-well plate (Greiner), and each sample 

was run in duplicate. Blank wells containing 50 µL of distilled water mixed with 100 µL of TBA 

reagent were included for background correction. The plate was incubated in a heating block 

(CB500 Hotplate, Stuart, UK) at 90 °C for 30 min to facilitate the formation of the MDA-TBA2 

adduct. Following incubation, the plate was rapidly cooled on ice to halt the reaction, and the 

absorbance was recorded at 532 nm using a SpectraMax iD3 microplate reader. MDA 

concentrations were calculated using Lambert–Beer’s law with an extinction coefficient of           

156 mM-1 cm-1 (Janero, 1990). 



53 

 

 

Figure 17. Reaction between malondialdehyde (MDA) and 2-thiobarbituric acid (TBA). Under 

acidic conditions and elevated temperature, MDA condenses with two equivalents of TBA to form 

the red-colored MDA–TBA2 adduct, which can be measured spectrophotometrically. 

3.7.4. Superoxide Dismutase Determination in Plasma 

Plasma SOD activity was measured using the Superoxide Dismutase Assay Kit (Cayman 

Chemical, USA) according to the manufacturer’s protocol, with minor modifications for our 

plasma samples. Prior to the assay, plasma samples were diluted fivefold in the assay buffer 

provided by the kit. To prepare the working reagent, all components were first equilibrated to room 

temperature. The tetrazolium salt solution and reaction buffer were combined as specified in the 

kit instructions, and the xanthine oxidase working solution was added immediately before use. 

Since the generation of superoxide radicals, and hence the reduction of the tetrazolium salt, is 

highly time‐sensitive, the working reagent was prepared fresh and kept protected from light by 

wrapping in aluminum foil. For the assay, 20 μL of each diluted plasma sample (or SOD standard) 

was pipetted in duplicate into the wells of a transparent 96-well plate (Greiner). To each well, 

200 μL of the freshly prepared working reagent was added, bringing the final volume to 220 μL 

per well. The reaction mixture was then incubated at room temperature in the dark for 30 min. 

During this time, superoxide radicals generated by the xanthine oxidase reduce the tetrazolium salt 
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to form a formazan dye, and the presence of SOD in the sample inhibits this reaction (Figure 18). 

The absorbance was measured at 450 nm using a SpectraMax iD3 microplate reader. 

 

Figure 18. Scheme of the Superoxide Dismutase (SOD) Assay. Xanthine oxidase generates 

superoxide radicals (O2⁻) from xanthine and molecular oxygen, which then reduce a tetrazolium 

salt to form a colored formazan dye. The presence of SOD scavenges these superoxide radicals by 

catalyzing their dismutation into hydrogen peroxide (H2O2) and oxygen (O2), thereby decreasing 

formazan formation and enabling the quantification of SOD activity. 

The degree of inhibition of the formazan dye formation is inversely proportional to the SOD 

activity in the sample. SOD activity was calculated using the following formula: 

% Inhibition = (
𝐴𝑏𝑙𝑎𝑛𝑘 − 𝐴𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑏𝑙𝑎𝑛𝑘
) × 100 

where Ablank is the absorbance of the reaction without sample, and Asample is the absorbance with 

plasma. A standard curve was constructed using serial dilutions of the SOD standard provided in 

the kit, and one unit of SOD activity was defined as the amount of enzyme required to inhibit the 

rate of formazan formation by 50%. SOD activity in the plasma samples (expressed in U/mL) was 

then determined by interpolating the percent inhibition from the standard curve and correcting for 

the fivefold dilution.  
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3.7.5. Glutathione Peroxidase Determination in Plasma 

Plasma GPx activity was determined using the Glutathione Peroxidase Assay Kit (Cayman 

Chemical). Prior to the assay, plasma samples were diluted 1:2 in the provided assay buffer. All 

reagents and samples were equilibrated to room temperature before use. To prepare the working 

reagent, the assay buffer, a freshly prepared reduced GSH solution, glutathione reductase, and 

NADPH were combined according to the manufacturer’s instructions. The hydroperoxide substrate 

was then added last to initiate the reaction; because the substrate is light-sensitive, all reagent 

preparation was performed under yellow dim light. For each reaction, 20 μL of the diluted plasma 

sample was added in duplicate into the wells of a transparent 96-well plate (Greiner), followed by 

200 μL of the freshly prepared working reagent, resulting in a total volume of 220 μL per well. The 

plate was incubated at room temperature in the dark for 30 min, during which the GPx present in 

the sample catalyzed the reduction of the hydroperoxide by oxidizing GSH to glutathione disulfide 

(GSSG). In the presence of glutathione reductase and NADPH, GSSG was immediately recycled 

back to GSH with concomitant oxidation of NADPH to NADP+. The decrease in NADPH 

absorbance was continuously monitored at 340 nm using a SpectraMax iD3 microplate reader 

(Molecular Devices) to obtain six time points. GPx activity was calculated using the following 

equation: 

GPX activity (
U

mL
) =

ΔA340/ min× 𝑉𝑡𝑜𝑡𝑎𝑙

𝜀 × 𝑙 × 𝑉𝑠𝑎𝑚𝑝𝑙𝑒 × DF
 

where ΔA340/min represents the change in absorbance per min, Vtotal is the final reaction volume (0.19 

mL), ɛ is the molar extinction coefficient of NADPH (3.73 mM-1 cm-1), l is the optical path length 

(assumed to be 1 cm), Vsample is the volume of plasma added (0.02 mL), and DF is the dilution 

factor (in this case three). The change in absorbance per min was obtained by plotting the 

absorbance values as a function of time to obtain the slope (rate) of the linear proportion of the 

curve. 

3.7.6. Catalase Activity Determination in Plasma 

CAT activity in plasma was determined using a spectrophotometric method that measures 

the decomposition of H2O2 (Kemika) by CAT, as described by Shangari and O’Brien (2006). In 

this assay, the enzymatic breakdown of H2O2 leads to a reduction in its concentration, which is 
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monitored as a decrease in absorbance at 240 nm over time using a kinetic program. Prior to 

analysis, plasma samples were first diluted 100-fold with 50 mM phosphate buffer (pH 7). The 

phosphate buffer was prepared by dissolving appropriate amounts of potassium dihydrogen 

phosphate (KH2PO4, Kemika) and dipotassium hydrogen phosphate (K2HPO4, Kemika) in Milli-Q 

water, adjusting the pH to 7, and diluting to a final volume. A 30 mM H2O2 solution was freshly 

prepared by diluting 0.34 mL of commercially available 30% H2O2 with the 50 mM phosphate 

buffer to a final volume of 100 mL. For the assay, 4 µL of plasma was mixed with 400 µL of the 

50 mM phosphate buffer in an Eppendorf tube and then vortexed (Vortex-Heidolph REAX top, 

Heidolph Instruments, Germany) thoroughly. From this diluted plasma, 100 µL aliquots were 

transferred in triplicate into the wells of a UV-transparent 96-well plate (Greiner). To each well, 

50 µL of the 30 mM H2O2 solution was added, and the plate was immediately placed in a plate 

reader (SpectraMax iD3) set to monitor absorbance at 240 nm every 30 s over a period of 1 min at 

24 °C. The decrease in absorbance (ΔA(240)/min) reflects the rate of H2O2 decomposition and is 

directly proportional to catalase activity. CAT activity (expressed in U/mL, where one unit is 

defined as the amount of enzyme that decomposes 1 µmol of H2O2 per min) was calculated using 

the formula: 

Catalase Activity (
U

mL
) =

Δ𝐴𝑏𝑙𝑎𝑛𝑘 − Δ𝐴𝑠𝑎𝑚𝑝𝑙𝑒

𝜀 × 𝑙
×

𝑑 × 𝑣

𝑉
 

Where ΔAblank and ΔAsample  are the changes in absorbance per min for the blank and the plasma 

sample, respectively, ε is the molar extinction coefficient of H2O2 at 240 nm (0.0436 Lcm-1mM-1), 

l is the optical path length (assumed to be 1 cm), d is the dilution factor (100), v is the total reaction 

volume (150 µL), and V is the volume of plasma used in the reaction (4 µL). Blank wells containing 

only 50 µL of 30 mM H2O2 and 100 µL of buffer (without plasma) were included for background 

correction. This method yields a sensitive and reproducible measure of catalase activity in plasma, 

serving as an important indicator of the antioxidant defense capacity against oxidative stress. 

3.7.7. Nitric Oxide Determination in Plasma 

Plasma NO levels were determined using a fluorescent assay based on the reaction of NO 

with a NO-sensitive fluorescent reagent DAF-FM (Chemodex, Switzerland), following a modified 

protocol from Abd El-Hay and Colyer (2017). Plasma samples were first centrifuged to ensure 

clarity, then diluted 1:1 in PBS. For each well of a black-bottom 96-well plate, 50 µL of the diluted 
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plasma sample was combined with 50 µL of a freshly prepared 5 µM solution of the fluorescent 

reagent in PBS. The plate was incubated at room temperature in the dark for 30 min to allow the 

formation of the fluorescent product, which is directly proportional to the NO concentration. 

Fluorescence was measured using a SpectraMax iD3 microplate reader with an excitation 

wavelength of 485 nm and an emission wavelength of 525 nm. Blank wells containing 50 µL of 

PBS and 50 µL of the reagent were included for background correction, and the final NO 

concentration was calculated by subtracting the blank signal from the sample readings. 

3.8. Fractional Exhaled Nitric Oxide (FeNO) Measurement 

FeNO was measured using the NIOX VERO® device (NIOX Group plc., UK) as a non-

invasive biomarker of airway inflammation using a standardized chemiluminescence-based 

analyzer following the American Thoracic Society (ATS) and European Respiratory Society (ERS) 

guidelines (Dweik et al., 2011). The measurement procedure involved a controlled exhalation 

maneuver at a fixed flow rate of 50 mL/s, ensuring stable NO production from the airway 

epithelium while minimizing contamination from nasal NO sources. Participants were instructed 

to inhale fully to total lung capacity through a filtered mouthpiece and then exhale at a steady flow 

for at least 10 s. Interpretation of FeNO levels was based on ATS-defined cut-off values expressed 

in parts per billion (ppb): low (< 25 ppb), intermediate (25–50 ppb), and high (> 50 ppb). 

3.9. The Cytokinesis-Block Micronucleus Assay in Peripheral Blood Lymphocytes 

The CBMN assay was performed according to the protocol established by Fenech (2007), 

with minor modifications (Gajski et al., 2024). This method is widely used to assess chromosomal 

damage and genome instability by detecting MNi, NPBs, and NBUDs in binucleated cells. 

Within 6 h of blood collection, 500 μL of whole blood was directly added to Chromosome 

Kit P tubes (Euroclone S.p.A., Italy), which contains all necessary supplements, including fetal 

bovine serum (FBS), phytohemagglutinin (PHA) for lymphocyte stimulation, and antibiotics 

(penicillin and streptomycin). Tubes were then gently inverted 3–4 times and incubated at 37 °C 

in a humidified 5% CO2 atmosphere for a total of 69 h in a Heracell™ Vios 250i incubator (Thermo 

Fisher Scientific). At 44 h of incubation, Cytochalasin-B (Merck) was added at a final 

concentration of   6 μg/mL to prevent cytokinesis, allowing the formation of binucleated cells, 

which are required for the CBMN assay. After 69 h of incubation, lymphocytes were harvested 
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through a series of washing and fixation steps to ensure the preservation of cytoplasmic and nuclear 

structures. The entire culture content from each Chromosome Kit P tube was transferred into 15 

mL conical centrifuge tubes using a Pasteur pipette and centrifuged (Rotofix 32) at 800 rpm (100 

× g) for 8 min at room temperature. The supernatant was carefully removed, leaving behind the 

cell pellet, which was then resuspended in 5 mL of cold (4 °C) 0.9% NaCl saline solution. The 

suspension was gently mixed using a Pasteur pipette to prevent cell clumping and was left to stand 

at room temperature for 15 min to allow osmotic stabilization. This step was followed by another 

centrifugation at 800 rpm (100 × g) for 8 min, after which the supernatant was discarded. Fixation 

was initiated by adding 5 mL of cold methanol–acetic acid (3:1) fixative (Kemika) to the pellet. To 

enhance cytoplasmic preservation, 40 μL of formaldehyde was added. The suspension was gently 

mixed to ensure thorough fixation before being centrifuged again at 800 rpm (100 × g) for 8 min. 

The supernatant was discarded, and the fixation step was repeated three additional times, each time 

replacing the fixative with 5 mL of fresh cold fixative and gently resuspending the cells. This 

process was continued until the pellets appeared white, indicating complete removal of hemoglobin 

and other unwanted cellular components. After the final centrifugation, the supernatant was 

discarded, and the cell pellet was resuspended in a small volume (~0.5 mL) of cold fixative to 

obtain a dense suspension suitable for slide preparation. Fixed cell suspensions were carefully 

smeared onto microscope slides (VitroGnost Standard Grade, BioGnost, Croatia) and allowed to 

air dry overnight. Slides were then stained in 5% Giemsa solution (Merck) for 10 min at room 

temperature. After rinsing in tap water and air drying, slides were stored in a dust-free environment 

until analysis. Slide analysis was performed under light microscopy (Reichert Diastar 420, 

Germany) at 400× magnification. A 1,000 binucleated cells per participant were analyzed for MNi, 

NPBs, and NBUDs, following established cytogenetic criteria (Fenech, 2007; Fenech et al., 2003): 

• MNi: Small, round or oval structures not linked to the main nuclei, with the same staining 

intensity as the main nuclei, but with a diameter of 1/16 to 1/3 of the main nucleus; 

• NPBs: Continuous, DNA-containing structures linking two nuclei, whose width is not more 

than 1/4 of the diameter of the main nuclei, with the same staining intensity as the main 

nuclei; 

• NBUDs: Small MN-like protrusions connected to the main nucleus. 



59 

 

To assess proliferation kinetics, 500 cells per participant were counted to determine the 

Cytokinesis-Block Proliferation Index (CBPI) using the formula 

𝐶𝐵𝑃𝐼 =
1 × 𝑀1 + 2 × 𝑀2 + 3 × (𝑀3 + 𝑀4)

𝑁
, 

where M1, M2, M3, and M4 are a number of cells with 1, 2, 3, or 4 nuclei, respectively, and N is a 

number of counted cells (500 in this case) (Kirsch-Volders et al., 2003). 

Slide scoring was also done on unstained duplicate slides using the Metafer system 

(MetaSystems, Germany) (Figure 19). The Metafer system is an advanced automated image 

analysis platform designed for high-throughput cytogenetic assessments. It enables precise and 

reproducible scoring of various nuclear anomalies, including MNi. The system integrates a 

motorized microscope (Zeiss Axio Imager, Germany), high-resolution digital camera, and 

sophisticated image analysis software (Metafer 4.0) to detect and classify cellular structures based 

on predefined morphological criteria. The system’s motorized stage allows precise slide scanning, 

while its autofocus and scanning algorithms ensure consistent image acquisition across the entire 

slide. A high-resolution digital camera captures images of binucleated cells under fluorescence 

conditions. The Metafer 4.0 image analysis software applies pattern recognition algorithms and 

machine-learning classifiers to identify and classify nuclear anomalies based on size, shape, 

fluorescence intensity, and spatial distribution. Although the system performs automated scoring, 

manual review by an expert cytogeneticist ensures accuracy and validation. 

 

Figure 19. Metafer automated scanning system used for high-throughput slide analysis. The 

system consists of a high-resolution Zeiss Axio Imager microscope equipped with a motorized 

stage, a high-sensitivity camera, and dedicated Metafer software (MetaSystems, Germany) for 

automated detection and scoring of micronuclei and comet assay parameters (Rossnerova et al., 

2011).  
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Slides were stained with DAPI (VECTASHIELD® Antifade Mounting Medium with DAPI (H-

1200-10), Vector Laboratories, USA) to facilitate automated detection of MNi within binucleated 

cells. A minimum of 1,000 binucleated cells per slide were analyzed to allow comparison with 

conventional light microscopy scoring.  

3.10. Buccal Micronucleus Assay 

The BMN Assay was performed according to the protocol outlined by Thomas et al. (2009). 

Buccal cell samples were collected from participants using a clean, unused hard toothbrush 

following a standardized procedure to ensure consistency. Prior to sampling, participants were 

instructed to thoroughly rinse their mouths three times with tap or still bottled water to remove 

residual debris. Buccal cells were collected by scraping the inner cheek using ten circular motions 

per side. The collected material was immediately immersed in 15–20 mL of buccal cell buffer, 

ensuring that the entire toothbrush head was submerged in the solution. The buffer was prepared 

by dissolving 1.6 g Tris-HCl, 38 g EDTA (both from Merck), and 1.2 g sodium chloride (Kemika) 

in 600 mL of Milli-Q water (IMROH, Croatia), adjusting the volume to 1 L, and autoclaving at 

121 °C for 10 min. Samples were stored in 50 mL conical tubes (TPP or Eppendorf, Germany) and 

processed within 2 h to ensure optimal cell recovery. Each sample was thoroughly mixed using a 

dedicated 10 mL syringe (BD, UK) and a 16G needle (BD, UK), followed by centrifugation at 600 

× g for 10 min (if the supernatant still contained cells after centrifugation, centrifugation at 

increased g-force was repeat until clear) using a Megafuge ST Plus Series centrifuge (Thermo 

Fisher Scientific). The supernatant was discarded, and the pellet was resuspended in 10 mL of fresh 

buccal cell buffer. The sample was then filtered through a 100 µm nylon membrane filter 

(Millipore, UK) held inside a closed Swinnex filter holder (Millipore, UK) and sealed with a rubber 

gasket (Swinnex-gasket, Merck). The filtration process, facilitated by syringe pressure, removed 

debris and improved sample purity, and the filtrate was collected in a 15 mL conical tube (TPP, 

Germany). A second centrifugation at 600 × g for 10 min was performed (with increased force if 

necessary), and after discarding the supernatant, the pellet was resuspended in 1 mL of fresh buccal 

cell buffer and vortexed. The total cell count was determined using a Bürker-Türk counting 

chamber (Fein Optik, Germany), and the final concentration was adjusted to 8 × 104 cells/mL. 

To prepare slides, cytocentrifugation was performed using the Cytospin 4 system (Epredia, 

Shandon Diagnostics Ltd., UK). Each slide (Vitrognost Ultragrade, Biognost) was mounted within 



61 

 

a cytocentrifuge assembly, including a filter card with holes for the funnel (Filter Cards, white, 

sample size 0.5 mL, Epredia), a sample funnel chamber (Thermo Fisher Scientific), and a metallic 

cytoclip holder (Epredia). Initially, 60 µL of buccal cell buffer was added to the funnel and 

centrifuged at 600 rpm for 6 min, followed by the addition of 120 µL of the prepared cell 

suspension and another round of cytocentrifugation under the same conditions. Given that the 

cytocentrifuge applies minimal force, centrifugation was measured in rpm instead of g-force. The 

slides were carefully removed from the cytoclip assembly to avoid disturbing the adhered cells and 

were air-dried for at least 30 min, followed by fixation in ethanol–glacial acetic acid (3:1) for 10 

min (Kemika). After fixation and drying, Feulgen staining, a DNA-specific staining method, was 

applied to enhance nuclear structures for micronucleus (MN) identification. The staining process 

involved sequential immersion in 50% ethanol (1 min), 20% ethanol (1 min) (Kemika), and Milli-

Q water (2 min), followed by hydrolysis in 5 M HCl (Kemika) at room temperature for 30 min. 

After hydrolysis, slides were rinsed under running tap water for   5 min and air-dried. Schiff’s 

reagent (Merck) was applied for 30–60 min in the dark. After an additional drying step, slides were 

briefly immersed in Fast Green stain (5 mg/mL, Merck) for 5 s, washed twice with tap water and 

once with Milli-Q water, and left to dry overnight. Fluorescence microscopy (Olympus BX-51, 

Japan) was used to inspect the slides, after which 30 µL of Depex mounting medium (Merck) was 

applied to each sample spot, covered with 24 × 24 mm coverslips (Biognost), and left to air dry. 

Slides were stored in a dry box until analysis. 

The analysis was performed by fluorescence microscopy (Olympus BX-51) at                        

1000× magnification under green fluorescence. A 1000 cells per sample were assessed for the 

frequency of basal cells, binucleated cells (proliferation parameters), and various cytotoxicity 

markers (cell death parameters), including condensed chromatin (early apoptosis), karyorrhectic 

cells (late apoptosis), pyknotic cells (early necrosis), and karyolytic cells (late necrosis). 

Additionally, 2000 differentiated buccal cells were examined for the presence of MNi, NBUDs, 

and broken egg structures (genotoxicity parameters), with their frequencies expressed per           

1000 binucleated cells to ensure consistency in comparisons, following established criteria by 

Thomas et al. (2009): 



62 

 

• Basal cells: These cells have a smaller, more oval shape with a larger nucleus-to-cytoplasm 

ratio and a uniformly stained nucleus. The cytoplasm typically stains darker compared to 

differentiated cells. 

• Differentiated cells: Larger with a smaller nucleus-to-cytoplasm ratio, uniformly stained 

and oval or round, indicating they are terminally differentiated. These cells do not exhibit 

mitosis. 

• MNi: Cells containing one or more small, round or oval-shaped micronuclei, with a 

diameter ranging between 1/3 and 1/16 of the main nucleus. MNi have the same staining 

intensity and texture as the main nucleus. Only differentiated cells with uniformly stained 

nuclei are scored for MNi. 

• NBUDs: Cells with a sharp constriction at one end of the nucleus, suggestive of nuclear 

material elimination. The nuclear bud is attached to the main nucleus and typically has a 

smaller diameter. A structure called a broken egg is a form of NBUD, characterized by a 

longer constriction that resembles a bridge, connecting the nuclear bud to the main nucleus. 

This bridge-like appearance distinguishes it from typical nuclear buds, which usually have 

a more compact connection.  

• Binucleated cells: Cells with two main nuclei, often indicative of failed cytokinesis.  

• Condensed chromatin: Cells that show aggregated chromatin, often in early apoptosis. The 

nucleus appears striated with extensive chromatin aggregation. 

• Karyorrhectic cells: Cells with dense speckled chromatin, indicative of nuclear 

fragmentation. 

• Pyknotic cells: Cells with a shrunken, intensely stained nucleus, indicating a stage of cell 

death. 

• Karyolytic cells: Cells with a completely degraded nucleus, showing no Feulgen staining 

and appearing ghost-like, representing a very late stage of cell death. 

3.11. Alkaline Comet Assay from Whole Blood 

The alkaline comet assay was performed following the standardized protocol described by 

Collins et al. (2023) and Gajski et al. (2020b), adhering to the MIRCA guidelines (Møller et al., 

2020). This technique was employed to assess DNA strand breaks in peripheral blood cells, with 

both fresh and frozen blood samples analyzed to evaluate potential genotoxic damage. No more 
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than two hours elapsed between sample collection and either performing the comet assay or 

freezing the samples for the frozen comet assay, with blood kept at 4 °C during this period.  

For fresh blood samples, fully frosted glass slides (Surgipath, Leica Biosystems, Germany) 

were first coated with 1% normal melting point (NMP) agarose (Merck) and then carefully 

removed to create a clean, pre-coated surface. A second layer of 300 μL of 0.6% NMP agarose 

(Merck) was then applied and allowed to solidify. Following this, 5 μL of whole blood was mixed 

with 100 μL of 0.5% low melting point (LMP) agarose (Merck) and layered onto the prepared 

slide, followed by an additional 100 μL of LMP agarose to form a protective top layer. For frozen 

blood samples, 6 μL of whole blood was used following a rapid thawing step in a 37 °C water bath 

for 2-3 min, with all subsequent steps performed identically to those for fresh samples. After 

agarose solidification, the coverslips were removed, and slides were immersed overnight in a cold 

lysis solution (4 °C) to break down cellular and nuclear membranes, enabling access to DNA. The 

lysis solution was composed of 10 mM Tris-HCl, 100 mM Na2EDTA, 1% sodium sarcosinate, and 

1% Triton X-100 (all from Merck), along with 2.5 M NaCl and 10% DMSO (both from Kemika). 

Following lysis, slides were transferred into freshly prepared alkaline electrophoresis buffer 

consisting of 1 mM Na2EDTA and 300 mM NaOH (both from Kemika), adjusted to pH 13 and 

maintained at 4 °C. The slides were incubated in this buffer for 20 min to allow DNA unwinding 

and expression of alkali-labile sites. Electrophoresis was then conducted using gel electrophoresis 

apparatus (Horizon 11.14, Life Technologies, Gibco, USA) at 1 V/cm across the platform for          

20 min under the same alkaline conditions (4 °C). This step facilitated migration of DNA loops, 

forming the characteristic comet-like structures under fluorescence microscopy. After 

electrophoresis, slides were neutralized by three successive washes (5 min each) in 0.4 M Tris 

buffer (pH 7.5) to restore the DNA to its native conformation. The slides were then stained with 

10 μg/mL ethidium bromide (Merck) and left for 10 min in the dark before washing with Tris buffer 

and analysis. Comet images were captured using an epifluorescence microscope (Leitz, Germany) 

at 400× magnification equipped with a fluorescence filter for ethidium bromide (λex = 518 nm, λem 

= 605 nm). A 100 nuclei per individual were analyzed, and DNA damage was quantified using 

Comet Assay II software (Instem, USA). The following comet descriptors were evaluated: 

• Tail Length (TL, μm) – The distance of DNA migration measured from the center of the 

comet head to the end of the tail. 
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• Tail DNA % (TI, %) – The percentage of total DNA in the tail, indicating the degree of 

DNA damage. 

• Tail Moment (TM, arbitrary units) – A combined measure of tail length and tail intensity, 

reflecting overall DNA damage. 

3.12. Statistical Analysis 

All analyses were performed using R version 4.4.3. The primary packages employed for 

data manipulation and statistical modeling included dplyr, tidyverse, ggplot2, broom, leaps, lme4, 

and mediation. All descriptive statistics were computed for the colder and warmer seasons, and 

pooled measures were used in further analysis when it was decided to examine inter-seasonal 

correlations. Descriptive analyses, including histograms, density plots, and Q–Q plots, were 

generated for key variables.  

3.12.1. Air Pollution Exposure Assessment and Composite Score Generation 

To characterize exposure patterns and reduce dimensionality in the environmental dataset, 

hierarchical clustering was first performed on pollutant variables, not on individual-level data. The 

aim was to group pollutants with similar temporal behavior into coherent clusters that reflect shared 

sources or environmental dynamics. For each exposure window (one day, three days, and seven 

days), relevant ambient pollutant variables were selected, while meteorological parameters and 

pollen data were excluded from clustering. Variables with zero variance were removed, and a 

logarithmic transformation was applied to normalize the remaining pollutant values. The 

transformed data were then centered, and a correlation matrix was calculated. This matrix was 

converted to a dissimilarity matrix using the transformation 1 – |correlation|, which captures 

similarity in pollutant behavior over time. Hierarchical clustering was conducted using the 

Ward.D2 method. To determine the optimal number of clusters, silhouette widths were computed 

for solutions ranging from two to five clusters, and the number of clusters yielding the highest 

average silhouette width was selected. Composite exposure scores were then generated by 

averaging the centered, log-transformed values of the pollutants within each identified cluster. A 

similar approach was applied to oxidative stress biomarkers to derive composite oxidative stress 

scores based on their intercorrelations. Pollen exposure was assessed separately, with counts (in 

particles per m3) recorded for three categories—trees, grasses, and weeds—and summed for each 
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sampling event to obtain total pollen exposure. Finally, to evaluate the influence of meteorological 

variables on the derived composite scores, linear regression models were fitted using composite 

scores as dependent variables and temperature, atmospheric pressure, humidity, wind speed, and 

UVB radiation as predictors. Model diagnostics and residual analyses were performed to confirm 

validity, and statistical significance was assessed using p-values. 

3.12.2. Exposure Biomarkers Assessment 

Internal exposure biomarkers were quantified from biological specimens. In cases where a 

large proportion of observations were below detection limits (LOD), substitution methods were 

applied for exploratory analyses only, and those variables were excluded from further modeling.  

3.12.3. Effect Biomarkers Assessment 

Effect biomarkers were evaluated through multiple analytical approaches. For the comet 

assay, TI was selected as the key descriptor of DNA damage. For each participant, a mean TI value 

was calculated from individual cell measurements, and these subject-level means were used to 

compute group-level averages. Given the right-skewed distribution of TI values, log transformation 

was applied following inspection of density plots. Distributions of CBMN parameters and buccal 

MN were also examined using histogram plots. As expected, MN frequency followed an 

approximately Poisson distribution, reflecting the discrete and count-based nature of this endpoint. 

Immune function was characterized by measuring FOXP3 methylation and FeNO as indices of 

airway inflammation. Oxidative stress was assessed by hierarchical clustering of seven biomarkers 

that reflected pro-oxidant and antioxidant capacities. Multivariate regression and mediation 

analyses were used to explore the relationships between ambient exposures and biological effect 

biomarkers. Depending on the model, independent variables included composite exposure clusters, 

meteorological parameters, pollen levels, and socio-demographic factors, while dependent 

variables included FOXP3 methylation, TI, and MN frequencies. FeNO and oxidative stress 

composite scores were tested as potential mediators to assess indirect effects within these 

exposure–response pathways. 

3.12.4. Statistical Modeling 

Best subset regression analyses were performed using the regsubsets() function from the 

leaps package to identify influential predictors, selected based on adjusted R2. Separate models 
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were built for different exposure timeframes. For endpoints measured repeatedly in the same 

subjects, random intercepts for subjects were incorporated to account for within-subject 

correlation. For count outcomes (e.g. MN), quasi-Poisson regression was used to accommodate 

overdispersion. In cases where repeated measures were present, generalized linear mixed models 

were fitted with observation-level random effects as needed. A mediation framework was specified 

to evaluate the hypothesized biological pathways (Bellavia et al., 2019). One approach assumed 

that pollen exposure affects FeNO indirectly through its effect on FOXP3 methylation, with 

FOXP3 serving as the mediator. The mediator model was specified as 

𝐹𝑂𝑋𝑃3𝑖𝑗 = 𝛼0 + 𝛼1 𝑙𝑜𝑔(𝑃𝑜𝑙𝑙𝑒𝑛𝑖𝑗) + 𝛼2𝐶𝐶 + 𝛼3𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝜀𝑖𝑗 

and the outcome model was specified as 

𝐹𝐸𝑁𝑂𝑖𝑗 = 𝛾0 + 𝛾1 𝐹𝑂𝑋𝑃3𝑖𝑗 + 𝛾2𝑙𝑜𝑔(𝑃𝑜𝑙𝑙𝑒𝑛𝑖𝑗) + 𝛾3𝐶𝐶 + 𝛾4𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + ղ𝑖𝑗 . 

In these equations, the subscript i indexes individual subjects, and j indexes the repeated measures 

or time points. The coefficients α represent the fixed-effect estimates in the mediator model, and 

the coefficients γ correspond to those in the outcome model. The indirect effect (average causal 

mediation effect, ACME) is computed as the product α1 × γ1 , while the average direct effect (ADE) 

is given by γ2; the total effect is then the sum of these components. Bootstrapping (with 1,000 

simulations) was used to obtain robust confidence intervals for the mediation effects. Similar 

mediation pathways were explored for DNA and cytogenetic damage endpoints. 

To assess model generalizability and minimize overfitting, five-fold cross-validation was 

applied to all predictive models using the caret package. The dataset was randomly partitioned into 

five equally sized subsets (“folds”). For each fold, the model was trained on the remaining four and 

evaluated on the held-out fold. This process was repeated five times so each fold served once as 

the test set. For generalized linear models (GLMs), such as those using a quasi-Poisson distribution 

for count outcomes, model performance was evaluated using a deviance-based pseudo R2, which 

approximates the proportion of variance explained. Unlike traditional adjusted R2 used in linear 

models, pseudo R2 is adapted for non-Gaussian error structures and is computed from the deviance 

of the fitted model relative to a null model. To ensure model stability and interpretability, variance 

inflation factors (VIFs) were also calculated for all final models to assess multicollinearity among 

predictors.  
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4. RESULTS 

Data from the study were first characterized with respect to the study population from 

questionnaires collected during the colder and warmer seasons. Demographic and lifestyle 

characteristics were compared across seasons, revealing modest differences in variables such as 

sex, age, BMI, residency duration, physical activity, and smoking status. Ambient air pollutant 

exposures were estimated for several time frames by linking participants’ residential locations to 

nearby monitoring stations. Exposure data were averaged over one, three, and seven days preceding 

the sampling. However, the three-day data yielded a five-cluster solution that was less consistent 

with the one-day and seven-day profiles and introduced unnecessary complexity. Consequently, 

only the one-day and seven-day composite exposure scores were retained for further analysis. 

Internal exposure biomarkers, including BTEX in peripheral blood, urinary PAH metabolites, and 

elements in blood/plasma, were evaluated. In addition, correlations between the derived exposure 

composite scores and these biomarkers were assessed to characterize the relationships between 

external exposures and internal dose. The evaluation of effect biomarkers encompassed 

measurements of immune function (FOXP3 methylation and FeNO), oxidative stress, along with 

DNA and cytogenetic damage. DNA and cytogenetic damage were quantified using multiple 

assays, including the comet assay in blood cells and MN assay in both blood and buccal cells. 

Multivariate modeling and mediation analyses were performed to explore the direct and indirect 

pathways linking ambient exposures to these biological outcomes. For instance, direct associations 

and potential mediatory roles of oxidative stress in relation to DNA damage endpoints were 

examined. Together, these analyses provide a comprehensive assessment of the impact of ambient 

air pollution on internal exposure and effect biomarkers. 

4.1. Study Population and Survey Data 

The study was conducted over two distinct periods: the colder season (November–

December 2021) and the warmer season (May–July 2022). Initially, 66 participants were recruited 

during the colder season. However, based on our exclusion criteria (as described in 3.2.1. 

Participant Recruitment and Eligibility), a subset of these participants was excluded from the 

colder season analyses. Consequently, the effective sample size for the colder season was reduced 

(N=60). In contrast, during the warmer season, participants who were previously excluded due to 

these transient conditions were allowed to participate once they met the criteria, although some 
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participants were lost to follow-up (N=61). This resulted in a final sample of 57 pairs of participants 

who appeared in both sampling periods. The differences in sample composition between the two 

periods are reflected in demographic variables and responses obtained by the questionnaires. For 

example, some participants exhibited changes in BMI and lifestyle factors between the colder and 

warmer seasons. The descriptive statistics for key variables are presented separately for the colder 

and warmer periods, as well as in a combined dataset (Table 2).  

Table 2. The population characteristics and lifestyle factors of the study population are shown as 

mean values ± standard deviation or N (%).   

Season Cold 

N=60 

 

Warm 

N=61 

Sex   

female 34 (57%) 33 (54%) 

male 26 (43%) 28 (46%) 

Age (years) 36 ± 7 36 ± 7 

BMI (kg/m3) 23.6 ± 2.8 23.7 ± 2.7 

Residency in Zagreb (years) 11 ± 11 25 ± 13 

Physical activity level1 
  

high 33 (55%) 34 (56%) 

intermediate 15 (25%) 10 (16%) 

low 12 (20%) 17 (28%) 

Daily time spent outdoors (h) 1.6 ± 1.0 2.5 ± 1.7 

Family history of cancer 32 (53%) 37 (61%) 

Active smokers2 8 (13%) 9 (15%) 

Passive smokers 8 (13%) 8 (13%) 

1The Godin-Shephard leisure-time physical activity questionnaire (Godin, 2011). 

2Active smokers self-reported as smoking less than 15 cigarettes per day, thus categorised as light smokers  
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4.2. Air Pollution Exposure Assessment 

For each study participant, exposure to air pollutants over three different time frames—one, 

three, and seven days—preceding the blood sampling was evaluated. This multi-time-frame 

approach was chosen because different health outcome biomarkers appear to respond over different 

exposure periods. For instance, comet assay descriptors (like TI) are more sensitive to short-term 

exposures (one- and three-day averages), whereas MN assay results reflect a longer exposure 

window (seven-day average). To estimate individual exposures, each participant’s residential 

address was linked to the nearest air quality monitoring station. For each participant, the mean and 

standard deviation of pollutant concentrations were computed by averaging the individual exposure 

data points corresponding to the relevant time frame. Notably, exposure levels varied considerably 

among participants, reflecting the spatial heterogeneity of air pollutant levels across different 

monitoring stations and thereby providing a more accurate representation of actual environmental 

conditions. After filtering out missing values and performing a logarithmic transformation to 

stabilize variance, the data were used for subsequent multivariate analyses. Although raw exposure 

data are not presented here, the processed dataset served as the basis for advanced analyses, 

including variable clustering, factor analysis, and the investigation of meteorological influences on 

exposure patterns. These methods allowed us to derive composite scores that capture the underlying 

structure of the air pollutant mixture, which were subsequently linked to both meteorological 

conditions and health outcomes. 

4.2.1. Exposure Composite Scores 

In order to create meaningful exposure profiles, hierarchical clustering on the pollutant data 

for each of the previously mentioned time frames was performed. This approach grouped pollutants 

based on their similarity in concentration patterns, which were subsequently used to form 

composite scores. These composite scores capture the underlying structure of the pollutants and 

allow for a simplified representation of exposure. The one-day exposure clusters revealed Cluster 

1, consisting of VOCs—including xylenes, benzene, and toluene—along with PAHs, PMs, Zn, and 

O3. Cluster 2 was dominated by NO2, Cu, Fe, Mn bound to PM10, and ethylbenzene, while Cluster 

3 grouped toxic metals including As, Cd, and Pb. For the three-day exposure, the clustering largely 

mirrored the one-day exposure, with Cluster 1 still dominated by PAHs, PMs and VOCs, but did 

not include PM10 bounded Zn. Cluster 2 remained focused on NO2, while Cluster 3 still comprised 
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toxic metals in PM10 (As, Cd, Pb). Notably, Cluster 4 emerged with metals like Cu, Fe, Zn, and 

Mn. The fifth cluster centered on ethylbenzene, a pollutant appearing consistently across time 

frames, particularly in Cluster 2. For the seven-day exposure period, the clustering pattern further 

emphasized Cluster 1, which maintained the grouping of PAHs alongside xylene, benzene, PMs, 

and O3. Cluster 2, in this case, focused on NO2 and ethylbenzene, while Cluster 3 retained the 

grouping of toxic metals in PM10 (As, Cd, Pb). These findings highlight the evolving nature of air 

pollution exposure across different time periods, with PAHs consistently clustering together in 

Cluster 1 across all time frames and differences emerging in the toxic metals and traffic-related 

pollutants across the time periods. The dendrograms for the one-, three-, and seven-day exposures 

provide a clear visual representation of these variations (Figures 20-22). To evaluate the clustering 

quality, average silhouette widths were also calculated for each exposure window, with average 

silhouette values supporting the selected number of clusters (Supplementary Figures 1–3). Given 

the inconsistency and added complexity of the five-cluster solution obtained for the three-day 

exposure frame, it was opted not to include it in further analyses. Instead, the focus was on the 

one- and seven-day time frames, which provided more stable, interpretable, and comparable 

composite scores. 

 

Figure 20. Dendrogram showing air pollutant clustering for a one-day exposure time frame. 

Hierarchical clustering was performed on one-day exposure data for air pollutants. The dendrogram 

is color-coded to highlight the distinct clusters. The labels in the dendrograms represent the specific 

air pollutants later included in creating each composite cluster (CC). 
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Figure 21. Dendrogram showing air pollutant clustering for a three-day exposure time frame. 

Hierarchical clustering was performed on three-day exposure data for air pollutants. The 

dendrogram is color-coded to highlight the distinct clusters. The labels in the dendrograms 

represent the specific air pollutants later included in creating each composite cluster (CC). 

 

 

Figure 22. Dendrogram showing air pollutant clustering for a seven-day exposure time frame. 

Hierarchical clustering was performed on seven-day exposure data for air pollutants. The 

dendrogram is color-coded to highlight the distinct clusters. The labels in the dendrograms 

represent the specific air pollutants later included in creating each composite cluster (CC). 
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4.2.2. Meteorological Influence on the Exposure Composite Clusters 

To explore the meteorological influences on the exposure clusters, multivariate linear 

regression modeling was used to examine the relationships between the derived composite scores 

and several meteorological variables. Predictor variables included one- or seven-day average 

values for temperature, atmospheric pressure, relative humidity, wind speed, and UVB radiation. 

All predictor variables were retained across the models, as the primary aim was to evaluate their 

individual associations with each cluster rather than optimize predictive performance. For the one-

day exposure clusters, the results show that Composite Cluster 1 (CC1) is significantly influenced 

by atmospheric pressure and UVB radiation (Figure 23). Composite Cluster 2 (CC2) is mainly 

influenced by atmospheric pressure, humidity, and UVB radiation, while Composite Cluster 3 

(CC3) showed a stronger influence of atmospheric pressure and marginal effects from UVB, which 

suggests a slightly different meteorological relationship from CC1 and CC2. The results for the 

seven-day exposure clusters revealed a more consistent relationship with meteorological variables 

across CC1 and CC2 (Figure 24). CC1 was strongly influenced by temperature, pressure, humidity, 

wind speed, and UVB radiation. CC2 was similarly influenced by temperature, atmospheric 

pressure, and UVB radiation. CC3, on the other hand, showed atmospheric pressure and humidity 

as the only significant meteorological predictors. Cross-validated R2 estimates showed excellent 

and consistent predictive performance for CC1 across both one-day (mean R2 = 0.93, SD = 0.04) 

and seven-day (mean R2 = 0.96, SD = 0.01) models. CC2 and CC3 demonstrated more modest 

performance, particularly at the seven-day time frame, where mean R2 dropped to 0.33 and 0.30, 

respectively, with higher variability between folds. These results indicate that CC1 is more strongly 

and reliably associated with meteorological conditions, while CC2 and CC3 may reflect more 

complex or non-meteorological influences. A visual summary of the explained variance for each 

model is provided in Supplementary Figure 4, which displays the proportion of variance in each 

CC accounted for by the included meteorological variables. CC1 shows consistently high 

predictive accuracy in both time frames, particularly in the seven-day model (R2 = 0.95), supporting 

its close linkage with ambient meteorological dynamics. 
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Figure 23. Meteorological Influences on Exposure Clusters (1-Day). This plot shows the results 

of the multivariate linear regression modeling the influence of meteorological variables on the one-

day frame composite exposure clusters. The estimates for each meteorological variable across 

different clusters are plotted with their corresponding confidence intervals. Significant predictors 

are marked with * (p < 0.05), ** (p < 0.01), *** (p < 0.001). 
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Figure 24. Meteorological Influences on Exposure Clusters (7-Day). This plot shows the results 

of the multivariate linear regression modeling the influence of meteorological variables on the 

seven-day frame composite exposure clusters. The estimates for each meteorological variable 

across different clusters are plotted with their corresponding confidence intervals. Significant 

predictors are marked with * (p < 0.05), ** (p < 0.01), *** (p < 0.001). 

4.3. Exposure Biomarkers Assessment 

In addition to estimating ambient exposures, internal exposure biomarkers were measured 

to assess the individual dose of air pollutants. BTEX compounds in peripheral blood were 

quantified and reported as medians and ranges stratified by season; however, because a large 

proportion of BTEX values fell below the detection limit—particularly during the warm season—

the substitution method (assigning half the LOD) was used only for exploratory correlation 

analyses, and these variables were not incorporated into subsequent modeling. Urinary PAH 
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metabolites were also measured, but only 2-naphthol was carried forward for further analysis, as 

1-naphthol and OH-pyrene were frequently below detection limits. Metal concentrations in blood 

and plasma were found to be similar between seasons; therefore, an overall pooled mean was used 

to enhance statistical power and simplify interpretation. Spearman’s rank correlations were 

computed between the exposure composite clusters and these internal biomarkers to explore their 

interrelationships.  

4.3.1. BTEX in peripheral blood samples 

Median values and ranges for measured BTEX in peripheral blood samples of the 

participants, stratified by season, are presented in Table 3. In each case, the lowest values in the 

range fell below the LOD. During the colder season, the percentages of participants with BTEX 

levels below the LOD were 8.3% for benzene, 10% for toluene, 38.3% for ethylbenzene, 38.3% 

for m-/p-xylene, and 60% for o-xylene. In contrast, during the warm season, the BTEX levels were 

substantially lower, with values below the LOD for 98.4% of participants for benzene, 29.5% for 

toluene, 100% for ethylbenzene, 75.4% for m-/p-xylene, and 100% for o-xylene. These BTEX 

measurements were only incorporated into the correlation plots after assigning half the LOD to 

values that were below the detection limit; however, they were not further used in additional 

statistical modeling or hypothesis testing. This decision was made because the high proportion of 

<LOD values, particularly in the warm season, compromises the reliability and validity of the data 

for robust quantitative analysis. When such a large fraction of observations falls below the 

detection threshold, the substitution approach (e.g. assigning half the LOD) can introduce 

significant bias and reduce the statistical power of further analyses. Therefore, while the correlation 

plots provide an exploratory overview, these BTEX variables were excluded from subsequent 

modeling to ensure the integrity and interpretability of the statistical findings. 
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Table 3. Median values and range for measured benzene, toluene, ethylbenzene, m-/p-xylene and 

o-xylene (BTEX) in peripheral blood of the participants across two seasons.  

Season 
Colder  

N = 60 

Warmer 

N = 61 

Benzene (ng/L)   

Median (range) 47 (< LOD – 117) 1(< LOD – 124) 

Toluene (ng/L)   

Median (range) 65 (< LOD – 911) 86 (< LOD – 254) 

Ethylbenzene (ng/L)   

Median (range) 30 (< LOD – 554) all values < LOD 

m-/p-Xylene (ng/L)   

Median (range) 193 (< LOD – 673) 1(< LOD – 431) 

o-Xylene (ng/L)   

Median (range) 1(< LOD – 278) all values < LOD 

Limit of detection (LOD) values: 16 ng/L for benzene, 8 ng/L for ethylbenzene, to 21 ng/L for toluene, 19 ng/L for m/p-xylene, 

14.2 ng/L for o-xylene 

1more than half of the values are < LOD 

4.3.2. Urinary PAH Metabolites 

Descriptive statistics for 1-naphthol, 2-naphthol, and OH-pyrene measured in urine during 

colder and warmer seasons is summarized in Table 4. For samples below the LOD, the measured 

concentrations were replaced by the LOD value (1 ng/mL for 1-naphthol, 0.5 ng/mL for 2-naphthol, 

and 0.04 ng/mL for OH-pyrene). During the colder season, 71.7% of the measured 1-naphthol 

values were below the LOD, yielding a median equal to the LOD. In contrast, 2-naphthol had no 

observations below its LOD of 0.50 ng/mL, and its concentrations spanned a wider range, up to 

43.9 ng/mL. For OH-pyrene, only a small fraction of samples (5%) were below the LOD, with 

measured concentrations generally remaining below 1 ng/mL. In the warmer season, the overall 

pattern remained consistent: 1-naphthol showed 73.3% of samples below the LOD, with the highest 

value (8.4 ng/mL) being lower than the maximum measured in the colder season. No 2-naphthol 

measurements fell below 0.5 ng/mL, suggesting consistently higher levels for this metabolite 

across participants. OH-pyrene was once again rarely below the LOD (6.6%), with a maximum 
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value reaching 1.1 ng/mL. Collectively, these data illustrate that, although 1-naphthol frequently 

appears at or below its LOD, the other metabolites typically reside above detection limits but can 

range substantially in concentration. Given the high frequency of values below the LOD for 

1‑naphthol, it was considered an unreliable variable for further modeling and hypothesis testing—

any substitution (i.e. using half the LOD or the LOD value) would likely introduce bias and reduce 

statistical power. Although OH-pyrene concentrations were above the LOD in the majority of 

samples, measured levels were consistently low and exhibited minimal variability, with most 

values clustered tightly between 0.04 and 0.4 ng/mL. This narrow dynamic range limits the 

metabolite’s ability to reflect inter-individual differences in PAH exposure and undermines its 

statistical utility in regression and mediation models. Therefore, despite their inclusion in 

exploratory correlation plots, only 2‑naphthol, which was robustly detected across all samples, was 

carried forward for further statistical comparisons. To determine whether 2‑naphthol 

concentrations significantly differed between the cold and warm seasons, we conducted a Mann–

Whitney U test. This nonparametric test was chosen because the data did not meet the assumptions 

of normality. The results indicated no statistically significant difference in the distribution of 2-

naphthol levels between the seasons.  

Table 4. Urinary PAH metabolites median values and range across two seasons. 

Season 
Cold  

N = 60 

Warm 

N = 61 

1-Naphthol (ng/mL)   

Median (range) 1(< LOD – 16.9) 1(< LOD – 8.4) 

2-Naphthol (ng/mL)   

Median (range) 8.3 (0.9 – 43.9) 7.8 (< 1.2 – 42.9) 

OH-Pyrene (ng/mL)   

Median (range) 0.2 (< LOD – 1.3) 0.1 (< LOD – 1.1) 

Limit of detection (LOD) values: 1 ng/mL for 1-naphthol, 0.5 ng/mL for 2-naphthol, and 0.04 ng/mL for OH-pyrene 

1more than half of the values are < LOD 
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4.3.3. Metals in peripheral blood and plasma samples 

The mean and SD values of metal concentrations measured in peripheral blood and plasma 

samples from study participants during the colder and warmer seasons are presented in Table 5.  

Table 5. Metals in peripheral blood and plasma samples shown as mean values ± standard deviation 

for cold and warm seasons.   

  Colder (N = 60) 

 

Warmer (N = 61) 

Blood 

As (µg/L) 2.94 ± 3.50 3.12 ± 3.74 

Cd (µg/L) 0.44 ± 0.58 0.40 ± 0.42 

Co (µg/L) 0.30 ± 0.19 0.32 ± 0.22 

Hg (µg/L) 3.42 ± 4.32 3.21 ± 3.51 

Mn (µg/L) 7.08 ± 2.68 7.39 ± 2.65 

Pb (µg/L) 13.57 ± 9.26 13.11 ± 8.79 

Tl (µg/L) 0.03 ± 0.02 0.02 ± 0.01 

Plasma 

Ca (mg/L) 104.43 ± 4.78 104.59 ± 4.30 

Cr (µg/L) 0.20 ± 0.15 0.23 ± 0.09 

Cu (µg/L) 552.69 ± 122.68 560.77 ± 99.78 

Fe (mg/L) 1.27 ± 0.44 1.20 ± 0.48 

I (µg/L) 59.57 ± 11.09 60.4 ± 10.77 

Mg (mg/L) 21.98 ± 1.72 22.05 ± 1.84 

Mn (µg/L) 0.70 ± 0.28 0.86 ± 0.33 

Mo (µg/L) 0.90 ± 0.40 0.94 ± 0.43 

Se (µg/L) 92.73 ± 10.19 94.34 ± 10.44 

V (µg/L) 0.04 ± 0.01 0.05 ± 0.01 

Zn (µg/L) 1066.33 ± 184.56 1157.47 ± 102.01 
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The concentrations of all metals were quite similar between the two seasons. For example, As was 

2.94 ± 3.50 in the colder season versus 3.12 ± 3.74 in the warmer season; likewise, Cu was 552.69 

± 122.68 compared to 560.77 ± 99.78, and Pb in blood was 13.57 ± 9.26 versus 13.11 ± 8.79. Given 

these minimal differences, an overall pooled mean will be used in subsequent analyses to improve 

statistical power and simplify interpretation. 

4.3.4. Correlation of Air Pollution Clusters with Exposure Biomarkers 

To explore the relationships between ambient air pollutant exposures and internal 

biomarkers, we computed Spearman’s rank correlations across two different timeframes. We 

specifically examined the correlations between clustered air pollutants and biomarkers measured 

in blood (BTEX and metals) and urine (naphthols and OH-pyrene), considering correlations with 

p-values less than 0.05 as statistically significant. 

In the one-day exposure analysis (Figure 25A), very strong positive associations were 

observed between BTEX compounds and all exposure composite clusters (CCs). For instance, 

benzene and toluene were significantly correlated with every CC, while ethylbenzene and 

m/p-xylene were strongly associated with CC1 and CC3, and o-xylene was significantly correlated 

with CC1. Additionally, plasma Fe showed a significant positive correlation with CC2—which is 

primarily composed of PM10-bound Fe among a few other airborne metals, ethylbenzene, and NO2. 

In contrast, the urinary biomarkers 1-naphthol, 2-naphthol, and OH-pyrene generally yielded 

higher p-values and did not show significant associations with the CCs. For the seven-day exposure 

window (Figure 25B), the overall correlation patterns were quite similar, with CC1 and CC3 

remaining strongly positively correlated with all BTEX components. However, CC2 exhibited a 

mild positive association with 2-naphthol and a negative correlation with m/p-xylene, highlighting 

some subtle shifts in pollutant behavior over a wider exposure time frame. 
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Figure 25. Correlation Plots of Air Pollution Biomarkers and Composite Exposure Scores. 

Subfigure (A) shows the correlation matrix for the one-day average exposure, and (B) for the seven-

day average. In each panel, Spearman’s rank correlation coefficients among ambient pollutant 

composite exposure scores derived from hierarchical clustering and internal biomarkers (including 

blood BTEX, urinary 1‐naphthol, 2‐naphthol, OH‐pyrene and various blood/plasma metals) are 

visualized using color-coded circles. The plots display only the lower triangle of the matrix with 

the circle size and color reflecting the magnitude and direction of the correlations; non‐significant 

correlations (p > 0.05) are left blank.  

 

4.4. Effect Biomarkers Assessment 

The impact of ambient air pollution on internal biological responses was evaluated by 

examining effect biomarkers that reflect immune function, oxidative stress, and DNA damage. 

Immune function and inflammatory markers, FOXP3 methylation and FeNO were modeled and 

subjected to mediation analyses. Oxidative stress was characterized by clustering seven biomarkers 

into two groups, of which the first cluster was found to be relevant in subsequent analyses. DNA 
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and cytogenetic damage were assessed using three complementary assays. The comet assay, a 

sensitive indicator of recent exposure, was analyzed using models fitted on one-day exposure data. 

For blood and buccal MN, representing more cumulative damage, quasi-Poisson regression models 

were used on seven-day exposure data. Overall, while mediation analyses were performed for 

several endpoints, the direct associations between exposure composite scores and the DNA damage 

biomarkers were predominant. 

4.4.1. Variable Selection and Mediation Pathways of Immune Function Biomarkers 

Best subset regression analyses (using adjusted R2) were first performed to determine the 

most influential predictors of FOXP3 methylation and FeNO results. The initial predictor pool 

included demographic factors (sex, age, BMI), smoking status (active and passive), log-

transformed pollen exposure, ambient meteorological variables (temperature, pressure, humidity, 

wind speed, UVB), and composite pollutant clusters (CC1–CC3) corresponding to the relevant 

time frame. For the one‐day exposure frame, the best subset regression model for FOXP3 identified 

log-transformed pollen, sex, pressure, wind speed, and smoking as key predictors. In this model, 

sex, pollen, and pressure reached statistical significance. The best model for FeNO included CC3, 

sex, age, and pressure, with sex showing a statistically significant association. For the seven‐day 

exposure frame, the best subset model for FOXP3 retained CC2, temperature, sex, and passive 

smoking, with CC2 and sex being statistically significant. The best model for FeNO included CC2, 

log-transformed pollen, sex, age, and smoking; in this case, CC2, pollen, sex, and smoking were 

statistically significant. All final models were evaluated using five-fold cross-validation. The 

FOXP3 models demonstrated strong predictive performance, with a cross-validated R2 of 0.58 (SD 

= 0.19) for the one-day and 0.58 (SD = 0.15) for the seven-day exposure windows. In contrast, the 

FeNO models exhibited modest predictive ability, with R2 = 0.11 (SD = 0.07) for the one-day and 

0.19 (SD = 0.15) for the seven-day model. VIF diagnostics showed no major multicollinearity 

issues across models. The full regression results are presented as forest plots in Supplementary 

Figures 5 and 6, illustrating the effect sizes and confidence intervals for all included predictors. 

Given the biological hypothesis that pollen exposure induces airway inflammation and that 

FOXP3 methylation responds to such inflammatory signals, a mediation model was primarily 

adopted in which FOXP3 was assumed to function as the mediator and FeNO as the outcome. 

Linear mixed-effects models with random intercepts were used to account for within-subject 
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correlation due to repeated measures. To maintain biological interpretability, FeNO was log-

transformed in linear regression models due to its right-skewed distribution, which violated 

normality assumptions required for linear modeling, but untransformed FeNO values were used in 

the mediation framework. For the one‐day analysis, the mediator model indicated that a one‐unit 

increase in the log-transformed pollen count was associated with an increase in FOXP3 methylation 

(β ≈ 0.454, p < 0.05), and that male subjects exhibited markedly lower FOXP3 methylation levels. 

In the outcome model, higher FOXP3 methylation was associated with lower FeNO (β ≈ –0.801, p 

< 0.05), with ADE of pollen on FeNO estimated at 0.985. The resulting ACME—calculated as the 

product of the effect of pollen on FOXP3 methylation and the effect of FOXP3 on FeNO—was –

0.231, yielding a total effect of approximately 0.199 (Figure 26). For the seven‐day window, 

although the magnitude of the effects was somewhat reduced, a similar pattern was observed: the 

mediator model revealed that pollen had a positive association with FOXP3 methylation (β ≈ 0.352, 

p < 0.05), and the outcome model showed that increased FOXP3 was related to decreased FeNO 

(β ≈ –0.660). In this model, ACME was –0.232 and ADE of pollen on FeNO was 0.523, resulting 

in a total effect of roughly 0.291 (Figure 26). 
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Figure 26. Schematic representation of the mediation models linking total pollen count (1-day and 

7-day averages) to FeNO through FOXP3. Each arrow corresponds to the estimated path coefficient 

from the mediator or outcome model, with the ADE of pollen on FeNO and the ACME passing 

through FOXP3. Although the magnitude of effects is slightly reduced in the 7-day model, both 

time frames demonstrate that higher pollen levels are associated with increased methylation of the 

FOXP3 gene, which in turn correlates with lower FeNO. 

In contrast, a reversed mediation analysis (with FeNO as the mediator and FOXP3 as the 

outcome) produced negligible indirect effects. Based on both statistical results and biological 

considerations—specifically, that pollen exposure directly modifies FOXP3 methylation, which 

then modulates inflammation as indexed by FeNO—we conclude that the model with FOXP3 as 

the mediator is the more valid representation. Notably, although the best subset regression for 

FeNO did not consistently emphasize pollen exposure, the mediation analysis demonstrates that 

pollen exposure exerts a direct pro-inflammatory effect (increasing FeNO) that is partially offset 

by its influence on FOXP3 methylation. 
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4.4.2. Oxidative Stress Assessment and Relationship with Exposure Clusters  

4.4.2.1. Oxidative Stress Clustering 

To examine the oxidative stress profile of the study participants, hierarchical clustering 

analysis on seven oxidative stress biomarkers was performed: SOD, NO, ROS, MDA, CAT, GSH, 

and GPx. The dendrogram (Figure 27) illustrates the clustering of these biomarkers, revealing two 

main groups. The first group includes SOD, NO, ROS, and MDA, while the second group is 

composed of CAT, GSH, and GPx. These two groups are connected at a height of approximately 

0.9, indicating a moderate level of similarity between the biomarkers within each cluster. The 

dendrogram provides valuable insight into the association between oxidative stress biomarkers and 

demonstrates the underlying structure of these biomarkers within the study population. The 

biomarkers in the first group are representing primarily pro-oxidant processes, even though SOD 

is included, whereas the second group includes enzymatic and non-enzymatic antioxidative stress 

defense biomarkers.  

 

Figure 27. Dendrogram illustrating hierarchical clustering of oxidative stress biomarkers. Two 

primary clusters are observed: one primarily representing oxidative damage markers (NO, ROS, 

MDA, and additionally SOD) and the other representing antioxidative stress defense biomarkers 

(CAT, GSH, GPx). 
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4.4.2.2. Predictors of Oxidative Stress Clusters 

Next, the associations between various predictors—including demographic factors, 

lifestyle factors, and exposure composite cluster variables—and oxidative stress clusters were 

explored. Regression models were run for each oxidative stress cluster using exposure and 

demographic variables as predictors, and the models were conducted for two different time frames 

(one-day and seven-day exposure) to examine how the influence of these predictors may vary over 

time. The modeling approach considered sex, age, BMI, physical activity, smoking status (active 

and passive), 2-naphthol, and composite exposure clusters (CC1–CC3) as predictors. 

Multicollinearity diagnostics indicated no concern, with all VIFs being below two.  

In the one-day exposure model, CC1 was positively associated with OXC1 levels, whereas 

CC3 and higher physical activity showed negative associations (Figure 28A). Cross-validation of 

this model yielded an R2 of 0.16 ± 0.18, closely matching the adjusted R2 of 0.22, suggesting the 

model generalizes reasonably well. These findings suggest that oxidative stress in this cluster is 

contributed to by environmental exposures in combination with lifestyle behaviors such as physical 

activity. In the seven-day exposure analysis (Figure 28B), CC1 and sex were found to be significant 

predictors of OXC1. Males seem to have significantly higher oxidative stress, while high physical 

activity continued to exhibit a significant negative effect on oxidative stress, further confirming the 

role of lifestyle factors. The seven-day model performed slightly better than one-day model, with 

adjusted R2 of 0.28 and cross-validated R2 of 0.23 ± 0.15. In contrast, regression models predicting 

second oxidative stress cluster (OXC2) performed poorly across both exposure frames, with 

adjusted R2 values below zero and cross-validated R2 near zero (~0.02 ± 0.02), indicating limited 

predictive utility, and did not reveal any statistically significant associations with predictors across 

time frames (Figure 29). Therefore, OXC2 was not used in further analyses. 
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Figure 28. Forest Plot of Predictors for the First Oxidative Stress Cluster (OXC1). 

The figure displays the regression coefficients (with 95% confidence intervals) from the models 

predicting the OXC1 for both one-day (A) and seven-day (B) exposure windows. Statistically 

significant (p<0.05) predictors are color-coded red, and non-significant ones are blue. In the 

one-day analysis, composite exposure Cluster 1 (CC1) was significantly and positively associated 

with OXC1, whereas CC3 and a high level of physical activity were significantly negatively 

associated with OXC1. In the seven-day model, similar associations were observed; CC1 and sex 

remained significant predictors, and high physical activity continued to exhibit a negative effect on 

oxidative stress. These results collectively suggest that both ambient pollutant exposures (as 

captured by CC1 and CC3) and lifestyle factors are important determinants of oxidative stress. 
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Figure 29. Forest Plot of Predictors for the Second Oxidative Stress Cluster (OXC2). 

This figure illustrates the regression coefficients (with 95% confidence intervals) from the models 

examining predictors of the second oxidative stress cluster for both one-day (A) and seven-day (B) 

exposures. No predictors reached statistical significance in relation to OXC2, as indicated by the 

wide confidence intervals and nonsignificant estimates.  

4.4.3. DNA and Cytogenetic Damage Assessment and Model Building  

4.4.3.1. DNA and Cytogenetic Damage Biomarkers Assessment 

To assess cytogenetic damage, multiple endpoints were obtained from the MN assays, 

encompassing MNi, NBUDs, and NPBs in peripheral blood samples, as well as a corresponding 

set of MN assay parameters in buccal cells. The extent of primary DNA damage was evaluated 

using the comet assay. Although additional descriptors, such as TL and TM, were examined, only 

TI was used in subsequent analyses because it proved to be the most robust descriptor according 

to Moller et al (2014). Descriptive statistics of relevant results obtained by mentioned assays, for 

both seasons, is reported in Table 6 as population mean ± SD and range. In order to evaluate the 

stability of these biomarkers over time, the correlations between colder and warmer season results 

were calculated. Low correlations were observed, thereby justifying the pooling of data from both 

seasons for subsequent analyses.  
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Table 6. Descriptive statistics for DNA and cytogenetic damage biomarkers across study periods. 

Values are expressed as mean ± standard deviation (range) for each parameter, calculated 

separately for colder and warmer seasons. 

 
 

Colder (N = 60) 
 

Warmer (N = 61) 
 

Blood samples 

TI (%) 1.22 ± 0.5 

(0.49 - 2.91) 

1.7 ± 1.37 

(0.17 - 7.94) 

MNi 4.42 ± 3.7 

(0 - 12) 

4.77 ± 4.16 

(0 - 18) 

NBUDs 4.45 ± 4.06 

(0 - 20) 

4.48 ± 2.96 

(0 - 12) 

NPBs 0.32 ± 0.5 

(0 - 2) 

0.07 ± 0.31 

(0 - 2) 

CBPI 2.11 ± 0.13 

(1.8 - 2.46) 

2.17 ± 0.06 

(1.89 - 2.29) 

Buccal samples 

MNi 2.19 ± 1.48 

(0 - 6.5) 

4.16 ± 2.47 

(0 - 11.5) 

NBUDs 0.58 ± 0.6 

(0 - 2.5) 

0.55 ± 0.61 

(0 - 2) 

Broken egg 1.43 ± 1.5 

(0 - 7) 

1.58 ± 1.68 

(0 - 7) 

Basal cells 0.52 ± 1.05 

(0 - 5) 

0.16 ± 0.73 

(0 - 5) 

Binucleated cells 19 ± 9.49 

(2 - 49) 

16.19 ± 10.09 

(4 - 42) 

Condensed chromatin 106.23 ± 47 

(33 - 258) 

73.88 ± 31.29 

(19 - 169) 

Karyorrhectic cells 43.5 ± 28.46 

(6 - 135) 

48.11 ± 32.12 

(4 - 154) 

Pyknotic cells 3.48 ± 8.87 

(0 - 66) 

1.91 ± 1.92 

(0 - 8) 

Karyolytic cells 91.2 ± 94.07 

(6 - 617) 

86.46 ± 50.71 

(18 - 303) 
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Based on the density plot and overlaid Poisson curve, the blood MN data generally show the typical 

shape of count data, with most counts concentrated at the lower end and a decreasing frequency 

for higher counts, which is consistent with a Poisson distribution (Figure 30). However, closer 

inspection reveals that the observed variability (especially in the higher count tail) exceeds what 

would be expected under a strict Poisson model. This overdispersion, where the variance is 

substantially greater than the mean, motivated the use of quasi-Poisson regression methods in our 

subsequent analyses. In other words, although the MN distribution approximately follows a 

Poisson pattern, the additional variability (overdispersion) necessitated a quasi-Poisson approach 

to obtain robust standard errors and valid inferential conclusions. 

 

Figure 30. Histogram of micronucleus (MN) frequency overlaid with a theoretical Poisson density 

curve. The histogram shows the observed frequency distribution of MN counts, while the red line 

represents the Poisson probability density calculated using the sample mean (λ) after rounding the 

x values to the nearest integer. This overlay serves to illustrate the degree of conformity of the 

observed MN data to a Poisson distribution. Additionally, NBUD and NPB distributions are plotted 

using histograms but were not used in further modelling. 
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Figure 31. Histograms of nuclear buds and nucleoplasmic bridges. Both histograms are plotted 

with x-axis breaks at integer values to emphasize the discrete nature of these DNA damage 

endpoints, which are predominantly observed at lower count values. 

Similarly, based on the density plot and overlaid Poisson curve, the buccal MN counts exhibit a 

typical count distribution, with most observations occurring at the lower end and fewer counts as 

values increase (Figure 32). Although the overall shape is consistent with a Poisson model, the 

right-hand tail shows more variability than would be expected under a strict Poisson assumption. 

This overdispersion, evident from the higher variability in the extreme values, justified the use of 

quasi-Poisson regression methods in subsequent analyses to obtain robust estimates and valid 

statistical inference. 
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Figure 32. Histogram of buccal micronucleus (MN) counts overlaid with a theoretical Poisson 

density curve. The bars represent the observed frequency distribution of buccal MN counts, while 

the red line shows the Poisson probability density calculated using the sample mean (λ) after 

rounding the x values to the nearest integer. Although the distribution generally follows a Poisson-

like pattern, the deviation in the upper tail indicates moderate overdispersion. 

The original TI values were highly right-skewed, prompting the application of a logarithmic 

transformation to stabilize variance and achieve a more normal distribution. Figure 33 illustrates 

the distribution of TI values before and after transformation, highlighting the marked reduction in 

skewness following log conversion. 

 

Figure 33. Density plots for comet assay descriptor tail intensity (TI). The left panel shows the 

original TI distribution, which is markedly right‐skewed, while the right panel displays the log-

transformed TI distribution, which is considerably more symmetric and approximately normal. 
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In addition to the comet assay from fresh blood samples, further assessments were 

conducted using frozen blood samples to test the usefulness of using frozen blood in large 

biomonitoring studies. Comet assay descriptors obtained from frozen samples were compared with 

those from fresh samples to evaluate whether storage conditions and sample processing might 

influence the observed distribution of DNA damage indices. In our findings, elevated DNA 

migration was found in frozen samples relative to fresh ones; however, the observed effects 

remained similar to those in fresh samples. Supplementary to the primary analyses based on 

manually scored MN slides obtained via light microscopy, further assessments were conducted 

using Metafer, which provides semi-automated quantification of MN frequency. A Spearman’s 

rank correlation analysis between MN (manual scoring) and automated Metafer scoring showed a 

statistically significant but moderate positive association. In order to assess whether specific 

subjects showed consistently large discrepancies between the two methods, which might negatively 

impact overall agreement, differences were calculated for each subject. The exclusion of extreme 

outliers enhanced the consistency between manual and automated MN scoring, thereby 

strengthening the validity of this measurement approach.  

In the subsequent analyses, TI from fresh blood samples and the manually scored MN data 

were retained for modeling, given their established reproducibility in our laboratory; however, 

these supplementary evaluations provide important validation and insight into methodological 

considerations. 

4.4.3.2. Peripheral Blood Micronuclei as an Outcome Variable 

To examine the impact of ambient exposures on chromosomal damage, MN counts were 

modeled using the seven‑day exposure dataset. Socio‑demographic data were merged with the 

composite exposure scores, and best subset regression was performed to identify the most 

influential predictors for MN. The candidate predictors included sex, age, BMI, physical activity, 

smoking status (active/passive), daily time spent outdoors, family history of cancer, and 2-naphthol 

levels, along with composite exposure clusters (CC1–CC3). The best subset selection resulted in 

the retention of the following predictors in the final model: sex, age, physical activity, smoking, 

and CC1. VIF values for all selected predictors were low (< 1.2), suggesting no concerning 

multicollinearity. A quasi‑Poisson regression model was then fitted to account for the count nature 

and overdispersion observed in the MN data (Figure 34). The model explained approximately 35% 
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of the variance in MN counts (pseudo R2 = 0.35) and demonstrated reasonably consistent predictive 

performance, with a cross-validated R2 of 0.35 (SD = 0.20). The model indicated that significantly 

lower predicted MN counts were observed for male subjects. The predicted MN count for females 

was approximately six, whereas that for males was about three, demonstrating a statistically 

significant difference based on the regression results (Figure 35). A statistically significant positive 

association between age and MN counts was observed, such that each additional year of age was 

associated with an approximately 5% increase in MN levels on average (Figure 36). Although CC1 

(intended to reflect ambient pollutant exposures) was included in the model, it did not reach 

statistical significance. Likewise, the effects of physical activity and smoking were not statistically 

significant. The dispersion parameter (estimated at 2.17) indicated that the model adequately 

handled the overdispersion inherent in the count data. 

 

Figure 34. Forest Plot of the Final Blood Micronuclei Model. The plot displays the estimated 

effects (with 95% confidence intervals) for predictors included in the quasi-Poisson regression 

model for blood MN. Notably, age showed a significant positive association with MN, while male 

sex was associated with lower MN counts. Statistically significant (p<0.05) predictors are color 

coded dark purple, and non-significant light purple. 
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Figure 35. Predicted Micronuclei (MNi) Frequency by Sex. Predictions were derived from the 

final quasi-Poisson regression model in which MNi counts were modeled as a function of sex, age, 

physical activity, smoking, and exposure to Composite Cluster 1. Female subjects exhibited higher 

predicted MNi counts compared to male subjects, with error bars representing the 95% confidence 

intervals. 

 

Figure 36. Predicted Micronuclei (MNi) Frequency by Age. Predictions were derived from the 

final quasi-Poisson regression model in which MN counts were modeled as a function of sex, age, 

physical activity, smoking, and exposure to Composite Cluster 1.  
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Testing whether oxidative stress mediated the effect of ambient exposures on MN 

formation was considered by using OXC1 as the mediator. However, given that CC1 was not found 

to be statistically significant in the direct MN model and that best subset regression highlighted sex 

as the primary predictor, it was determined that the mediation pathway through oxidative stress is 

likely minimal. Therefore, although mediation analyses were explored in other contexts, for MN, 

the direct model was deemed more informative. 

4.4.3.3. Buccal Micronuclei as an Outcome Variable 

For the buccal MN analysis using the seven-day exposure data, a set of candidate predictors 

was first assembled, including sex, age, BMI, physical activity, smoking status (active/passive), 

family history of tumors, and composite exposure clusters (CC1–CC3). Best subset regression was 

then applied to identify the most influential predictors for final model inclusion. This selection 

process retained sex, age, physical activity, CC1, CC3, and smoking status as the optimal subset of 

predictors. The final quasi-Poisson model indicated that male subjects had significantly lower 

buccal MN counts, CC1 was strongly and negatively associated with MN, and CC3 showed a 

significant positive association (Figure 37). The model explained a large proportion of variance, 

with a pseudo R2 of 0.74. Cross-validation confirmed acceptable predictive performance, with a 

cross-validated R2 of 0.18 (SD = 0.12). Multicollinearity was minimal, as all VIF values were 

below 1.35, supporting the stability of coefficient estimates. 

To test whether oxidative stress (OXC1) mediated the effect of ambient exposures on 

buccal MN, a mediation model was estimated in which OXC1 was regressed on CC3 (with CC1 

and sex included as covariates), and an outcome model was estimated in which buccal MN was 

regressed on CC3, OXC1, CC1, and sex. The mediation analysis yielded an ACME of 0.053, which 

was not statistically significant, while the ADE was 1.242 (p = 0.006), and the total effect was 

1.295 (p = 0.004). Thus, only about 4% of the total effect of CC3 on buccal MN was mediated via 

oxidative stress, with the dominant effect remaining direct. 
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Figure 37. Forest Plot of the Final Buccal Micronuclei Model. The plot displays the estimated 

effects (with 95% confidence intervals) for predictors included in the quasi-Poisson regression 

model for buccal MN. Notably, Composite Cluster 1 showed a strong negative association and 

Composite Cluster 3 a significant positive association with MN, while male sex was associated 

with lower MN counts. Statistically significant (p<0.05) predictors are color coded red, and non-

significant yellow. 

4.4.3.4. Tail Intensity as Outcome Variable  

The best subset regression on the one-day exposure dataset, with socio-demographic 

variables (sex, age, BMI, residence in years, physical activity, daily time spent outdoors, family 

history of tumors, smoking and passive smoking status) and composite exposure scores included, 

revealed that the most important predictors of TI were CC3 and smoking status. Specifically, 

individuals classified as smokers exhibited significantly higher TI (β ≈ 0.36, p = 0.021), while CC3 

was significantly inversely associated with TI (β ≈ –0.23, p = 0.0046). Although passive smoking 

was retained in the model, its effect did not reach statistical significance. Variance inflation factor 

checks confirmed that collinearity was not an issue. The final model explained approximately 9.2% 

of the variance (adjusted R2 = 0.092). Cross-validated performance was modest but stable, with 
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mean R2 = 0.14 (SD = 0.09). Predicted TI was estimated from our final regression model and shown 

in Figure 38. The predicted log values were exponentiated to convert them back to the original 

scale, yielding estimates of 1.18 % (95% CI: 1.04–1.33) for non-smokers and 1.68 % (95% CI: 

1.26–2.24) for smokers. These results indicate that smokers exhibit higher levels of DNA damage, 

as measured by TI, compared to non-smokers.  

 

Figure 38. Predicted Tail Intensity by Smoking Status. The figure displays the model-derived 

predicted tail intensity (TI) (in %) for non-smokers and smokers. The final regression model was 

initially fitted on log-transformed TI data, and the predicted values were then exponentiated to 

obtain estimates on the original scale. For non-smokers, the predicted value was 1.18% (95% CI: 

1.04–1.33), whereas for smokers it was 1.68% (95% CI: 1.26–2.24).  

To assess whether the effect of ambient exposures on TI was mediated by oxidative stress, we 

conducted a mediation analysis using OXC1 as the mediator. In the mediator model, OXC1 was 

regressed on CC3 and smoking status; however, none of the predictors significantly influenced 

oxidative stress. In the outcome model, TI was regressed on CC3, OXC1, and smoking variables, 

with CC3 remaining a significant predictor, while OXC1 showed a non-significant effect. 

Consequently, the mediation analysis yielded an insignificant ACME alongside a significant ADE, 

resulting in a total effect of approximately –0.231 (p = 0.010). These findings indicate that the 

relationship between ambient exposures (as captured by CC3) and TI is primarily direct, with little 

evidence that oxidative stress, as measured here, serves as a mediator. 
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5. DISCUSSION 

Air pollution has been recognized as one of the foremost environmental threats to public 

health, having been linked to an array of respiratory, cardiovascular, and other chronic diseases (de 

Bont et al., 2022; EEA, 2024; Låg et al., 2020). The complexity inherent in urban pollutant 

mixtures, which include VOCs, PMs, PAHs, O3, NOx, and toxic metals, creates a substantial 

challenge in outlining their combined effects on human health. Omics‐based approaches have been 

increasingly employed to integrate large and complex datasets, yet the relationships between 

exposure biomarkers and effect biomarkers remain multifaceted and, in many cases, elusive in 

terms of direct causality, especially in real-life urban settings (Gruszecka-Kosowska et al., 2022; 

Kumari et al., 2024). 

This study aimed to address this complexity by integrating environmental exposure data 

with biomarker-based health assessments in an urban cohort sampled during two distinct seasons. 

Specifically, the study pursued three core objectives: (1) to characterize external exposure to 

ambient air pollution by applying hierarchical clustering to derive composite exposure profiles 

(Composite Clusters, CCs), enabling dimensionality reduction while preserving relevant pollutant 

groupings; (2) to assess internal exposure biomarkers, including measurements of BTEX, PAH 

metabolites, and metals; (3) to associate external exposure to effect biomarkers, focusing on 

immune function (FOXP3 methylation and FeNO) alongside oxidative stress biomarkers, and 

cytogeneticoutcomes (TI, MN in blood and/or buccal cells). 

Using a structured statistical approach—including best subset regression, mediation 

analysis, and multivariate modeling—the study identified key associations between clustered 

pollutant profiles and effect biomarkers. Composite Clusters 1 and 3 emerged as consistent 

predictors of oxidative and immune responses. Importantly, pollen exposure and CC3 were 

significantly linked to FOXP3 methylation and FeNO, with mediation models suggesting that 

FOXP3 may act as a regulatory buffer against inflammation. Also, CC1 was significantly and 

positively associated with the first oxidative stress cluster (OXC1), primarily composed of 

oxidative damage biomarkers (SOD, NO, ROS, MDA). In terms of genotoxicity, demographic 

factors such as age, sex, and smoking showed stronger associations with DNA damage than 

pollutant exposures per se, though certain pollutant clusters (notably CC3) were implicated in 

buccal MN formation. Mediation analyses showed minimal and insignificant oxidative stress 
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mediation for both TI and MN, suggesting more direct genotoxic effects of the assessed air 

pollutants.  

The choice of statistical methods in this study was guided by the need to address the 

complex, multidimensional nature of air pollution exposure and its biological effects, aligning with 

recommendations from recent literature on environmental health and exposure assessment 

(Houssein et al., 2023; Peng et al., 2024; Qian et al., 2023; Sauvain et al., 2025; Zhu et al., 2024). 

Hierarchical clustering of air pollution-related variables was employed to derive composite 

exposure scores, reducing the dimensionality of pollutant data while preserving meaningful 

patterns. This approach is consistent with Bodor et al. (2022), who advocate for clustering 

techniques to handle the multicollinearity and heterogeneity inherent in air pollution data. By 

grouping pollutants into clusters, this study effectively captured the underlying structure of 

exposure, facilitating subsequent analyses without overfitting or loss of interpretability and 

demonstrated the value of advanced modeling techniques in uncovering meaningful biological 

associations. 

5.1 Air Pollution Exposure Assessment 

To capture the temporal variability in pollutant exposure and its biological effects, a multi-

time-frame exposure model (one-, three-, and seven-day averages) was employed. This approach 

aligns with previous findings indicating that different biomarkers respond to varying exposure 

durations: the comet assay is particularly sensitive to short-term exposures, while the CBMN assay 

reflects cumulative damage over longer periods (Gajski et al., 2018; Gerić et al., 2018). As 

Rousseeuw (1987) cautions, a high overall silhouette width can be driven by trivial splits—e.g. 

isolating an “outlier” cluster—rather than true, substantive groupings; in our three-day exposure 

solution two of the five clusters contained only a single variable yet exhibited high silhouette score, 

indicating the algorithm was merely singling out extreme pollutants rather than revealing coherent 

exposure patterns, so we excluded that time frame in favor of the more parsimonious three-cluster 

solutions. The one- and seven-day composite exposure scores effectively captured the 

multidimensional nature of air pollution, in line with recent studies that recommend approaches 

like factor analysis and regression on factor scores (Gajski et al., 2022; Gerić et al., 2024; Sauvain 

et al., 2025). Hence, three pollutant groups were identified: Cluster 1 (PAHs, BTEX, PMs, O3), 

Cluster 2 (NO2, ethylbenzene, PM10-bound metals:  Cu, Fe, Mn), and Cluster 3 (PM10-bound 
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metals: As, Cd, Pb). These findings are in line with recent European source apportionment studies. 

For example, Coelho et al. (2022) analyzed urban air quality in six European cities and reported 

that NO2 was predominantly influenced by local traffic sources, particularly exhaust emissions and 

brake wear metals, whereas PM components had significant contributions from regional and 

transboundary transport. This helps explain why NO2 clustered with metals rather than with PM 

and BTEX, the latter being associated more with mixed combustion sources, including residential 

heating and industrial activities. These results are also consistent with recent findings from Croatia 

by Jakovljević et al. (2025), who analyzed air pollution data from three Croatian cities (Zagreb, 

Slavonski Brod, and Vinkovci) and demonstrated that NO2 and certain transition metals shared 

common urban traffic sources. In contrast, PM2.5 and PAHs were more heavily influenced by 

seasonal heating and long-range transport. This interpretation is further supported by Godec et al. 

(2016), which identified relevant traffic and combustion signatures for both urban (Zagreb) and 

rural (north-eastern outskirt of Delnice) air pollution profiles in relation to PAHs, elemental and 

organic carbon, and PM10, with slight seasonal variations in PAH ratios attributed to biomass 

burning in rural areas. Jakovljević et al. (2025) reported mean wintertime PM2.5 concentrations 

ranging from 21.6 to 27.4 µg/m3 across the aforementioned three cities, values that align closely 

with our 27.2 µg/m3 average for one-day exposures. These concentrations exceed the WHO’s 24-

hour guideline of 15 µg/m3 and are substantially higher than values typically observed in Western 

European capitals, which generally report average PM2.5 levels below 15 µg/m3, largely due to 

implementation of stricter environmental regulations, widespread adoption of low-emission 

transport such as electric vehicles and cycling, and a strong cultural emphasis on sustainable urban 

living (EEA, 2023; Hoffmann et al., 2022). However, the values observed in Zagreb are mostly 

within the proposed EU Directive for daily PM2.5 concentrations (25 µg/m3, not to be exceeded 

more than 18 times per year), indicating partial compliance with future regulatory expectations. 

Moreover, Croatian urban areas are still far better than many cities in the Western Balkans and 

Eastern Europe, where daily mean values often exceed 40–50 µg/m3 during winter months (Belis 

et al., 2019; EEA, 2023). A significant portion of Zagreb's air pollution originates beyond the city 

itself. These findings are further supported by a recent high-resolution modeling study by 

Garatachea et al. (2024), which applied a source-receptor model to estimate exposure and cross-

border contributions across Europe. Their results show that up to 50% of annual O3 exposure in 

parts of Croatia can be attributed to emissions originating outside the country, particularly from 
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northern Italy’s Po Valley, Central Europe, and other neighboring states. Sector-specific analysis 

identified residential combustion, industrial activity, and agriculture as the dominant contributors 

to this long-range transport, with residential heating especially impactful during winter months. 

The study highlights how air masses can carry pollutants over several hundred kilometers, making 

even relatively distant sources highly relevant for local exposure levels in Zagreb. According to 

Belis et al. (2019), transboundary pollution accounts for approximately 44% of PM2.5 

concentrations in the region. Croatia’s geographical proximity to non-EU countries such as Serbia 

and Bosnia and Herzegovina, where there is lower environmental protection awareness and higher 

levels of air pollution, further contributes to elevated particulate levels in Zagreb. In Bosnia and 

Herzegovina, widespread reliance on coal and wood for household heating, along with outdated 

thermal power plants, results in some of the highest PM2.5 air quality in Europe (Cetkovic et al., 

2023; EEA, 2023.; Hasanovic et al., 2023). The annual average PM2.5 in the capital city Sarajevo, 

in 2023 was reported at 27.6 µg/m3, exceeding both the EU annual limit value of 25 µg/m3 and the 

WHO guideline of 5 µg/m3. Similarly, Belgrade recorded an annual average PM2.5 concentration 

of 20.1 µg/m3 in 2023, which is four times higher than the WHO's recommended limit (EEA, 2025). 

These elevated levels are primarily attributed to widespread use of solid fuels for household 

heating, industrial emissions, and vehicular traffic. 

The influence of meteorological conditions on pollutant concentrations was found to be 

substantial, as these factors regulate the dispersion, chemical transformation, and atmospheric 

accumulation of airborne contaminants (Liu et al., 2020; Lovrić et al., 2022; Nejad et al., 2023; 

Wang et al., 2023a; Xie et al., 2022). In this study, both atmospheric pressure and UVB radiation 

were identified as influencing one- and seven-day composite exposure scores. In addition, 

temperature, relative humidity, and wind speed were observed to significantly modulate seven-day 

pollutant loads, particularly for Cluster 1 pollutants. These associations reflect well-known 

meteorological mechanisms. For instance, high-pressure systems are often associated with stable 

air masses and low wind speeds, promoting pollutant stagnation near the ground. Likewise, low 

UVB radiation and reduced vertical mixing in winter months favor the buildup of particulate and 

gaseous pollutants, while higher humidity can influence chemical reactions among NO2 and VOCs 

(Al-Qassimi and Al-Salem, 2020; Fang et al., 2019; Flueckiger and Petrucci, 2024; Nejad et al., 

2023). These findings must be interpreted in light of Zagreb’s geographical and climatic setting. 

The city is positioned between the Sava River floodplain and the Medvednica Mountain, and 
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although not located within a classic valley, a basin-like configuration has been created by this 

terrain. Under winter conditions, this configuration has been shown to promote the occurrence of 

temperature inversions, during which a warm air layer traps colder air and pollutants near the 

surface. These events are frequently accompanied by low wind speeds, fog, and cold-air pooling, 

conditions that reduce atmospheric mixing and enhance pollutant accumulation near ground level, 

leading to smog formation (Lovrić et al., 2022; Račić et al., 2025). Comparable meteorological 

effects have been documented in other European cities with similar topographic constraints. For 

example, in Kraków, Poland, elevated PM2.5 concentrations have been attributed to cold air 

pooling, frequent temperature inversions, light winds, and fog. These conditions trap pollutants 

near the ground, often resulting in smog and air quality levels that exceed legal limits (Ziernicka-

Wojtaszek et al., 2024). Likewise, Sarajevo, located in a deep valley surrounded by mountains, 

experiences frequent and intense inversion episodes. In January 2020, PM2.5 levels there peaked at 

167.3 µg/m3 due to the combined effects of thermal inversion, traffic, and solid-fuel heating, 

illustrating how topography and meteorology can dramatically exacerbate pollution exposure 

(Cetkovic et al., 2023; Mašić et al., 2016). 

5.2 Exposure Biomarkers 

Exposure biomarkers (BTEX in blood, urinary PAH metabolites, and elements in 

blood/plasma) provided insights into the absorbed dose of pollutants. The high proportion of BTEX 

values below LOD, especially in the warmer season (e.g. 98.4% for benzene), limited their 

usefulness for modeling, reflecting both lower ambient concentrations and rapid metabolic 

clearance of VOCs. For example, the German Research Foundation (Ger. Deutsche 

Forschungsgemeinschaft, DFG) has established occupational exposure equivalent values for 

carcinogenic substances (EKA values). For benzene, the EKA in blood corresponds to airborne 

concentrations ranging from 0.3 to 4 mg/m³, which are associated with blood levels between 0.9 

and 38 µg/L when measured at the end of a work shift (DFG, 2013). In comparison, the median 

blood benzene concentrations measured in this study were markedly lower: 47 ng/L in the colder 

season and below LOD in most samples during the warmer season. This substantial difference 

emphasizes that the measured benzene levels in our cohort reflect low environmental exposures 

rather than occupational settings and fall far below thresholds of concern for occupational risk. 

Unmetabolized benzene in blood is considered a direct and reliable biomarker, particularly relevant 
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at low exposure levels, but is often challenging to detect in environmental settings due to its short 

half-life and rapid clearance (Boogaard, 2022). Biomonitoring Equivalents (BEs) offer additional 

context for interpreting such levels: Hays et al. (2012) propose a BE of 150 ng/L for blood benzene 

as consistent with the U.S. EPA's inhalation reference concentration (RfC). Our findings, with a 

median of 47 ng/L and most values below the LOD in the warmer season, are also well below this 

BE threshold, further supporting the interpretation of low exposure and minimal health concern. 

This seasonal pattern aligns with studies showing reduced VOC emissions in warmer months due 

to decreased heating-related combustion and enhanced photochemical degradation (Mahmoud et 

al., 2021; Zhang et al., 2019). The decision to exclude BTEX measured in blood from further 

analyses due to detection limit issues was prudent, as simple substitution methods (e.g. half the 

LOD) can bias results, especially when more than half the data is censored (Helsel, 2011). 

Furthermore, VOCs such as benzene and toluene exhibit multi-phase elimination kinetics in the 

human body, with initial half-lives ranging from minutes to a few hours and terminal half-lives 

extending up to 90 h, particularly in adipose tissue. This biphasic clearance supports the 

interpretation that blood VOCs primarily reflect recent exposures, while bioaccumulation may 

occur with frequent or sustained contact (Ashley et al., 1996). 

Urinary PAH metabolites (1-naphthol, 2-naphthol, and OH-pyrene) also offer valuable 

insight into PAH exposure, though their interpretation is highly context-dependent. Among these, 

2-naphthol was consistently detected across all samples, with median concentrations of 8.3 ng/mL 

in the cold season and 7.8 ng/mL in the warm season. Its high detection rate and wide concentration 

range affirm its status as a sensitive biomarker for naphthalene exposure, particularly via 

inhalation. Hoseini et al. (2018) reported a geometric mean 2-naphthol concentration of 3.52 ng/mL 

in an urban population of Tehran, which suggests slightly lower concentrations than our findings, 

potentially reflecting differences in local emission sources or population characteristics. They 

observed that urinary 2-naphthol was associated with traffic-related air pollution exposure, even 

after adjusting for smoking, highlighting its relevance in ambient air studies. Similarly, in 

Guangzhou, southern China, median reported 2-naphthol levels were 3.16 ng/mL (Yang et al., 

2021). In our study, seasonal differences in 2-naphthol levels were not significant, suggesting 

relatively stable background exposure, potentially influenced by indoor or mixed sources such as 

ambient traffic-related emissions and lack of seasonal indoor combustion. Notably, Burkhardt et 

al. (2023) observed a significant temporal increase in urinary 2-naphthol levels over the years in 
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Germany, unlike other PAH metabolites such as 1-naphthol and OH-pyrene, which remained stable 

or declined. This rise was attributed to increasing exposure to naphthalene from ambient sources, 

particularly traffic-related emissions and VOCs in urban environments. Naphthalene, a low-

molecular-weight PAH, is prevalent in vehicle exhaust, industrial emissions, and consumer 

products such as mothballs and air fresheners, which may contribute to elevated 2-naphthol levels 

(Jia and Batterman, 2010). Burkhardt et al. (2023) suggest that changes in urban air quality, 

including shifts in fuel composition and increased use of naphthalene-containing products, could 

drive this trend. In our study, the high detection rate and wide concentration range of 2-naphthol 

support its sensitivity to these sources, with the slightly higher median in the colder season 

potentially reflecting increased indoor heating or reduced atmospheric dispersion of pollutants. 

Meeker et al. (2007) observed sex and gender adjusted median 2-naphthol levels of 9.84 ng/mL 

among smokers and 0.96 ng/mL for non-smokers in a U.S. cohort. Interestingly, we did not observe 

a statistically significant difference between smokers and non-smokers in our study; however, we 

did observe a significant elevation of 2-naphthol levels in passive smokers. Furthermore, 

Bartolomé et al. (2015) found that, in the Spanish adult population, 1-naphthol levels were 

significantly higher in both active and passive smokers, further highlighting the potential 

confounding effects of passive smoking in PAH related biomonitoring studies. In our study,             

1-naphthol exhibited high censoring (>70% below LOD), with median concentrations at LOD in 

both seasons (colder: <LOD–16.9 ng/mL; warmer: <LOD–8.4 ng/mL), limiting its value for 

quantitative analysis. This is consistent with findings from Thai et al. (2020), who noted that 

elevated 1-naphthol levels can reflect exposure to specific pesticides like carbaryl, rather than 

airborne PAHs, suggesting it may be a less reliable biomarker of general air pollution exposure in 

urban settings. For OH-pyrene, detection rates were high, but concentrations remained                    

low (<1 ng/mL), indicating limited recent exposure to pyrene. Importantly, several studies have 

suggested that OH-pyrene is more indicative of dietary PAH intake (e.g. grilled or smoked foods) 

or occupational exposures rather than ambient air pollution (Bartolomé et al., 2015; Hoseini et al., 

2018). This is consistent with Yang et al. (2021), who reported median OH-pyrene levels of         

0.14 ng/mL in the general population of Guangzhou. In our cohort, questionnaire data revealed a 

relatively low fried food consumption averaging only 1.5 days per week. These findings reinforce 

the interpretation that OH-pyrene is less responsive to short-term ambient air pollution and may 

instead reflect dietary or occupational exposure routes. Overall, the contrasting detectability and 
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variability of these metabolites underline the importance of selecting appropriate biomarkers. In 

this urban population, 2-naphthol proved to be the most suitable urinary PAH biomarker, offering 

reliable exposure assessment across seasons, whereas 1-naphthol and OH-pyrene were less 

informative due to frequent censoring and dietary or occupational confounding. 

Minimal seasonal variation was observed in blood and plasma metal concentrations, 

indicating stable exposure patterns throughout the year. For example, mean levels of toxic metals 

in blood were As: 2.94 ± 3.50 µg/L (colder) vs. 3.12 ± 3.74 µg/L (warmer); Cd: 0.44 ± 0.58 µg/L 

vs. 0.40 ± 0.42 µg/L; and Pb: 13.57 ± 9.26 µg/L vs. 13.11 ± 8.79 µg/L. Essential trace elements in 

plasma, such as copper (Cu: 552.69 ± 122.68 µg/L colder vs. 560.77 ± 99.78 µg/L warmer) and zinc 

(Zn: 1066.33 ± 184.56 µg/L vs. 1157.47 ± 102.01 µg/L), also demonstrated limited seasonal 

fluctuation. This stability justified the pooling of seasonal data in statistical analyses, enhancing 

analytical power and reducing random variation. This consistency likely reflects chronic low-level 

environmental and dietary exposures, rather than acute or seasonal sources. Our findings are 

aligned with those reported by Mengelers et al. (2024), who observed comparable blood levels of 

Pb (17.16 ± 12.14 µg/L) and Cd (0.40 ± 0.30 µg/L) in the Dutch adult population. Similarly, Hoet 

et al. (2021) found stable plasma Cu (540–580 µg/L) and Zn (1000–1200 µg/L) concentrations in 

Belgian adults, supporting the idea of tight physiological homeostasis for essential metals, which 

is consistent with our data. Compared to more industrialized regions, such as Acerra in southern 

Italy, metal concentrations in our cohort were substantially lower. Lotrecchiano et al. (2022) 

reported blood As levels of 8–15 µg/L, Cd levels of 2.6–4.5 µg/L, and Pb values between 59.7–

79.6 µg/L in residents exposed to industrial emissions. The comparatively lower concentrations in 

Zagreb residents support the interpretation of a less industrialized exposure profile (two to three-

fold lower PM10-bound As and Cd concentrations), dominated by diffuse urban sources such as 

traffic emissions and legacy lead in infrastructure. Notably, plasma Fe showed a significant 

correlation with CC2 (NO2, ethylbenzene, and PM10-bound metals), suggesting source-specific 

exposure patterns likely attributable to resuspended traffic-related dust (Wiseman et al., 2021). 

This association reinforces the value of composite exposure clusters in capturing complex 

environmental mixtures and linking them to internal biomarkers. However, other metals did not 

show significant positive associations with specific exposure clusters, indicating that their presence 

in blood may be more influenced by dietary intake or other sources, rather than by ambient air 

pollution. Finally, strong associations between exposure clusters (especially CC1 and CC3) and 



106 

 

blood-based BTEX/metals—but weaker links with urinary PAH metabolites—highlight the 

complementary role of different biomonitoring matrices. Blood-based biomarkers appear to better 

capture recent inhalation exposures to VOCs and metals, whereas urinary PAH metabolites may 

reflect intermittent or cumulative exposure from diverse sources, including diet and indoor 

environments. These findings underscore the importance of selecting appropriate biological 

matrices based on the pollutant class and exposure timeframe in biomonitoring studies (Sauvain et 

al., 2025). 

5.3 Effect Biomarkers 

5.3.1 Immune Function and Inflammation 

FeNO is primarily produced by the bronchial epithelium through the activity of inducible 

iNOS, an enzyme upregulated in response to type II inflammatory cytokines such as IL-4 and IL-

13. The elevated FeNO levels reflect eosinophilic airway inflammation, commonly observed in 

allergic responses but also related to air pollution exposure (Anand et al., 2024; Chen et al., 2020; 

Delfino et al., 2006; Guo et al., 2022). To investigate the potential mechanisms linking 

environmental exposures to airway inflammation, a mediation analysis was conducted to evaluate 

whether the epigenetic regulation of immune function—specifically, methylation of the FOXP3 

gene—could mediate the relationship between pollen exposure and FeNO levels. The gene FOXP3, 

which encodes a transcription factor critical for the development and suppressive activity of Treg, 

was selected as a mediator due to its established role in maintaining immune tolerance and 

modulating Th2-driven allergic responses (Lal et al., 2009; Tuazon et al., 2022; Zhang et al., 2022). 

Mediation model found that increased pollen levels were significantly associated with elevated 

FOXP3 methylation, and this epigenetic modification was further linked to variation in FeNO 

levels. Notably, the one-day pollen exposure model exhibited a stronger direct effect on FeNO 

(ADE = 0.985) than the seven-day one (ADE = 0.523), indicating a more pronounced acute 

inflammatory response (Galli et al., 2008). The indirect pathway through FOXP3 methylation was 

also supported in both models, with an ACME of approximately –0.231 in the one-day model and 

–0.232 in the seven-day model. The slightly reduced effect observed in the seven-day model may 

be explained by meteorological factors such as temperature, wind speed, and pollen dispersion 

(González-Alonso et al., 2024). These findings align with previous research indicating that FOXP3 

expression is reduced in patients with asthma and allergies, implicating its role in immune 



107 

 

homeostasis and the suppression of Th2 responses following allergen exposure (Marques et al., 

2015). Furthermore, this pattern aligns with findings from an Italian large population-based study 

by Olivieri et al. (2022), in which FeNO levels were shown to increase in a dose-dependent manner 

with both the number of pollen species present in the environment and the degree of individual 

sensitization. Furthermore, Nassikas et al. (2024) found that short-term pollen exposure was linked 

to increased airway inflammation, as measured by FeNO, in adolescents regardless of asthma or 

allergy status. Their findings suggest that pollen can provoke inflammatory responses even in 

individuals without pre-existing allergic conditions, consistent with evidence that pollen exposure 

triggers acute inflammatory markers and symptoms in healthy people. Although the direct effects 

of total pollen count on elevated FeNO were expected, the observed indirect effects—indicating a 

modest decrease in FeNO via FOXP3 methylation—are consistent with the characteristics of the 

general adult population studied and the non-case-control design of the research. Nonetheless, the 

mediation models yielded meaningful insights, highlighting the importance of both short-term and 

long-term environmental exposures in shaping immune and respiratory biomarkers. These findings 

support the utility of such models in future epidemiological studies that include both healthy 

individuals and those with respiratory conditions. To fully evaluate the directionality of the 

proposed pathway and assess the robustness of the mediation framework, an alternative model was 

also tested in which FeNO was considered as a potential mediator between pollen exposure and 

FOXP3 methylation. The reversed mediation model, in which FeNO was positioned as the 

mediator of the relationship between pollen exposure and FOXP3 methylation, was found to be 

both statistically unsupported and biologically implausible. This reinforces the interpretation of 

FOXP3 methylation as an upstream immunological regulator, rather than a downstream target. In 

contrast, FeNO is widely accepted as a non-invasive marker of ongoing eosinophilic airway 

inflammation, reflecting downstream effects of immune dysregulation rather than initiating them 

(Dweik et al., 2011). 

Although CCs were not significant independent predictors of FOXP3 methylation in our 

cohort, previous studies have linked pollutants such as PAHs and black carbon to altered FOXP3 

methylation. For example, Hew et al. (2015) found that long-term PAH exposure over one to twelve 

months was associated with increased FOXP3 methylation in adolescents, while Lovinsky-Desir 

et al. (2017) observed black carbon-related FOXP3 methylation changes over a six-day period in 

children, modulated by physical activity. However, these studies often included children or 
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asthmatic individuals, and used cell-specific or personal exposure data. In contrast, our cohort 

consisted of healthy adults, and FOXP3 methylation was measured in whole blood, which may 

explain the absence of strong air pollution associations. Furthermore, the influence of air pollution 

on FeNO has been well-documented in both controlled exposure studies and epidemiological 

research (Cottini et al., 2025; Delfino et al., 2006; Zhang et al., 2021b). Various pollutants—

including PMs, NO2, O3, and traffic-related air pollution—have been associated with increased 

FeNO levels, indicating pollutant-induced eosinophilic airway inflammation (Anand et al., 2024; 

Chen et al., 2020). Additionally, in this study, toxic metals in CC3 (As, Cd, Pb) independently 

predicted FeNO, highlighting their role in airway inflammation through mechanisms distinct from 

pollen exposure. This interpretation is supported by epidemiological findings demonstrating that 

exposure to Pb, Cd, and As alters both innate and adaptive immune cell populations, disrupts 

cytokine regulation, and is associated with an increased risk of immune-mediated conditions such 

as asthma and allergic disease in children (Zheng et al., 2023). For example, Pb exposure has been 

associated with elevated levels of eosinophils, neutrophils, and pro-inflammatory cytokines such 

as IL-1β and TNF-α, while Cd exposure has been linked to altered T cell subsets and increased risk 

of respiratory allergic conditions (Ganguly et al., 2018). Similarly, As exposure has been associated 

with enhanced Th2-type immune responses and increased levels of IgE and IL-4, which are 

characteristic of allergic airway inflammation, as reviewed by Zheng et al. (2023). These findings 

indicate the interplay between environmental allergens and pollutants in shaping immune 

responses, with potential relevance for allergic disease management in urban settings. 

5.3.2 Oxidative Stress Assessment 

Hierarchical clustering of oxidative stress biomarkers into two groups, mostly pro-oxidant 

products (SOD, NO, ROS, MDA) and antioxidant defense (CAT, GSH, GPx), provided a nuanced 

view of redox balance. SOD clustered with the first set of biomarkers, likely due to its catalytic 

role in converting superoxide radicals into H2O2, which itself can contribute to oxidative stress if 

not efficiently cleared by downstream antioxidants such as CAT or GPx (Demirci-Çekiç et al., 

2022; Jomova et al., 2023). Superoxide is one of the primary ROS generated in response to 

environmental stressors, and its detection in this study—via DHE fluorescence—supports the 

hypothesis that this radical is a major contributor to the observed oxidative burden. The significant 

association of OXC1 with CC1 (PMs, PAHs, BTEX, etc.) and demographic factors (sex, physical 
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activity) in both one-day and seven-day analyses emphasizes the influence of ambient exposures 

and lifestyle choices on oxidative damage. The significant positive association observed between 

OXC1 and CC1 likely reflects established mechanisms by which components of urban air pollution 

(especially PAHs, VOCs, O3, and PMs) induce oxidative stress (Gangwar et al., 2020; Lodovici 

and Bigagli, 2011; Ryu and Hong, 2024). PAHs and VOCs are known to undergo metabolic 

activation via cytochrome P450 enzymes (CYP1A1, CYP1A2, CYP1B1), forming reactive 

intermediates that not only bind DNA but also engage in redox cycling, generating superoxide and 

subsequently H2O2 (Bukowska and Duchnowicz, 2022; Ewa and Danuta, 2017; Xue and 

Warshawsky, 2005). Transition metals like Fe and Cu, often bound to airborne PM, catalyze further 

redox reactions, such as the Fenton reaction, producing OH• capable of inducing lipid peroxidation 

and damaging DNA and cellular structures (Husain and Mahmood, 2019; Mesnage, 2025; Yan et 

al., 2022). A study by Cipryan et al. (2024) conducted in the Czechia examined the interplay 

between long-term air pollution exposure, cardiorespiratory fitness, and oxidative stress markers. 

Participants residing in high air pollution regions exhibited significantly elevated levels of GPx, 

indicating a compensatory response to oxidative stress induced by prolonged pollutant exposure. 

Furthermore, Ryu and Hong (2024) evaluated the relationship between PAH exposure and 

oxidative stress from the perspective of mixed PAHs in Korean adults and found a significant 

association. While physical activity emerged as a significant modulator of oxidative stress in this 

study, it is important to recognize that exercise-induced ROS generation is a well-characterized 

physiological response. As reviewed by Powers et al. (2020), skeletal muscles are a major source 

of ROS during exercise, primarily via NADPH oxidase activity. This adaptive response to exercise-

induced oxidative stress exemplifies the concept of hormesis, where low-level stressors stimulate 

protective mechanisms. However, it is noteworthy that excessive or intense physical activity may 

transiently increase oxidative stress, highlighting the importance of exercise intensity and duration 

in redox balance (Lu et al., 2021). Sex differences in oxidative stress responses were also observed, 

with men exhibiting higher levels of oxidative stress markers compared to women. Similarly, Ide 

et al. (2002) showed that biomarkers of oxidative stress were higher in young men than in women 

of the same age. This finding aligns with previous research indicating that hormonal variations, 

particularly estrogen levels, influence redox status (Martínez de Toda et al., 2023; Torrens-Mas et 

al., 2020). Furthermore, the absence of significant predictors for OXC2, encompassing antioxidant 

biomarkers, suggests that antioxidant responses may be governed by more stable, homeostatic 
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mechanisms less susceptible to short-term environmental fluctuations. This stability could reflect 

the body's intrinsic capacity to maintain redox equilibrium through tightly regulated antioxidant 

systems (Sies and Jones, 2020). While many past studies relied on limited cross-sectional or 

occupational cohorts, there is little data on general human populations to conclude whether 

different air pollutants have different magnitudes of association with oxidative stress outcomes 

(Delfino et al., 2011). Our approach, using within-subject temporal comparisons, enhances 

statistical power and controls for interindividual variability—allowing clearer attribution of 

biomarker changes to pollutant exposure events.  

5.3.3 Cytogenetic and DNA Damage 

The assessment of DNA damage in blood cells via the comet assay and further cytogenetic 

damage via MN assays in both the blood and buccal cells revealed distinct patterns. Although some 

biomonitoring studies—particularly in heavily polluted regions such as northern Italy and parts of 

the Southeast Europe—have reported significant increase in MN frequency due to air pollution 

exposure (Ceretti et al., 2020; Cetkovic et al., 2023; Santovito and Gendusa, 2020; Zani et al., 

2021), we did not observe a significant association between blood MN frequency and seven-day 

ambient exposure to CC1. This mirrors Gajski et al. (2022), who, despite a detailed analysis of 

three-, seven-, and 30-day pollutant exposure windows, found no consistent positive associations, 

attributing this to low overall pollutant levels, inter-individual variability, and potential indoor 

shielding during high-exposure periods. On the other hand, buccal MN model revealed CC3 and 

CC1 to be significant predictors of MN frequency along with sex (females having higher MN 

frequency). Furthermore, these models revealed a significant positive association with CC3 and a 

negative association with CC1, indicating differential cellular responses to distinct pollutant 

groups. Meta-analysis by Annangi et al. (2016) demonstrated that most of the occupational and 

environmental biomonitoring studies found an increase in blood and buccal MN among As exposed 

individuals, although it is important to note that As environmental source was mainly contaminated 

drinking water. In contrast to our environmentally exposed but non-occupationally burdened 

population, Alabi et al. (2020) reported dramatically elevated buccal MN frequencies among 

electronic waste scavengers in Lagos, Nigeria, with a mean of 168.04 ± 0.02 in the exposed group 

compared to 3.23 ± 0.18 in controls. These levels were accompanied by significantly higher blood 

Pb (38.34 ± 24.04 µg/dL) and Cd (2.85 ± 0.66 µg/L) concentrations, emphasizing the genotoxic 
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potential of intense, unprotected occupational exposures. In our study, MN frequencies ranged 

from 2.19 ± 1.48 in the colder period to 4.16 ± 2.47 in the warmer period, with much lower Pb 

(13.57 ± 9.26 µg/dL) and Cd (0.44 ± 0.58 µg/L) levels, further underscoring the distinction in 

exposure intensity. Similarly, Aksu et al. (2019) found increased DNA damage and MN 

frequencies among male welders, linking occupational fume exposure to elevated Cd and Pb levels. 

Khan et al. (2010) observed elevated buccal MN frequencies in lead-exposed painters, supporting 

toxic metals as potent genotoxicants in workplace settings. Nagaraju et al. (2022) reinforced this 

through a systematic review showing consistent increases in MN frequency, sister chromatid 

exchanges (SCEs), chromosomal aberrations, and oxidative DNA damage in Pb-exposed workers, 

regardless of job type or exposure duration. Importantly, their review highlighted that telomere 

shortening also occurs with chronic Pb exposure, and CDC guidelines (Alarcon et al., 2019) that 

define blood Pb levels ≥10 μg/dL in the adult population as elevated and warranting investigation. 

Compared to these occupational cohorts, our study provides insight into the subtler genomic effects 

in the general population. Notably, despite lower exposures, we still observed a seasonal increase 

in MN frequency, suggesting that environmental factors such as temperature and pollution 

dynamics could influence genomic integrity. This was also reflected in Panxhaj et al. (2024), who 

observed higher buccal MN frequencies during winter in Prishtina (Kosovo), coinciding with 

higher pollution levels. Together, these findings highlight the utility of buccal MN assays as 

sensitive indicators of metal-induced genotoxicity, while also cautioning against overinterpretation 

of results from low-level, short-term exposures to complex airborne mixtures. 

Additionally, for blood MN, age and sex were significant predictors, with older age 

increasing MN counts and males showing lower counts. As reviewed by Dhillon et al. (2021), the 

frequency MN in human lymphocytes tends to increase with age, and females generally exhibit 

higher frequencies compared to males. This trend starts from a low baseline of 0–2 MN per 1,000 

cells at birth. However, exposure to genotoxic agents—such as chemicals, radiation, or 

environmental pollutants—can further elevate MN frequency. As individuals age, there is a 

documented decline in the efficiency of DNA repair mechanisms, particularly in pathways like 

non-homologous end joining (NHEJ) and homologous recombination (HR) (Li et al., 2016). This 

decline leads to the accumulation of DNA double-strand breaks and genomic instability, which are 

precursors to MN formation (Fenech, 2020; Fenech et al., 2011). Telomere shortening is another 

critical factor associated with aging (Škrobot Vidaček et al. 2018). Telomeres, the protective caps 
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at the ends of chromosomes, progressively shorten with each cell division (Harley et al., 1990). 

When they become critically short, they can no longer protect chromosomes effectively, leading to 

end-to-end fusions, chromosomal breakage, and the formation of MNi. Furthermore, Mesnage 

(2025) emphasizes that environmental pollutants—ranging from airborne PM and toxic metals to 

endocrine disruptors and microplastics—accelerate biological aging by inflicting damage on DNA, 

proteins, and lipids, leading to telomere shortening and epigenetic age acceleration. The observed 

sex difference may be partly explained by the mechanisms described by Fenech et al. (2011), who 

reported that MN can result from chromosomal missegregation, particularly involving the X 

chromosome. Females, having two X chromosomes, may be more susceptible to the formation of 

MN due to increased chances of sex chromosome loss or misrepair events during cell division. 

Additionally, factors such as hypomethylation of pericentromeric DNA and spindle assembly 

defects—more prevalent in cells under genotoxic stress—can further contribute to higher MN 

formation in females. This is consistent with the large-scale study by Gajski et al. (2024), who 

reported a clear age-related increase in MN frequency and higher values in females across the 

Croatian general population. Our seasonal MN values (4.42 ± 3.7 in colder vs 4.77 ± 4.16 in warmer 

period) fall within their established baseline (5.3 ± 4.3), and are well below their 95th percentile 

cut-off of 14 MNi, supporting the idea that our study population was largely within expected 

genomic stability ranges. Similar patterns were seen for NBUDs (4.45 ± 4.06 colder vs 4.48 ± 2.96 

warmer), which were slightly elevated compared to the so far Croatian mean (3.45 ± 2.10), and for 

NPBs, where we observed a higher mean in colder months (0.32 ± 0.5) compared to warmer 

(0.07 ± 0.31), both values falling below their reported mean (1.22 ± 1.51). The proliferation rate 

measured by the mitotic index (CBPI) in our cohort (2.11–2.17) was consistent with the Croatian 

mean (2.00 ± 0.12), reflecting expected cell proliferation activity. Our findings suggest that while 

internal factors like age and sex are reliable predictors of genomic instability markers, the subtle 

effects of ambient air pollution may be masked without higher exposure contrasts or longer-term 

cumulative assessments.  

The inverse association observed between CC3 (As, Cd, Pb) and TI was unexpected, as 

these metals are well-known for their genotoxicity (Dikilitas et al., 2016; Qu and Zheng, 2024; 

Speer et al., 2023). As primarily induces genotoxicity indirectly by inhibiting DNA repair enzymes, 

particularly those involved in base excision repair, and by promoting oxidative stress through 

mitochondrial dysfunction and redox cycling (Speer et al., 2023; Zhou et al., 2021). Cd generates 
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ROS, disrupts redox homeostasis, and interferes with key DNA repair mechanisms such as 

nucleotide excision and mismatch repair, while also affecting genes involved in cell cycle control 

and apoptosis (Qu and Zheng, 2024). Pb contributes to genomic instability by increasing oxidative 

stress, inhibiting DNA polymerases, and promoting replication errors and chromosomal damage 

(Dikilitas et al., 2016). Collectively, these mechanisms disrupt DNA integrity through both direct 

and indirect pathways. However, the lack of a positive association in our data may reflect low 

exposure levels or the possibility of confounding factors that were not measured in this study, such 

as variations in metabolic processing or the presence of protective genetic factors that may mitigate 

the typical DNA-damaging effects of these metals. For example, genetic polymorphisms in DNA 

repair genes (e.g. XRCC1, GSTT1) have been shown to influence individual susceptibility to DNA 

damage from both cigarette smoke and environmental pollutants (Pinto et al., 2025). This could 

explain the unexpected result, highlighting the importance of considering genetic susceptibility 

when evaluating environmental exposures. Furthermore, this study hypothesized that oxidative 

stress mediates the relationship between ambient exposures and DNA damage. However, our 

mediation analysis showed that OXC1 (SOD, NO, ROS, MDA) did not significantly mediate this 

relationship. While CC3 remained a significant predictor of TI, OXC1 had no significant effect on 

TI, and ACME was insignificant. This suggests that, in this study cohort, the effect of ambient 

exposures on DNA damage operates primarily through a direct pathway. This finding contrasts 

with previous studies that have linked oxidative stress to DNA strand breaks and increased levels 

of 8-OHdG in high-exposure populations (Cavallo et al., 2021). However, in our study, the overall 

mean TI levels were relatively low (1.22% for the colder period vs 1.7% for the warmer period). 

These values suggest minimal DNA strand breakage, likely insufficient to robustly reflect oxidative 

stress pathways as a key mediator mechanism. A comparable study by Gerić et al. (2018), which 

examined seasonal variations in comet assay descriptors among Zagreb residents, found higher 

average TI values, notably 1.43% in winter vs 1.98% in summer. Notably, they reported strong 

correlations between TI values and meteorological parameters such as temperature, solar radiation, 

and insolation, with the summer season producing the highest DNA damage across comet assay 

parameters. Hence, the slightly higher TI values observed during the warmer period may be more 

attributable to meteorological factors, such as UV radiation, rather than air pollution. A more recent 

study by Gerić et al. (2024) found no significant associations between air pollution exposure factors 
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(including PM, metals, and other pollutants) and comet assay descriptors, including TI, among 123 

Zagreb residents enrolled between 2011 and 2015. 

In our study, smoking status emerged as a significant individual predictor of TI, with 

smokers exhibiting higher TI estimates (1.68 % for smokers compared to 1.18 % for non-smokers). 

Previous studies have shown that both active and passive exposure to tobacco smoke can induce 

cytogenetic damage. In a recent systematic review by Pinto et al. (2025), 15 out of 18 included 

studies reported genotoxicity due to cigarette smoking, and all reported some association between 

a genetic polymorphism and the aforementioned genotoxicity. For example, Chandirasekar et al.  

(2014) found a significant increase in DNA damage in smokers and smokeless tobacco users 

compared to controls, supporting the genotoxic effects of tobacco use. In our previous work on a 

broader Croatian cohort, lifestyle factors—including smoking and alcohol consumption—were 

associated with increased DNA migration, emphasizing their relevance as contributors to 

background DNA damage levels (Matković et al., 2024). 

5.4. Limitations and Future Perspectives 

This study incorporates several methodological strengths that enhance the validity of its 

findings. The application of a multi-time-frame exposure model (one-, three-, and seven-day 

pollutant averages), hierarchical clustering to derive composite exposure groups, and advanced 

statistical tools—including multivariate regression, best subset selection, and mediation analysis—

enabled a nuanced investigation of exposure–effect relationships. The simultaneous use of 

exposure biomarkers (e.g. BTEX, PAH metabolites, essential elements and toxic metals), oxidative 

stress markers, and effect biomarkers (including both systemic and tissue-specific endpoints such 

as blood and buccal MNi, FOXP3 methylation, and FeNO) provided a comprehensive picture of 

biological response. The inclusion of both manual, semi-automated and automated scoring methods 

further bolstered the reliability of molecular-biological and cytogenetic endpoints. Nonetheless, 

several limitations must be acknowledged. The use of fixed-site monitoring station data to estimate 

ambient pollutant concentrations likely introduced spatial exposure misclassification, particularly 

for more mobile participants, which may have diluted observed associations. Several studies have 

shown that the use of personal sampling systems can provide more accurate individual exposure 

data, encompassing both indoor and outdoor air (Anand et al., 2024; Delfino et al., 2006; Matthaios 

et al., 2024; Mostafavi et al., 2018; Panchal et al., 2022). However, deploying numerous low-cost 
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sensors, which are still not entirely reliable, may not be feasible (Hayward et al., 2024; Kang et al., 

2022; Lu, 2021). While within-subject comparisons helped control for seasonal variability, the 

relatively modest sample size (N=57 paired participants, N=121 overall) may have limited 

statistical power for detecting subtle effects—particularly in mediation models where indirect 

effects are often small. To support statistical robustness despite these limitations, a small proportion 

of active smokers (14%) were included in the final cohort, all of whom reported light smoking 

habits and were instructed to abstain for at least 16 h before sampling. Our preliminary validation 

showed no significant elevation of BTEX in their blood under these conditions (Matković et al., 

2025), and comparisons in the current study confirmed no meaningful differences between smokers 

and non-smokers across most biomarkers except TI, where smokers showed modestly higher 

values. Importantly, these differences were minor in biological terms (1.02% vs. 0.81%) and align 

with Bonassi et al. (2003) who showed that light smokers without concurrent occupational 

exposure do not experience an overall increase in genotoxic damage, as measured by the MN assay. 

Passive smoking was also recorded and controlled for in statistical models. These decisions reflect 

both analytical requirements of multivariate methods and the reality of light smoking prevalence 

in urban populations.  

To address the challenge of scaling future biomonitoring studies, we tested several 

methodological adaptations that could support higher-throughput analyses. First, in addition to 

fresh samples, we applied the comet assay to frozen blood samples. Based on those results and 

available literature, conducting the comet assay on frozen blood samples emerges as a practical 

and efficient approach for biomonitoring and epidemiological research as long as one does not 

directly compare fresh with frozen samples due to apparent differences with frozen samples 

displaying to some extent higher values of DNA damage (Gajski et al., 2020a; Matković et al., 

2024; Møller et al., 2021). Second, to optimize the analysis of cytogenetic damage, we utilized 

Metafer, a semi-automated imaging system for MN scoring. While manual and automated scores 

showed only moderate correlation, the exclusion of outlier cases with large discrepancies 

substantially improved agreement, suggesting that Metafer-based assessments, once carefully 

validated, could offer a reliable and more time-efficient solution for expanding sample capacity in 

our future research. Additionally, the high proportion of non-detectable values for BTEX and 

certain PAH metabolites constrained their use in exposure modeling, highlighting a need for more 

sensitive analytical methods in low-exposure urban cohorts. Importantly, the incorporation of 
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FOXP3 methylation reflects growing interest in epigenetic biomarkers as sensitive indicators of 

environmentally induced immune modulation. This aligns with exposome-based frameworks, 

which emphasize the cumulative and dynamic nature of environmental exposures and their 

molecular imprints across the life course (Rider and Carlsten, 2019; Saenen et al., 2019; Wild, 

2025). Although our overall findings suggest that air pollution levels in Zagreb may not exert a 

strong genotoxic effect, this does not imply that ambient air in the city is benign from a broader 

public health perspective. Non-genotoxic respiratory outcomes such as asthma, allergic rhinitis, 

and COPD remain prevalent in urban populations and are frequently aggravated by even moderate 

levels of traffic-related air pollution and pollen exposure. The study by Kranjčić et al. (2022) 

supports this concern by modeling the potential for air quality improvement through targeted urban 

greening strategies in Zagreb. Their analysis, using satellite imagery and machine learning 

techniques, identified over 400,000 m2 of potential green buffer zones along heavily trafficked 

roads—areas particularly relevant for reducing pollutant exposure and mitigating respiratory 

symptoms. These nature-based interventions may not directly affect DNA damage endpoints but 

could significantly alleviate inflammatory and allergic airway conditions, especially in sensitive 

subpopulations such as children, the elderly, and individuals with preexisting respiratory disease. 

It is also important to note that air quality in Zagreb is generally good, with concentrations of most 

pollutants, especially PM levels, decreasing over the past decade (Lovrić et al., 2022). This 

progress reflects broader historical improvements, driven by industrial restructuring, fuel quality 

enhancements, and the phase-out of leaded gasoline (Šega and Hršak, 1995; Vadjić et al., 2009). 

According to the Air Quality Life Index, Croatia’s potential gain in life expectancy from PM2.5 

reduction to WHO guideline levels (5 µg/m3) has improved significantly—from 1.54 years in 1998 

to 0.9 years in 2022, reflecting notable progress in ambient air quality (AQLI, 2025). Further 

improvement could be achieved by integrating innovative technologies and green infrastructure. 

Reducing urban air pollution requires a multifaceted approach, and several strategies show promise 

for realistic and impactful implementation. As reviewed by Gulia et al. (2020), stricter vehicular 

emission standards, combined with the promotion of low-emission zones and accelerated fleet 

renewal programs, present viable options for targeting a major source of pollutants. Urban planning 

interventions—such as enhanced public transit systems, infrastructure for active mobility, and 

intelligent traffic management—may further reduce emissions by shifting travel behavior and 

alleviating congestion. Environmental design solutions, including the creation of ventilation 
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corridors, strategic urban greening, and measures to control road dust (e.g. paving and street 

cleaning), offer additional potential for localized improvements in air quality. For example, vertical 

green walls, pollution-filtering towers that support greenhouse agriculture, and comprehensive 

sensor networks for real-time air quality monitoring have been proposed as part of a more 

integrated urban response to air pollution. The expansion of low-cost sensor networks could enable 

more granular monitoring and adaptive policy responses. While the effectiveness of these measures 

may vary by context, their integration—particularly when guided by environmental justice 

considerations—represents a promising pathway toward healthier urban environments. 

Implementing Low Emission Zones (LEZs) and Zero Emission Zones (ZEZs) could further 

enhance air quality in Zagreb. LEZs restrict access to certain areas for vehicles that do not meet 

specific emission standards, thereby reducing traffic-related air pollution. ZEZs take this a step 

further by allowing only zero-emission vehicles, pedestrians, and cyclists unrestricted access, 

effectively eliminating tailpipe emissions within these zones. European cities like London, Berlin, 

and Brussels have successfully implemented LEZs, leading to significant reductions in pollutants 

(Cui et al., 2021; Gu et al., 2022). Implementing LEZs and ZEZs in Zagreb could complement 

potential greening initiatives by targeting vehicular emissions directly. Such zones could be 

strategically placed in areas with high traffic density and pollution levels. However, it's essential 

to consider potential challenges, such as ensuring equitable access and mitigating impacts on low-

income populations who may rely on older vehicles. Lessons from other cities highlight the 

importance of accompanying these zones with supportive measures, like vehicle upgrade 

incentives and improved public transportation options. Furthermore, considering that people in 

Croatia predominantly spend time indoors (more than 21 h on average), the reliance on outdoor 

monitoring stations may not accurately reflect individual exposures. This raises questions about 

indoor air quality, which warrants further investigation (Kazensky et al., 2024; Lovrić et al., 2025). 

Taken together, these limitations suggest caution in drawing causal inferences and underscore the 

value of future longitudinal studies with personal exposure monitoring and larger cohorts. Such 

studies would better capture individual-level variability, facilitate time-resolved analyses, and 

support cumulative risk assessments. Future studies could build on this design by integrating high-

resolution exposomic data with multi-omics approaches, including epigenetic profiling, to better 

characterize the mechanistic pathways linking complex exposures to health outcomes (Pandics et 

al., 2023; Wild, 2025). 
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6. CONCLUSION 

This study demonstrates that ambient air pollution in an urban European setting exerts 

measurable biological effects through multiple mechanistic pathways—including oxidative stress, 

immune modulation, and genomic damage—shaped by both environmental and individual-level 

factors. By integrating external exposure assessments with exposure biomarkers and effect 

endpoints across two seasons, this research provides one of the most comprehensive evaluations to 

date of pollution-related health risks in the general population of Zagreb, Croatia. Key findings 

include the identification of specific pollutant composite clusters—notably CC1 (PMs, PAHs, 

BTEX, O3, PM10- bound metals) and CC3 (PM10-bound As, Pb, Cd)—that significantly influence 

oxidative and immunological biomarkers, the detection of a mediating role for FOXP3 methylation 

in pollen-related airway inflammation, and the observation that cytogenetic outcomes are 

modulated by both demographic factors (e.g. age, sex, smoking) and metal-rich exposure sources. 

Importantly, while some biomarkers—such as oxidative stress indices—showed sensitivity to 

short-term exposures and modifiable lifestyle factors like physical activity, others reflected more 

stable background exposure or regulatory responses. These results underscore the complexity of 

real-life exposure scenarios and highlight the need for integrated, matrix-appropriate biomonitoring 

approaches. While air quality in Zagreb has improved over recent decades—largely due to 

industrial restructuring, cleaner fuels, and policy changes—certain pollutant sources, particularly 

traffic-related emissions and PM-bound metals, still pose localized health risks. This study 

confirms that even in a city with generally declining ambient pollution levels, biologically relevant 

effects are detectable and shaped by seasonal variation, pollutant composition, and personal 

characteristics, along with lifestyle habits. Beyond their scientific relevance, the findings carry 

clear implications for public health and urban policy: reducing metal-rich emissions, improving 

regional air quality coordination, and promoting protective behaviors could collectively mitigate 

the health burden of air pollution. As urban populations continue to grow, precision environmental 

health approaches, linking mechanistic biomarkers with exposure profiling, will be essential for 

informed decision-making and targeted interventions.  
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8. APPENDIX  

 

Supplementary Figure 1. Silhouette width across different cluster solutions for one-day average 

exposure variables. The plot displays average silhouette widths for cluster solutions ranging from 

2 to 5 clusters. The maximum silhouette value indicates the optimal number of clusters (in this 

case, k =3), suggesting the most coherent grouping of variables. Higher silhouette values reflect 

greater intra-cluster similarity and inter-cluster dissimilarity. 

 

Supplementary Figure 2. Silhouette width across different cluster solutions for three-day average 

exposure variables. The plot displays average silhouette widths for cluster solutions ranging from 

2 to 5 clusters. The maximum silhouette value indicates the optimal number of clusters (in this 

case, k =5), suggesting the most coherent grouping of variables. Higher silhouette values reflect 

greater intra-cluster similarity and inter-cluster dissimilarity. 
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Supplementary Figure 3. Silhouette width across different cluster solutions for seven-day average 

exposure variables. The plot displays average silhouette widths for cluster solutions ranging from 

2 to 5 clusters. The maximum silhouette value indicates the optimal number of clusters (in this 

case, k =3), suggesting the most coherent grouping of variables. Higher silhouette values reflect 

greater intra-cluster similarity and inter-cluster dissimilarity. 
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Supplementary Figure 4. Explained variance (R2) of linear models predicting composite exposure 

clusters based on meteorological variables, stratified by time frame (one-day and seven-day 

averages). Each bar represents the proportion of variance in a cluster-specific composite score 

accounted for by temperature, pressure, humidity, wind, and UVB radiation. Cluster 1 shows 

consistently high predictive accuracy in both time frames, particularly in the seven-day model (R2 

= 0.95), while Clusters 2 and 3 show modest explanatory power. The stronger performance for 

Cluster 1 suggests that its underlying variables are more directly or consistently influenced by 

short- and mid-term meteorological conditions. 
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Supplementary Figure 5. Forest plot of predictors selected by best subset regression for FOXP3 

gene methylation. The figure shows the estimated regression coefficients and 95% confidence 

intervals for variables retained in the best subset linear models predicting FOXP3 methylation, 

separately for the one-day and seven-day exposure windows. The one-day model included log-

transformed pollen, sex, smoking status, atmospheric pressure, and wind speed as significant 

predictors. The seven-day model retained sex, passive smoking status, ambient temperature, and 

Composite Cluster 2. Effect sizes are displayed on the x-axis, stratified by time frame. Significant 

predictors are marked with * (p < 0.05), ** (p < 0.01), *** (p < 0.001). 



159 

 

 

 

Supplementary Figure 6. Forest plot of predictors selected by best subset regression for log-

transformed FeNO. This figure summarizes the results of best subset regression models identifying 

predictors of log-transformed FeNO levels. For the one-day exposure frame, the model included 

Composite Cluster 3, sex, age, and pressure. For the seven-day frame, the best-fitting model 

retained Composite Cluster 2, log-transformed pollen, sex, smoking status, and age. Coefficient 

estimates and 95% confidence intervals are shown. Significant predictors are marked with * (p < 

0.05), ** (p < 0.01), *** (p < 0.001). 
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