
Multivarijatne metode
Kratak pregled i primjeri



Multivarijatne metode - metode za analizu setova podataka koji se sastoje od više 
(zavisnih i/ili nezavisnih) varijabli

Linearni modeli sa više prediktora (obrađeni na ranijim predavanjima) se uglavnom 
ubrajaju u „multivarijatne” metode (spominjali smo i multikolinearnost)

Biološki, ovakvi setovi podataka imaju puno smisla (analizirana svojstva su često 
povezana i utječu jedno na drugo) no često zahtijevaju prilagođene metode za 
vizualizaciju (ne znamo prikazati više od 3 dimenzije odjednom) i analizu

Tehnički, prikupljanje podataka o više varijabli odjednom je efikasno, a uz modernu 
tehnologiju i lako (HPLC, genetika, sustavi za fenotipizaciju…) 



Problemi multivarijatnih analiza

Problem velikog broja varijabli – gotovo sve metode koje spominjemo zahtijevaju 5-10 
puta više opažanja (jedinki) nego varijabli!!

Problem potpunih observacija – većina metoda ne radi ako neki podatci nedostaju

Problem različitih skala – varijable u istom setu podataka su često u različitim skalama 
(primjer s Irisima) – varijable se mogu skalirati na z vrijednost (udaljenost od prosjeka 
izražena u standardnim devijacijama) – R funkcija scale() 



Multivarijatne metode služe za (ovo nije „službena”, potpuna, niti jedina podjela + kategorije se 

često preklapaju):

1) Redukciju (smanjenje) broja varijabli (dimension reduction) – uglavnom tvore 
sintetske varijable koje nastoje opisati svu varijabilnost izvornih varijabli – za vizualizaciju 
ili daljnje analize manjeg broja varijabli - analiza glavnih sastavnica (PCA), 
multidimenzionalno skaliranje (MDS), kanonička korelacija (CCA)…

2) Klasificiranje – metode koje razvrstavaju jedinke u poznat ili nepoznat broj 
grupa (kategorija) – po sličnosti ili nekom drugom algoritmu – metode klasteriranja
(temeljene na modelu ili ne; hijerarhijske ili ne...) – diskriminantna analiza (LDA, QDA…), 
k means clustering, hijerarhijski klasteri, classification trees, razne metode strojnog 
učenja…

3) Testiranje hipoteza – modeli – Multivarijatna ANOVA (MANOVA); 
dekompozicija matrice udaljenosti (ANOSIM; AMOVA)…



Korelacija – mjera „povezanosti” 2 varijable –
temelj metoda za smanjenje broja varijabli

Korelacijski koeficijent – r – (-1<=r<=1) – smjer 
(predznak) i jačina (apsolutna vrijednost) 
povezanosti

r se testira t-testom (generalno, jaka korelacija 
će gotovo uvijek biti signifikantna)

Scatter plot matrix – točkasti grafovi svih 
parova varijabli – ako opišemo elipsu oko 
točaka, njena „širina” okvirno procjenjuje 
korelaciju varijabli



p_values<-rcorr(as.matrix(data[1:4]))

p_values

SepalLength SepalWidth PetalLength PetalWidth

SepalLength 1.00      -0.12        0.87       0.82

SepalWidth -0.12       1.00       -0.43      -0.37

PetalLength 0.87      -0.43        1.00       0.96

PetalWidth 0.82      -0.37        0.96       1.00

n= 150 

P

SepalLength SepalWidth PetalLength PetalWidth

SepalLength 0.1519     0.0000      0.0000    

SepalWidth 0.1519                 0.0000      0.0000    

PetalLength 0.0000      0.0000                 0.0000    

PetalWidth 0.0000      0.0000     0.0000 

Korelacija – mjera „povezanosti” 2 varijable



Problem strukturiranih podataka (nisu svi iz 
iste populacije)

Simpsonov paradoks - statistički fenomen u 
kojem povezanost između dvije varijable u 
populaciji nestaje ili postaje obrnuta kada se 
populacija podijeli u subpopulacije

Posljedično – potencijalni problem za neke od 
metoda (npr PCA)



Problem strukturiranih podataka

Anscombeov kvartet - 4 seta podataka od po 2 
varijable sa približno jednakim mjerilima 
sredine i disperzije, ali sasvim različitih 
distribucija (i grafova)

Property Value Accuracy

Mean of x 9 exact

Sample variance of x: s2

x
11 exact

Mean of y 7.50 to 2 decimal places

Sample variance of y: s2

y
4.125 ±0.003

Correlation between x and y 0.816 to 3 decimal places

Linear regression line y = 3.00 + 0.500x
to 2 and 3 decimal
places, respectively

Coefficient of determination of

the linear regression:𝑅2
0.67 to 2 decimal places

https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Coefficient_of_determination


Analiza glavnih sastavnica (komponenata) - PCA

Iz k originalnih varijabli tvori k novih, sintetskih, koje su nekorelirane i obuhvaćaju 
najveći dio neobjašnjene varijabilnosti (dakle svaka nakon prve objašnjava sve manji dio)

Sintetske varijable (komponente) „izdvajaju” zajedničku dio varijabilnosti opisan 
koreliranim varijablama – cilj je „dobiti” što manje komponenata koje objašnjavaju što 
veći dio izvorne varijabilnosti podataka (nikada neće biti potpun ako se ne uzmu sve 
komponente)

Nije statistička metoda (ne testira nikakvu hipotezu, ne omogućava generalizaciju) već 
samo transformira podatke (ovo se često zaboravlja!)



R ima više funkcija za PCA – prcomp(), princomp(), paket Factoextra… - neke koriste 
matricu korelacija a druge matricu kovarijanci 

Bitna napomena – PCA koristi samo numeričke varijable! (dakle ne i kategoričke –
problem strukturiranih podataka!)

Kvadrati st dev su eigenvalues (svojstvene vrijednosti)!
To je bitno kod odluke koliko osi nam je „bitno” (ev>1)

Ovo su korelacije izvornih varijabli sa 
svakom od PC osi (sintetskih varijabli)

Analiza glavnih sastavnica (komponenata) - PCA



Udio objašnjene varijance za svaku PC

Kumulativni dio objašnjene varijance

Prve dvije PC osi zajedno objašnjavaju 95.8% ukupne varijabilnosti

Scree plot

Ako je varijanca neke osi veća od 1 – ta os objašnjava više 
varijance nego jedna izvorna varijabla

prve dvije PC osi objašnjavaju gotovo svu izvornu 
varijabilnost

What is the Use of Eigenvalues & Eigenvectors in PCA? (Example)

https://statisticsglobe.com/what-are-eigenvalues-eigenvectors-pca


Prikaz prve 2 PC osi

Boje su dodane samo na graf – vrste 
nisu dio analize!!
Nema rasprave o tome kako se vrste 
„razdvajaju”!!

Vektori pokazuju smjer i jačinu 
korelacije izvornih varijabli s PC osima (i 
međusobnu korelaciju izvornih varijabli)

Setosa ima kraće i uže latice od ostalih 
vrsta, ali šire lapove.

Možemo raditi ANOVA-u na PC1 i PC2



(Linearna) diskrimantna analiza - LDA

Definira diskriminantne funkcije koje najbolje razdvajaju zadane (definirane) kategorije 
– maksimiziraju razliku između kategorija

Diskriminantnih funkcija ima i-1 (i je broj zadanih grupa)

Kategorijska varijabla je dio modela (to je zavisna varijabla u modelu)

Definiranu diskriminantnu funkciju može se primijeniti na jedinke za koje se ne zna kojoj 
kategoriji pripadaju, i to pokušati procijeniti – procjenjuje vjerojatnost da nepoznata 
jedinka pripada svakoj od definiranih kategorija

Pomaže procijeniti koliko svaka od izvornih varijabli pridonosi razlikovanju definiranih 
kategorija



Unaprijed definirane vjerojatnosti pripadanja 
svakoj od grupa – default=1/broj grupa

LD1 i LD2 su diskriminantne funkcije (2 su jer su 3 grupe)

Ovo su koeficijenti linearnih funkcija za svaki prediktor 
(izvornu varijablu)



Nakon što definiramo LDA, primijenimo ju na jedinke koje 
želimo klasificirati

Rezultat – vjerojatnost pripadanja svakoj od 3 vrste za 
prvih 6 jedinki (samo prvih 6 je prikazano)

Točnost predikcije – usporedba unaprijed definiranih 
vrsta i rezultata klasifikacije
98% jedinki je točno razvrstano

Tablični prikaz točnosti predikcije za 
svaku vrstu



4 muzejska uzorka DNA divokoze sa Velebita starija od 1940  (istrijebljena početkom 2 
stoljeća) genotipizirana mikrosatelitnim biljezima
Sadašnje populacije Balkanske i Alpske divokoze genotipizirane istim biljezima
Diskriminantna funkcija kreirana na „sadašnjim” uzorcima, i primijenjena na muzejske



K means clustering

Grupira podatke u K (zadano) grupa prema sličnosti.

Algoritam je jednostavan – najprije se nasumično generira k centroida (jezgri, središta) 
clustera, te se svaka jedinka pridaje clusteru čijem centroidu je najsličnija

Zbog nasumičnosti, dobro je proceduru ponoviti više puta i odabrati „najbolji” rezultat (R 
to radi automatski)

Kriterij odabira – najmanja suma kvadrata unutar klastera (wss)

Problem – kako znamo koji k zadati?

Ako nemamo predefiniran broj na umu, najpovoljniji K se odredi ponavljanjem postupka 
za različite vrijednosti K, i odabira najbolje opcije usporedbom suma kvadrata unutar 
klastera



Tražimo „koljeno” na grafu

K=3



Ponovimo analizu sa K=3

Tablica s rezultatom (isti postupak kao kod LD)


