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Abstract Monin–Obukhov similarity theory (MOST) is commonly used to model the wind-
speed profile at altitudes relevant to wind-power production (e.g. 10–200 m). Though reason-
ably accurate for unstable to weakly stable stratification, this approach becomes less accurate
under increasingly stable stratification, largely due to the constant-flux surface layer assumed
by MOST becoming shallower than the altitude range of interest. Furthermore, above the
surface layer, the Coriolis force has a considerable influence on the wind-speed profile (in
particular in the formation of low-level jets) that cannot be modelled using similarity theory.
Our goal is to compare the accuracy of alternative extrapolation models that are more physi-
cally appropriate above the surface layer. Using data from the 213-m Cabauw meteorological
tower in the Netherlands between July 2007 and June 2008, it is shown that MOST is accurate
only at low altitudes and low stability, and breaks down at high altitudes and high stability.
Local similarity is generally more accurate than MOST across all altitudes and stabilities,
though the model requires turbulent flux data at multiple altitudes that is generally imprac-
tical. In contrast, a two-layer MOST–Ekman model is found to be comparable to the other
models at low stability ranges and considerably more accurate in the high stability range,
while requiring only a measure of surface stability and the geostrophic wind.
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1 Introduction

1.1 Background

An accurate characterization of the near-surface wind-speed profile (up to altitudes of about
200 m) is important for a variety of wind-power applications, including wind-power resource
assessment and forecasting, and estimating shear loads on turbine blades. For this purpose, the
wind-power community uses a range of models of different degrees of complexity, including
general circulation models (e.g. Weather Research and Forecasting model) and microscale
models [e.g. Wind Atlas Analysis and Application Program (WAsP)]. However, such models
can be computationally and financially expensive and may be unsuitable for situations in
which quick and cost-effective methods for wind-power assessment are needed, such as
the preliminary assessment of a wind-power resource from field data. For cases in which the
measurement of near-surface wind speeds has been made (e.g. 10-m winds at nearby weather
stations, 60-m winds at meteorological towers), the extrapolation of near-surface winds to
hub-height using simple diagnostic models can often be a more practical and cost-effective
approach.

The most established of these simple models follows from considering wind-speed shear
within the framework of Monin–Obukhov similarity theory (MOST; Monin and Obukhov
1954), viz.

φm

( z

L

)
= κz

u∗
∂Ū

∂z
, (1)

whereφm is the non-dimensional wind shear, u∗ is the friction velocity, Ū is the time-averaged
wind speed, κ is the von Kármán constant (normally taken to be 0.4) and z is the height above
the surface. The dimensional quantity L is the Obukhov length,
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′
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where g is the acceleration due to gravity, θs is the surface potential temperature, and (w′
θ

′
)s

is the surface turbulent kinematic heat flux. Integrating Eq. 1 leads to,
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where ψm accounts for the influence of stability and is derived from φm ,
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ζ
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Although Eq. 3 is not strictly logarithmic when ψm �= 0, we follow common practice in
the literature and refer to the profile in Eq. 3 as the “logarithmic wind-speed equation”. To
derive Eq. 3, it is assumed that u∗ and L are constant with altitude. This assumption limits the
applicability of the logarithmic wind-speed profile to the atmospheric surface layer (ASL),
the lowermost portion of the atmospheric boundary layer (ABL) (approximately the bottom
≈ 10 %) in which changes in the turbulent fluxes with altitude are small (≈10 %) compared
to their surface values. Furthermore, Eq. 3 considers only wind speed and not separate wind-
vector components, and thus cannot model the rotation of the wind vector with altitude due
to the Coriolis force. Within the surface layer, this rotation is generally negligible and Eq. 3
is normally found to be a good representation of the wind-speed profile (Lange and Focken
2005; Emeis 2013).
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The height of the surface layer, h ASL , is strongly influenced by stability. Under neutral
and especially unstable conditions, vertical turbulent mixing is normally intense in the lowest
few hundred metres of the ABL, resulting in h ASL as great as 200 m or more (Stull 1988;
Garratt 1994). Under stable stratification, the suppression of vertical turbulent mixing results
in a rapid decrease of turbulent fluxes with altitude from the near-surface shear layer. Conse-
quently, the ASL depth is significantly lower, ranging from about 20–30 m under moderately
stable conditions to 1–5 m under extremely stable conditions (Stull 1988; Garratt 1994).
Under these conditions, and to the extent that the assumptions of MOST are still valid (Mahrt
1998), the logarithmic wind-speed profile is valid only at very low altitudes.

Under conditions of extreme stability, turbulent fluxes become so weak and intermittent
above a very shallow ASL that winds aloft decouple from the surface. Under this regime of ‘z-
less stratification’, the turbulent flux and intensity become localized and are no longer affected
by the distance from the surface, making the surface-based mixing length lm = κz/φm

assumed by MOST an inappropriate turbulent length scale (Nieuwstadt 1984; Mahrt 1999;
Mahrt and Vickers 2006; Sorbjan and Grachev 2010). In this regime, the importance of
physical mechanisms other than turbulence increases. Inertial oscillations in particular have
considerable influence and often lead to the formation of low-level jets (LLJs) below 200 m
(Baas et al. 2009; van de Wiel et al. 2010; Banta et al. 2013). Baroclinicity can influence
wind-speed shear and momentum mixing across all stabilities, while gravity waves become
influential under extreme stability (Mahrt 1999; Mahrt and Vickers 2006).

Despite the limitations of the logarithmic wind-speed profile in stable conditions, it is still
frequently used under these conditions for wind-power resource assessment and forecasting
at altitudes within a few hundred metres of the surface. Over the last two decades, it has
been used extensively in the field of wind-power meteorology (e.g. Troen and Petersen 1989;
Petersen et al. 1998; Burton et al. 2001; Lange and Focken 2005; Motta et al. 2005; Berg
2008; Monteiro et al. 2009; Emeis 2010, 2013; Giebel 2011; Drechsel et al. 2012). For
wind-power forecasting in particular, the logarithmic wind-speed profile has been used to
interpolate wind speeds between two NWP model levels to hub-height, extrapolate observed
wind speeds (e.g. tower measurements) to hub-height, or extrapolate the geostrophic winds
to hub-height using the friction velocity computed from the geostrophic drag law (Tennekes
1973).

1.2 Intent and Overview of Study

The intent of this study is to assess the accuracy of several alternative simple wind-speed
profile models at altitudes relevant to wind power (i.e. up to 200 m) and in conditions ranging
from weakly to very stable stratification. We only consider equilibrium models in this present
study, and therefore time-dependent phenomena such as LLJs cannot be modelled. The data
sources used are described in Sect. 2, and the wind-speed profile models described in Sect.
3. In Sect. 4, methods used to determine model parameters are described, and results of the
model comparison are shown in Sect. 5. A discussion is provided in Sect. 6, and conclusions
in Sect. 7.

2 Data Sources

This study makes use of data obtained from the Cabauw Meteorological Tower in the Nether-
lands, operated by the Royal Netherlands Meteorological Institute (KNMI). Measurements
of meteorological variables at 10-min resolution were obtained from July 1 2007 to June 30
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2008 (these data are available at http://www.cesar-database.nl). Wind speed and direction
measurements are made at 10, 20, 40, 80, 140, and 200 m, and temperature measurements
are made at these altitudes as well as 2 m. Surface pressure measurements are also provided,
which are used to calculate the potential temperature at different heights. Turbulent momen-
tum and kinematic heat-flux measurements made at altitudes of 5, 60, 100 and 180 m are
provided by KNMI. Surface geostrophic wind components at 1-h resolution derived from
surface pressure measurements in the regional vicinity of Cabauw are provided by KNMI and
are linearly interpolated to 10-min resolution. Observations for which 200-m wind speeds
<5 m s−1 are excluded from the analysis (representing 22 % of the data). Under these
conditions, the flux–gradient relationships are known to perform poorly (Mahrt 1998). Fur-
thermore, low wind-speed conditions are not of interest for wind-power applications, so the
accuracy of different wind-speed profile models under these conditions is not relevant in the
present context.

3 Description of Alternative Wind-Speed Profile Models

Here, we introduce different wind-speed profile models considered in this analysis, as well
as the data needed to use them for wind-speed extrapolation.

3.1 Local Similarity

Local similarity (Nieuwstadt 1984; Sorbjan 1988; Sorbjan and Grachev 2010) is an extension
of MOST above the surface layer. Its basic premise is that non-dimensionalized turbulence
statistics at a given altitude can be determined based on local observations in the same way
that statistics for the ASL are based on surface observations in MOST. This concept is applied
only in stable conditions, as turbulent transport in unstable conditions can be highly non-
local. Sorbjan (1988) argued that the forms of the similarity functions for local similarity and
MOST should be identical, so the wind-speed profile between two nearby altitudes can be
expressed as

Ū (z2) = Ū (z1)+
√
(τ/ρ0)l

κ

[
ln

(
z2

z1

)
− ψm

(
z2

Ll
,

z1

Ll

)]
, (5)

where (τ/ρ0)l and Ll correspond to the local momentum flux and Obukhov length, respec-
tively, and z2 > z1. As with MOST, local similarity is based on the assumption of continuous
turbulence and becomes invalid for weak and intermittent turbulence (i.e. very stable con-
ditions). Therefore, local similarity should be least accurate in the upper stability regimes
(though not as inaccurate as MOST). In this context, local similarity provides an upper limit
to the accuracy of similarity-based logarithmic wind-speed profile modelling, and serves as
a useful benchmark for comparing other wind-speed profile models.

3.2 Gryning Model

Modifications to the logarithmic wind-speed profile applicable within the entire ABL were
proposed by Gryning et al. (2007) and applied in a number of subsequent studies (e.g. Gryning
and Batchvarova 2008; Pena et al. 2010; Sathe et al. 2011, 2012; Kumar and Sharan 2012).
Gryning et al. (2007) proposed two key modifications: the first replaces u∗ in Eq. 1 with an
altitude-dependent turbulent momentum flux, expressed as a linear function of u∗ and the
ABL height, h ABL (Panofsky 1973),
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√
τ(z)/ρ0 = u∗

(
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)
. (6)

The second modification replaces the surface-layer form lm = κz/φm in Eq. 1 with a gener-
alized form of the Blackadar (1962) mixing length,

lm(z) = κ

(
φm(

z
L )

z
+ 1
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+ 1

h ABL − z

)−1

. (7)

The first term in Eq. 7 results in the standard MOST mixing length for small values of z; the
second term is a mid-boundary-layer mixing length (with L M BL << h ABL ) that places an
upper bound on the magnitude of lm . This term is set as a constant or is parametrized by other
means (e.g. through the geostrophic drag law in Gryning et al. 2007). The final term results
in the mixing length decreasing to zero at the top of the ABL, above which turbulence should
normally be negligible. Integrating the non-dimensional wind-speed shear equation with
these new parametrizations and using the Dyer and Hicks (1970) form φm = 1+βz/L (with
β = 5), Gryning et al. (2007) derive the following modified equation for stable conditions,

Ū (z) = u∗
κ

[
ln
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z

L

(
1 − z
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)
+ z

L M BL
− z2

2h ABL L M BL

]
. (8)

Results from Gryning et al. (2007) and subsequent studies (e.g. Pena et al. 2010; Emeis 2013)
have demonstrated the ability of the modified model to provide more accurate wind-speed
profiles within the ABL under all stabilities compared to the standard MOST approach.

The assumptions of the Gryning model limit its application under conditions of stable
stratification. First, the model is by construction applicable at heights below h ABL . Under
stable conditions, h ABL is relatively small and may not be well-defined (e.g. Stull 1988;
Seidel et al. 2010). For very stable conditions, Gryning et al. (2007) find an average h ABL

≈ 60 m, and above z = 60 m the model cannot be applied. Second, although the proposed
asymptotic formulation of lm is appropriate for neutral and unstable conditions, it is unable
to capture the very low mixing lengths observed in very stable stratification. The L M BL value
typically ranges between 40 and 150 m. In stable conditions lm can be significantly smaller
above the ASL, as low as even 1 m in extremely stable conditions (Stull 1988). A more
appropriate scaling of L M BL may be a linear dependence on the surface Obukhov length
(Delage 1974; Stull 1988) which would result in lower lm values and would still result in an
analytical expression for Ū (z) as in Eq. 8. Other limits for lm under stable stratification include
the Osmodov length or buoyancy length scale (Stull 1988), although neither of these result
in an analytic expression for Ū (z). Finally, the Gryning model is still founded on similarity
principles, and thus cannot model the rotation of the wind vector due to the increased influence
of the Coriolis force in stable conditions.

3.3 Ekman Layer and Two-Layer Models

Turbulent fluxes within the stable ABL are generally parametrized as diffusion processes
(e.g. u ′

w
′ = −Km∂ ū/∂z, with Km the diffusivity coefficient). In general, Km increases

approximately linearly with height in the ASL, reaches a maximum above the surface layer
and decreases asymptotically to zero at the top of the ABL. A common idealized approach is
to approximate Km as constant above the ASL (the so-called Ekman layer), which results in a
‘two-layer’ model in which Km increases linearly in the ASL up to h ASL and remains constant
above. Within the Ekman layer, considering the balance between the pressure-gradient force,
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Fig. 1 Wind hodograph of the two-layer model used in this analysis (adapted from Blackadar 1998). The
co-ordinate system is aligned with the ASL winds such that vASL = 0. The wind vector increases from (0, 0)
at the surface to (uSL H , 0) at h ASL with constant wind direction under a MOST-based logarithmic profile.
Above h ASL , the wind vector rotates along the Ekman spiral asymptoting to the geostrophic values uG and
vG . The angle between the near-surface wind and the geostrophic wind vectors is denoted α. When α = 0◦,
the wind profile is described entirely by the MOST-based logarithmic profile. When α = 45◦, the wind profile
is described entirely by the Ekman layer model

the Coriolis force and the turbulent momentum-flux divergence, and assuming stationarity,
results in the well-known Ekman layer equations,

u(z) = uG + (u BC − uG)e
−γ zT cos(γ zT )+ (vBC − vG)e

−γ zT sin(γ zT ), (9a)

v(z) = vG + (vBC − vG)e
−γ zT cos(γ zT )− (u BC − uG)e

−γ zT sin(γ zT ), (9b)

where uG and vG are the geostrophic wind vector components, u BC and vBC are the com-
ponents of the wind vector at some specified lower boundary zBC (for example, taken to
be the surface where the flow vanishes), γ = √

f/(2Km), and zT = z − zBC . The Ekman
layer model can be used to describe the entire wind-vector profile (i.e. zBC = 0) or can be
used within a two-layer MOST–Ekman framework (i.e. zBC = h ASL ). A hodograph repre-
sentation of this two-layer model is shown in Fig. 1 (Blackadar 1998). By accounting for
the Coriolis force, the Ekman layer equations result in the rotation of the wind vector with
altitude (the so-called Ekman spiral). The geometry of the Ekman spiral is such that a tan-
gent at any point along the spiral in Fig. 1 makes a 45◦ angle with the vector joining this
point to the geostrophic wind vector (Blackadar 1998), as shown in Fig. 1. Consequently,
the angle α between the wind below z = h ASL and the geostrophic wind is between 0 and
45◦. The Ekman layer profile is then a special case of the two-layer model when h ASL = 0
and α = 45◦. Provided Km is sufficiently small (in conditions of weak turbulence, such as
under stable stratification), both the Ekman layer and two-layer models result in low altitude
maxima in the wind-speed profile (evaluated to occur at z = 2.28γ−1 + zBC ). Furthermore,
the Ekman layer equations are particularly appealing in cases of surface decoupling (i.e. very
stable conditions), since the winds are not determined entirely by the near-surface wind.

The Ekman layer model has been used as an idealization in introductory studies of the ABL
(Stull 1988; Garratt 1994; Blackadar 1998; Etling 2002; Emeis et al. 2007; Donda et al. 2013)
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as well as recent conceptual studies of stable ABL phenomena such as LLJs (van de Wiel et
al. 2010; Baas et al. 2012). The two-layer model was discussed in Blackadar (1998) in the
context of deriving the geostrophic-drag law. Emeis et al. (2007) and Emeis (2013) applied this
two-layer model for wind-speed profile modelling up to hub-height in non-neutral conditions,

U (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(u∗/κ) [ln(z/z0)− ψm(z/L , z0/L)] , z < h ASL

G [cos(α)− sin(α)] , z = h ASL

G[1 − 2
√
(2)e−γ (z−h ASL ) sin(α) cos(γ (z − h ASL )

+π/4 − α)+ 2e−2γ (z−h ASL ) sin2(α)]1/2 z > h ASL

(10)

where G is the magnitude of the geostrophic wind vector. The expression for U (z) for the
case z = h ASL follows from Fig. 1, while the expression for U (z) for the case z > h ASL

follows from the Ekman layer equations (Eq. 9).
By equating the MOST-based and Ekman-based wind speeds and their vertical gradients

at the interface h ASL , Emeis (2013) derived two expressions relating the internal parameters
of the model,

u∗ = κG (cos(α)− sin(α))

ln(h ASL/z0)− ψm(h ASL/L , z0/L)
, (11)

u∗ = 2Gγ κh ASL sin(α)

φm(h ASL/L)
. (12)

In Emeis (2013), h ASL = 150 m and L = −200 m were specified for daytime and
h ASL = 30 m and L = 150 m for nighttime conditions. Equations 11 and 12 were then
solved for α and u∗, and the resulting mean wind-speed profiles were compared to those from
MOST-based and Gryning et al. (2007) models over an urban area using 1 month of data.
The results of this earlier study showed that the two-layer model provided the most accurate
mean wind-speed profiles of all the models considered. While Emeis (2013) demonstrated the
potential of this model, important issues were not addressed: the values of h ASL and L were
not justified, the sample size was relatively small (i.e. 1 month of data), and no indication of
scatter in individual wind-speed profiles (e.g. standard deviation, root-mean-squared error)
was provided. The present study extends the earlier results of Emeis (2013).

4 Methods

Having described the different wind-profile models, we now describe the application of these
models to the problem of wind-speed extrapolation. We consider model performance within
different stability regimes based on the bulk Richardson number determined between 200 m
and the surface (Table 1),

RiB = g

θavg

z200(θ200 − θsur f )

U 2
200

, (13)

where θavg is the mean potential temperature across all measurement altitudes between 2 and
200 m. Temperature measurements at 2 m are used for the surface values. The Beljaars and
Holtslag (1991) functional forms for ψm and ψh (the similarity function for heat) in stable
conditions are used throughout the analysis, as these forms were derived using Cabauw data,

ψm = −a
( z

L
− z0

L

)
− b

( z

L
− c

d

)
exp

(
−d

z

L

)
+ b

( z0

L
− c

d

)
exp

(
−d

z0

L

)
, (14)
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Table 1 Stability regime ranges used throughout this analysis, based on RiB between 200 m and the surface

Stability regime RiB criteria Occurrence (%)

Unstable RiB < 0 15.1

Weakly stable 0 < RiB < 0.05 29.2

Moderately stable 0.05 < RiB < 0.15 23.3

Very stable 0.15 < RiB < 0.5 22.0

Extremely stable RiB > 0.5 10.4

Table 2 Summary of models considered in this analysis, including observed and prescribed input parameters
as well as internally computed parameters

Model Observed input parameters Internally computed parameters

MOST (local z0) U10, z0, RiB,sur f Lsur f , ψm

Local similarity U10, τ5, τ60, τ100, τ180 ψm

L5, L60, L100, L180

Gryning U10, z0, RiB,sur f , G u∗, Lsur f , h ABL , φm , ψm

Ekman layer U10, τ100, G uG , vG , γ

Two-layer U10, RiB,sur f , G z0, u∗, Lsur f , h ASL , α, uG

vG , φm , ψm , γ

MOST (effective z0) U10, RiB,sur f , G z0, Lsur f , ψm

Numbered subscripts denote the height of the observed parameter

ψh = −
(

1 + 2

3
a

z

L

)3/2

+
(

1 + 2

3
a

z0

L

)3/2

− b
( z

L
− c

d

)
exp

(
−d

z

L

)

+b
( z0

L
− c

d

)
exp

(
−d

z0

L

)
(15)

with a = 1, b = 2/3, c = 5, and d = 0.35. One exception is the Gryning model (Eq. 8),
which by construction uses the simplified Dyer and Hicks (1970) form of φm that keeps the
number of terms of Eq. 8 to a minimum.

Both the input observational data as well as the methods used to determine internal para-
meters vary between models. A summary of observed and prescribed input parameters as
well as internally computed parameters for each model is shown in Table 2. We now turn to
more detailed descriptions of the methods used.

4.1 Correcting for Internal Boundary Layers

The immediate surroundings at Cabauw (within 200 m) are relatively flat while farther away
from the tower (within 1–2 km) surface roughness increases significantly due to the presence
of small towns and belts of trees (Verkaik and Holtslag 2007). This effect produces internal
boundary layers (IBLs) in the flow around Cabauw, and in particular results in lower than
expected turbulent flux values near the surface compared to higher altitudes (a detailed
discussion of IBL effects at Cabauw is provided in Verkaik and Holtslag 2007). This effect
is demonstrated in Fig. 2, in which mean turbulent flux profiles of momentum and heat at
Cabauw are displayed along with the corresponding median Obukhov length profile. The
median is displayed to reduce the influence of very small values of |L| when u∗ << 1 m s−1.
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Fig. 2 Vertical profiles of: a mean turbulent momentum flux, b mean turbulent kinematic heat flux, and c
median |L−1| for the stability regimes described in Table 1

As seen in Fig. 2a, the momentum fluxes do not decrease monotonically with altitude, as
would be expected on average for horizontally homogeneous conditions. Rather, the fluxes at
5 m are lower than those at 60 m across all stability regimes. The effect of IBLs at Cabauw is
evident in the kinematic heat-flux profile for unstable and weakly stable conditions (Fig. 2b)
but not for the other stability regimes, which show a monotonic decrease in magnitude with
altitude. The lower momentum flux near the surface results in lower magnitudes of the surface
Obukhov length (Fig. 2c). Consequently, the use of a surface flux-derived Obukhov length
in the logarithmic wind-speed profile (Eq. 3) overestimates the magnitude of stability aloft.
To correct for the influence of IBLs in extrapolating wind speeds using Eq. 3, we iteratively
solve for the ‘bulk’ Obukhov length at the surface, Lsur f , using the surface bulk Richardson
number, RiB,sur f , measured between 10 m and z0,

RiB,sur f =
(

10

Lsur f

) ln
(

10
z0

)
− ψh

(
10

Lsur f
, z0

Lsur f

)

[
ln

(
10
z0

)
− ψm

(
10

Lsur f
, z0

Lsur f

)]2 , (16)

where 2-m air temperatures are used as surface values. Using this approach, the Obukhov
length is effectively ‘tuned’ to be compatible with the particular z0 used. Numerous methods
exist for determining z0 by wind direction, with a large range of values depending on the
method (Verkaik and Holtslag 2007). Different choices of z0 result in substantially different
extrapolated wind-speed profiles, and we found that using z0 values provided by KNMI that
describe local roughness in 2.5◦ segments based on land-use maps, provided accurate wind-
speed profiles up to 80 m for the weakly stable case (i.e. conditions in which the assumptions
of MOST are expected to be valid). These z0 values are thus used in this analysis.

A comparison of the surface-flux measured L to the bulk-derived Lsur f is shown in Fig.
3 for stable conditions. As shown therein, the bulk-derived approach generally results in
larger values of Lsur f (i.e. more neutral) compared to the surface flux-derived values, thus
providing some correction for the influence of IBLs. One possible reason for this correction
is that temperatures at 2 and 10 m adjust less rapidly to the underlying surface than does
the turbulence at 5 m, and therefore are more representative of upstream roughness. The
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Fig. 3 Scatter plot of surface-flux-derived Obukhov length at 5 m and surface bulk Richardson-number-
derived Obukhov length. Also contoured are kernel density estimates of the joint probability density function
of the logarithm of these two variables. Contour lines denote boundaries within which 5 % (inner)–95 %
(outer) of the data are contained, and are contoured in 10 % increments

populations of the two variables in Fig. 3 largely follow a line parallel to the 1:1 line and can
therefore be connected by a multiplicative factor. An exception to this relationship occurs
for low values of Lsur f (i.e. very stable), for which low near-surface wind speeds result in
low values of �U/�z and therefore high values of RiB,sur f .

4.2 MOST (Local z0)

The bulk-derived Lsur f and the z0 values based on local land-use maps are used to extrapolate
10-m wind speeds using MOST. Specifically, we extrapolate 10-m wind speeds to a height z
by taking the ratio of Eq. 3 at z and Eq. 3 at 10 m,

Ū (z) = Ū10

[
ln

(
z
z0

)
− ψm

(
z

Lsur f
, z0

Lsur f

)]
[
ln

(
10
z0

)
− ψm

(
10

Lsur f
, z0

Lsur f

)] (17)

4.3 Local Similarity

For the local similarity model, momentum fluxes and flux-derived Obukhov lengths measured
at 5, 60, 100, and 180 m are linearly interpolated to the mid-points between wind measurement
altitudes (i.e. 15, 30, 60, 100, and 170 m). Wind speeds at 20 m are calculated from 10-m
wind speeds and 15-m fluxes, after which 40-m wind speeds are calculated from 20-m wind
speeds and 30-m fluxes, and so on. For all cases, we use the Beljaars and Holtslag (1991)
similarity function (Eq. 14) for locally stable conditions and, for locally unstable conditions,

ψm (ζ ) = π

2
− 2 arctan(x)+ log

(1 + x)2(1 + x2)

8
(18)

with x = (1 − 16ζ )1/4.
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4.4 Gryning Model

The z0 and Lsur f values used in the MOST (local z0) model are also used for the Gryning
model. The remaining parameters h ABL and L M BL are parametrized using the same approach
in Pena et al. (2010); specifically, h ABL takes the form (Tennekes 1973),

h ABL = C
u∗
f
, (19)

where C is a constant. Different values of C are used based on Lsur f , as in Pena et al.
(2010). The L M BL value is determined by equating the Gryning wind-speed profile (Eq. 8)
at z = h ABL to the geostrophic wind as expressed by the geostrophic drag law,

G = u∗
κ

√[
ln

(
u∗
f z0

)
− A

]2

+ B2. (20)

Different values of A and B are used based on Lsur f , as in Pena et al. (2010).

4.5 Ekman Layer Model

For the Ekman layer model, a bottom boundary condition of 10 m (i.e. zT = 10 m, u BC =
u10, vBC = v10 in Eq. 9) is used to be consistent with the other extrapolation approaches.
Appropriate use of the Ekman layer model requires that the geostrophic wind is rotated 45◦ to
the surface wind vector (Fig. 1). Since the observed 10-m and geostrophic winds are not in fact
generally separated by this angle, we define an ‘effective’ geostrophic wind vector with the
same magnitude of the observed surface geostrophic wind vector but rotated appropriately.
We parametrize the diffusivity coefficient Km based on momentum-flux measurements at
100 m (i.e. Km = Dτ/(ρo f ), with D a constant), assuming that flux data at 100 m best
represent atmospheric conditions in the bottom 200 m of the ABL. It was found that a value
of D = 4 × 10−3 provided the most accurate wind profiles in the higher stability regimes (in
which the Ekman layer model is expected to be most valid) and is used in this analysis. The
Ekman layer model breaks down when G < U10, which occurs in 2.3 % of the data. These
data are excluded from analysis.

4.6 Two-Layer Model

For the two-layer model, U10, RiB,sur f and G are input parameters, while the remaining five
parameters (z0, u∗, Lsur f , h ASL , and α) are solved iteratively using the following system
of equations: Eqs. 3 and 16 at 10 m, Eqs. 11–12, and a final equation describing h ASL as
a function of the other parameters. Zilitinkevich (1975) applied Rossby similarity theory
in stable conditions to derive an expression for h ABL as a function of the dimensionless
parameter μ = u∗/( f L),

h ABL = au∗
f

F(μ), (21)

where a is a constant, au∗/ f is the height of the ABL in neutral conditions, and F(μ) is a
function that must be specified. We assume that h ASL scales likewise in stable conditions
and use the same functional form as in Zilitinkevich (1975). Numerical experiments carried
out with a single-column momentum budget model assuming horizontal homogeneity and
no advection suggest the following expression for h ASL ,

h ASL = bu∗
f

F(μ) (22)
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Fig. 4 PDFs of h ASL for different stability regimes, as determined from Eq. 22

with b = 0.0127 and F = (
1 + 0.011μ+ 0.022μ2

)−1/4
. Probability density functions

(PDFs) of h ASL as determined from the two-layer model are shown in Fig. 4 for the different
stability regimes. In the weakly stable case, there is a broad range of h ASL values extending
up to roughly 120 m; low values correspond to weak winds and high values correspond to
strong winds. The range is much narrower in the extremely stable case, with values extending
up to roughly 40 m. The peak in the PDF at about 5 m corresponds to frequent periods of
strongly stable stratification, for example during summer nights.

Having determined the complete set of two-layer model parameters, we first extrapolate
the 10-m wind speeds up to h ASL using the logarithmic wind-speed equation (Eq. 17). The
wind speed at h ASL then becomes the boundary condition for the Ekman layer equations
(Eq. 9) that are applied above h ASL . The constant diffusivity coefficient Km for the Ekman
layer is determined using the MOST formulation evaluated at h ASL ,

Km(h ASL ) = u∗κh ASL

φm

(
h ASL
Lsur f

) . (23)

As was done for the Ekman layer model, we determine an ‘effective’ geostrophic wind vector
that has the same magnitude of the observed surface geostrophic wind and is rotated by the
angle α (as determined from the two-layer system of equations) to the 10-m wind vector.
Similar to the Ekman layer model, cases in which G < U10 are excluded from analysis. For
cases in which h ASL < 10 m (18.8 % of the cases), the two-layer system effectively reduces
to an Ekman layer model for a 10–200 m extrapolation. For these cases, the MOST-derived
form of Km (Eq. 23) is not appropriate for modelling the flow aloft, and in particular results
in excessively low values of Km due to the large magnitude of the φm term. For these cases, a
formulation for Km is used based on u∗ as determined from the two-layer system of equations.
It was found that Km = 0.0017u2∗/ f provided the most accurate results in extremely stable
conditions and is used here.

4.7 MOST (Effective z0)

The final model is equivalent to the MOST (local z0) model but uses the z0 and Lsur f values
determined from the two-layer system. We include this model to provide a direct comparison
of the MOST and two-layer models using the same parameters.
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Fig. 5 Modelled and observed mean wind-speed profiles for the different stability regimes

5 Results

We now assess the performance of the different wind-profile models described in the previ-
ous section under different stability conditions. Each wind-speed profile model uses different
sets of data that are subject to data gaps that occur at different times and altitudes. To make
meaningful comparisons between models, only time intervals for which the required observa-
tional data are available for all the models are considered. Since the Gryning model is invalid
when z > h ABL , we limit the Gryning wind profile up to 80 m in very stable conditions
and up to 20 m in extremely stable conditions, while the remaining wind-profile models are
extrapolated up to 200 m across all stability regimes.

In Fig. 5, observed and modelled mean wind-speed profiles (normalized to 10-m winds)
under different stability regimes are compared. In general, lower wind-speed shear is observed
in the lower stability ranges and higher wind-speed shear is observed in the higher stability
ranges. In the extremely stable range, the mean wind speeds at 140 and 200 m are close in
value, reflecting frequent cases of LLJs. Most models under consideration are accurate up
to 200 m in the weakly stable case, except for the Ekman layer model, which due to high
values of Km tends to underestimate wind speeds. The MOST models tend to underestimate
wind speeds at the higher altitudes. There is considerably higher divergence in the modelled
profiles in the moderately stable regime (Fig. 5b). Both MOST models and the Gryning model
underestimate wind speeds, while the local similarity model tends to slightly overestimate
wind speeds. Both the Ekman layer and two-layer models are accurate at all altitudes. Similar
results are found for the very stable regime (Fig. 5c), apart from the local similarity model that
tends to underestimate wind speeds at higher altitudes. The breakdown of MOST is evident in
the extremely stable case (Fig. 5d), in which both MOST models substantially overestimate
wind speeds at higher altitudes. Local similarity is accurate up to 50 m but underestimates
wind speeds at higher altitudes. The two-layer and Ekman layer models slightly overestimate
wind speeds at lower altitudes and slightly underestimate wind speeds at higher altitudes,
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Fig. 6 Box plots of the percentage error between modelled and observed winds (i.e. (Umod − Uobs ) /Uobs )
at different altitudes (rows) and stability regimes (columns). The red lines show the mean values, blue boxes
show the interquartile range, and black dotted lines show the total range excluding outliers. Acronyms for the
different models are as follows: M1 MOST (local z0), LS local similarity, GR Gryning, EK Ekman layer, TL
two layer, M2 MOST (effective z0)

though both models still accurately account for the general shape of the observed wind-speed
profile.

Box plots of the percentage error between modelled and observed winds (i.e. (Umod − Uobs)

/Uobs) at different altitudes and stability regimes are shown in Fig. 6. In general, the spread of
the model predictions around the observed wind speeds increases with stability and altitude.
At lower altitudes and low stability (i.e. upper-left quadrant in Fig. 6), the spread is rela-
tively comparable between models, apart from the Ekman layer model that shows the highest
spread. A similar trend is observed at lower altitudes and high stability (i.e. upper-right quad-
rant in Fig. 6), with the MOST (local z0) model generally showing the least spread. At higher
altitudes and low stability (i.e. lower-left quadrant in Fig. 6), the Ekman layer model shows
the greatest spread while the other models have comparable spread. At higher altitudes and
extreme stability, the MOST models show the greatest spread while the remaining models
show comparable spread.
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Fig. 7 Modelled and observed mean wind-speed profiles for cases in which an LLJ is observed

Modelled and observed mean wind-speed profiles for cases in which an LLJ is observed
are shown in Fig. 7. We identify an LLJ event when either the 10-min averaged 80-m or
140-m wind speeds are at least 10 % greater than the 200-m wind speed. As shown in
Fig. 7, none of the models is able to accurately model the wind profile in the presence of
pronounced LLJs. Similarity-based models are by construction unable to do so, as these
cannot simulate a decrease in wind speed with altitude. The Ekman layer and two-layer
models (which can model a decrease in wind speed with altitude) tend to underestimate
wind shear and on average do not produce a LLJ. Furthermore, both the Ekman layer and
two-layer models are equilibrium models (i.e. no time dependence) whereas the LLJ is a
time-dependent phenomenon, so the inability of these models to accurately account for the
LLJ is expected.

6 Discussion

This analysis has demonstrated that the two-layer model results in wind-speed profiles that are
of similar accuracy to other models in conditions of weakly stable stratification but become
substantially better as the stability increases. Local similarity was accurate in all but the
extremely stable regime and was the most data intensive of all the models, requiring flux data
at multiple altitudes. Such data are rarely available in the field, and thus the practical use of
the local similarity model is limited. Though the Gryning model showed some improvement
over the MOST (local z0) model, its limited altitude range of applicability limits its practical
use in very to extremely stable conditions. The two-layer model required only a measure of
the geostrophic wind (readily available through surface pressure observations) and a measure
of surface stability. Among all the models, the two-layer model provided the best balance of
low bias, low variance, and minimal input data for the entire stability range.

The different approaches to determining z0 used in this analysis emphasize the role of z0

more as a tunable boundary-condition parameter than a value with an unambiguous physical
meaning. For the MOST (local z0) model, we used z0 values based on local land-use data
to obtain accurate results for the wind profile at low altitudes. As a consequence, the model
was inaccurate in the upper stability ranges and at higher altitudes. Had we instead used
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regional z0 values, accuracy at higher altitudes would have improved, but accuracy at lower
altitudes would have decreased. For the two-layer model, z0 values were solved within the
system of equations with knowledge only of the 10-m wind speed, geostrophic wind speed
and surface stability. No explicit relation between z0 and wind direction was required, in
contrast to conventional land-use-based z0 approaches (Verkaik and Holtslag 2007).

Despite its improved accuracy relative to other models, the two-layer model remains a
highly idealized representation of lower ABL physics. The forms Km = Dτ100/(ρ0 f ) used
for the Ekman layer model and Km = 0.0017u2∗/ f used for the upper stability limit of the
two-layer model are rather simplified and contribute to the large scatter in model results,
particularly in the higher stability regimes in which u2∗ << 1 m2 s−2. More comprehensive
forms of Km (e.g. a function of F(μ) as in Rossby similarity theory) would likely lead to
improved accuracy in the wind profiles. The limit in accuracy of the two-layer model under
these improved parametrizations can be explored by comparing its results to a single-column
momentum budget model that uses more comprehensive representations of ABL turbulence
(though advection is still neglected). More detailed and physically appropriate parametriza-
tions for Km should result in more accurate wind-speed profiles. Such a comparison will be
the subject of future studies.

Another limitation of the two-layer and Ekman layer models is the frequent inconsistencies
between surface-pressure-derived geostrophic wind data and tower data. For example, for
unstable conditions with U200 > 10 m s−1 (for which h ASL should be near or above 200 m),
in 26.5 % of the observations the surface geostrophic wind speed was less than the wind
speed at 200 m. In this study, we assumed that the geostrophic winds were constant with
altitude, neglecting the possibility of baroclinic conditions in which geostrophic wind speeds
at 200 m may have differed from those at the surface by several m s−1. The use of surface
temperature measurements along with pressure measurements to obtain estimates of both the
surface pressure-gradient force and the temperature gradient would allow for a baroclinic
correction to these models. Alternatively, the use of pressure level winds from global or
regional models at appropriate altitudes would also provide a better representation of the
geostrophic flow above the surface.

All models considered in this analysis are based on equilibrium or steady-state conditions.
This is a reasonable approximation in the unstable, neutral and weakly stable ABL in which
the ABL adjustment time scales are short (on the order of 1h or less) (Mahrt 2014). However,
the steady-state assumption breaks down for the moderate to extremely stable ABL. The
formation and evolution of the LLJ at sunset is one striking example. Over the course of the
night, inertial oscillations cause wind vectors aloft to oscillate around their equilibrium value
with an amplitude equal to the degree of departure from equilibrium around the moment of
surface decoupling (van de Wiel et al. 2010). In some cases, the magnitude of the oscillation
can be several m s−1. As shown in this study, the equilibrium two-layer model was not
accurate in the presence of LLJs. Time dependence can be incorporated into the two-layer
approach by retaining the time dependence in the idealized force-balance equation (e.g.
van de Wiel et al. 2010). Future studies will assess the ability of the two-layer approach to
accurately model the evolution of the LLJ under such conditions.

7 Conclusions

We have considered the accuracy of various wind-profile models up to heights of 200 m in sta-
ble conditions using meteorological data from the 213-m tower at Cabauw. The logarithmic
wind-speed profile (based on Monin–Obukhov similarity theory) was found to be reasonably
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accurate up to moderately stable conditions but became increasingly inaccurate for more sta-
ble stratification due to the surface layer becoming shallower. Local similarity-based profiles
showed considerable improvement across all stability ranges, but were substantially more
data intensive. A fundamental limitation of any model based on similarity theory is that it can-
not account for the influence of the Coriolis force under strong stability and weak turbulence.
The Ekman layer model based on fluxes measured at 100 m was shown to be more accurate
than similarity approaches in the higher stability range. The two-layer MOST–Ekman model
provided the best balance of low bias and variance for the entire stability range, and required
only the geostrophic wind and surface bulk Richardson number as input parameters. These
results present a compelling case for the use of a two-layer model in wind-power resource
assessment and forecasting.
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