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ABSTRACT

Recent observations and numerical experiments indicate that during severe downslope windstorms, a large
region of slow turbulent air develops in the middle and upper troposphere while strong winds plunge underneath.
A mathematical model of this severe wind state is developed using Long’s equation. This theory predicts the
altitude of the turbulent air, the strength of the winds, and the mountain drag. In the presence of a wind reversal,
the theory indicates which wind reversal altitudes will lead to windstorm conditions. ’

1. Introduction

Reports of severe windstorms on the lee side of major
mountain ranges continue to appear, yet the aerodyn-
amics of these events is poorly understood. The moun-
tain wave studies of Lyra (1943) and Queney (1948)
almost certainly provide the starting point for these
investigations, but their results are not directly appli-
cable because of the small amplitude assumption used
in those analyses. In 1953 and 1955, R. R. Long pre-
sented a mathematically linear equation governing
steady mountain waves of large amplitude, along with
some solutions in bounded geometries. The utility of
this approach is widely recognized and other solutions
to Long’s equation have been reported; e.g., the solu-
tion in a half space by Miles and Huppert (1969).

Observations of severe downslope winds have come
from many sites around the world, but the most well-
known is the Boulder windstorm. This is due in part
to the strength of the phenomenon there and in part
to the concentration of atmospheric scientists in that
city. One nicely documented case is the 11 January
1972 windstorm (Lilly, 1978) in which research aircraft
discovered that the entire tropospheric airflow was de-
scending and passing over Boulder in a layer only two
kilometers deep!

Recently there have been two major attempts at
constructing a theory of downslope windstorms. Klemp
and Lilly (1975), extending the work of Blumen (1965),
using the small amplitude equations and accounting
for vertical variations in wind and stability, showed
that certain upstream conditions would lead to partial
resonance and thus to strong mountain wave response.
In their analysis, partial reflection from the tropopause
often played a role in this. Their theory seems to have
some predictive power although the estimation of the
wave phase shift and reflection coefficient needed to
determine resonance is inexact because of finite
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mountain height, streamline displacement, and tro-
popause thickness.

In a series of papers, T. L. Clark and W. R. Peltier
(1977, 1979, 1980, 1984) solved the equations of mo-
tion numerically for systematically chosen sets of initial
conditions. Their most important result was the iden-
tification of a separate “high drag” or “severe wind”
flow configuration. For example, with uniform wind
and stability upstream, and with a mountain height so
great that wave breaking will occur, the flow begins to
evolve in time approaching a new “severe wind” con-
figuration, very different from the linear theory or the
Miles and Huppert solutions of Long’s equation. This
new state is characterized by strongly accelerated low
level flow, a region of weak winds and strong turbulence
in the middle or upper troposphere, and weaker waves
aloft. They went on to reason, in a way roughly parallel
to Klemp and Lilly, that the high drag state is associated
with a partial resonance. In this case, they associated
the high drag state with wave reflection from the tur-
bulent region.

The present paper describes a new attempt to con-
struct a theory of severe downslope winds. The theory
makes use of Long’s equation in the strongly disturbed
low-level flow. An idealized picture of the severe wind
configuration, as derived from the observations of Lilly
(1978) and the numerical calculations of Peltier and
Clark (1979), is used to determine the appropriate up-
per boundary condition. Together these two features
lead to a theory similar to the internal hydraulic the-
ories of Yih (1965), Long (1970), Baines (1977) and
others, but with a few essential differences.

2. The severe wind configuration

Consider the idealized description of the severe wind
configuration shown in Fig. 1. The streamline or 6-
surface originating at some level Hj splits over the
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FIG. 1. Schematic of the idealized high-drag flow configuration,
derived from aircraft observations and numerical simulations. A cer-
tain critical streamline divides and encompasses a region of uniform
density. The disturbance aloft is small compared to that below.

mountain with the lower branch descending rapidly.
Above H, only weak waves are present, at least in com-
parison with the strong perturbations below. Between
the split streamlines, the air has little mean motion but
considerable turbulence and is well mixed with a po-
tential temperature equal to 6, (or a density of p; in a
Boussinesq model). Below the lower . streamline, the
flow is assumed to be smooth, nondissipative, hydro-
static, Boussinesq and steady. As the upstream flow is
.assumed to have constant speed U, and stability Ny,
the governing equations reduce to

8. +1%=0 2.1

(Long, 1955) where 6(x, z) = z — zg and z, is the up-
stream altitude of the streamline through the point
(x, z). The parameter / = Ny/U,. If the function &(x,
z) is known, the horizontal velocity can be obtained
from

u= Uyl —é,). 2.2)
The lower boundary condition is
olx, h(x)} = h(x) (2.3)

where A(x) describes the height of the terrain above the
zero level. The upper boundary condition is determined
as follows. If there is no (or small) disturbance.above
H,, the pressure at z = Hj is constant

p(x, Ho) = (24
If the air in the turbulent region is hydrostatic in the

mean and well mixed with p = p., then the pressure

along the lower branch of the split streamline is

p(x, Hy + 8;) = p* — pcgé. 2.5)

- where . is the (positive upwards) vertical displacement
of the lower dividing streamline. Bernoulli’s equation
along this streamline
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p+ % o1l + p.gz = constant (2.6)
with (2.4) and (2.5) gives
u(x, Hy + ;) = Uy 2.7)
or with (2.2) ' '
6,=0 at z=Hy+ .. 2.8)

Now, if we write the solution to (2.1) as
8(x, z) = A(x) coslz + B(x) sinlz

and mtroduce nondimensional coefficients and pa-
rameters i = lh, Hy = Hol, 8, = 6J, A = Al, and B
= Bi, then conditions (2.3) and (2.8) can be written as
three, canonical nonlinear equations

h = A cosh + B sinh (2.10)

0 = —A sin(H, + 6.) + B cos(Ho + 8) (2.11)

8. = Acos(Ho +6) + B sin(ﬂo +6).  (2.12)
Th;:se in turn can be rearranged to give

h = 8 [cos(Ho + 6. — h)] (2.13)

A =, cos(Hy + 8.) (2.14)

B = &, sin(Hy + 8,). (2.15)

With & and H, specified, (2.13) can be solved graphi-
cally or numerically by successive approximations to
find 6 and then (2.14) and (2.15) are used to find A

- and B. Solution curves for (2.13) are shown in F1g 2.

One tabulated solution curve (for Ho = 37r/2) is given
in Appendix A.

Two properties of these solutions are ev1dent from
(2.13)-(2.15). First, if a set 5., A, Bisa solution with
specified hand H,, then it is also a solution with hand
Hy + 27m (m an integer) as H, appears only within
trigometric functions with period 2. Second, for small
h and 6. the solutlon to (2.13)-(2. 15) is

= h/cosH,
A=h |
B = h tanH,. (2.16)

The singularities in (2.16) at Hy = 7/2 + wm correspond
to linear theory internal wave resonances with a free
upper boundary, but these points are important here’
only because they separate different types of finite am-
plitude behavior. , ’
In Fig. 2, the fourth quadrant is of particular interest
as it includes all the cases where a “positive” mountain
can produce transition to a shallower faster flow. Con-
sider, for example, an Ho between 7/2 and 3#/2. As
h increases from zero, 8, becomes negative. If the max-
imum mountain helght h,, is too small, 5. will return
to zero as-h does, in a reversible manner. If /,, is just
equal to the turning value for the given H,, the value
of 6, may continue to drop as h returns to zero. In the
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FiG. 2. Solution curves for Eq. (2.13) plotted as terrain height (h = hl) against deflection
of the critical streamline (6. = §./). Each curve is for a different upstream height (Hp
= Hyl). Curves in the fourth quadrant represent flows which can transition to faster flow
over positive terrain. For clarity, not all the curves are carried through the origin.

case where the final terrain height is the same as up-
stream, the new stream has simple properties

N

- w a ™ -
g=I -Z_4H

1 25 6L‘| 2 0
A=0, B=34, L.

2.17)
o(x,, z) = §,, sinlz

u(xy, z) = Ug(1 + &, coslz)

To allow for cases where the final terrain height drops
below its upstream value, the transition curves in Fig.
2 have been extended into the third quadrant. Exam-
ples of both situations are shown in Figs. 3 and 4. In

both cases 4, is chosen to be unity, the largest value
for which transitional solutions exist for positive
mountains. These plots correspond to curve n = 9 in
Fig. 2, with Hy = 37/2.

The vertical coordinate in Figs. 3 and 4 is the non-
dimensional Z = /z, but dimensional values are also
given for the case Uy = 20 m s™! and N, = 0.01 s™\.
Interpreted this way, there is a qualitative similarity
between these figures and the Boulder storm observa-
tions and previous numerical simulations. The initial
height of the dividing streamline is reasonable. The
descent of the lower dividing streamline begins over
the point where the mountain begins to rise. This de-
scent becomes more rapid over the mountain peak.
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_ FIG. 3. Transitional flow over a mountain of maximum height
h» = 1 which returns to its original height downstream. Dimensional
values of altitude and wind speed are given for the case of Uy = 20
ms™', Np=0.01s".

The final downward displacement of the dividing
streamline is a large fraction of the initial layer depth.
The air speed after transition is greatest near the ground
and is several times the upstream value. Unfortunately,
the theory does not show what happens farther down-
stream as the flow rebounds, presumably in a turbulent
way, to fill the troposphere. Dissipation, unsteadiness,
or nonhydrostatic behavior in that region would in-
validate (2.1). Such effects might even begin before the
mountain is past.

Another measure of strength of the transitional flow
is the pressure drag on the mountain per unit length.
This can be unambiguously defined only for a case like
Fig. 3 where the mountain rises out of a common plain.
Then an expression for the drag can be derived from
a control volume momentum budget (see Appendix
B:)’

N2
D= 16— (Ho — H,)°. (2.18)
z %
(Km)
10{ |5 ,
8{ 14 .
64 3
-—> g
41 27 \
-
21 11 .
04— 0 > <
1 N
-2 -4 223N
20 105
(mys) )

FiG. 4. As in Fig. 3 but for a mountain which drops to new lower
level, allowing a further acceleration of the surface winds.
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Using (2.17) and parameter settings Up = 20 ms™', No
= 0.0l s7', h,, = 2 km so that Hy = 3w/2, H, = 7/2,
(with p = 1 kg m?) the value

D = 4136 X 10* kg s2

is obtained corresponding to Fig. 3. This is equivalent
to an average pressure difference across the mountain
of 21 mb.

Consider now the conditions under which transi-
tional flow can exist. From Fig. 2 it is clear that for
each mountain height 4,, only one Hy is allowed (+27m
of course). This relationship is shown explicitly in Fig.
5. Since A, is predetermined, the corresponding Hy
must be selected by the flow. For example, if # = 0.9,
H, will be about 4.5. Since nothing in the present theory
indicates when mountain airflow will evolve into the
severe wind state, we must speculate with Clark and
Peltier (1984, hereafter CP84) that this will occur for
values of # > 0.85, the Miles and Huppert value for
wave breaking. Figure 5 then predicts that Hy will lie
between about 4.4 and 4.71, values just slightly less
than 37/2.

Values of Hy near 37/2 were found by Clark and
Peltier (1977, 1979) in their numerical experiments
but they offered a different explanation. They noted
that for a symmetric mountain, initial wave breaking
begins near Z = 37/2, and suggested that this would
carry over to the final high drag state. The present
analysis suggests instead that this height is an intrinsic
property of the severe wind configuration. A method
for testing this point was suggested by Lilly and Klemp,
1980. They proposed using an asymmetric mountain
so that the initial wave breakdown would occur at a
different level. This numerical calculation has appar-
ently not yet been carried out.

I
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FIG. 5. Corresponding values of mountain height (h) and upstream
altitude of dividing streamline (H,) which allow transition. These
values are taken from the maxima in Fig. 2. Arrow “MH” indicates
the mountain height where breaking begins in Long’s problem ac-
cording to Miles and Huppert (1969). Naturally occurring high drag
states would probably lie near this point or beyond (shaded region).
Arrow “CP84” indicates the mountain used by Clark and Peltier
(1984), with breaking near a wind reversal in the environment.
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According to Fig. 5, transitional flows for mountains
higher than 4,,, = 1 are not possible. The interpretation
of this is not clear but a plausible suggestion is that for
higher mountains a blocked layer might form upstream
returning the effective 4,,, now measured from the top
of the blocked layer, to unity. The choice of 4,, = 1 as
a criterion for blocking is quantitatively not very dif-
ferent than that arising from other types of analysis.

Another constraint in the present model is the onset
of Kelvin-Helmholtz instability in the accelerating
flow. The stability criterion Ri = N%/U.? > }, will first
be violated along the upper streamline of the descend-
ing flow z = Hy + 6. as N = N, there, and |U,| is a
maximum. The Ri decreases smoothly along this
streamline, reaching a minimum at the downstream
position (x;). Using (2.1) and (2.2), we can write

Ri(x, Hp + 6;) = 6.2 (2.19)
so that Kelvin-Helmbholtz instability is possible when
the streamline drops to where |6.| > 2 (note where this
lies on Fig. 2). For cases like Fig. 3 where A(x,) = 0,
the Richardson number decreases to (using 2.17)

Ri(x,, H,) = (Hp — 7/2)2. (2.20)

Thus for Hy > 2 + #/2 (i.e., h, = 0.5 from Fig. 5)
Kelvin—-Helmholtz instability is likely to begin aloft
before the end of the mountain is reached.
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3. Flows with a wind reversal

In the previous section we have considered only
uniform incoming flow. Clark and Peltier (1984) sug-
gested that a deeper understanding could be obtained
by including a wind reversal in the environment as a
way to preset the breaking level. They followed this up
with a series of numerical experiments with wind re-
versals at different altitudes (z.) and a mountain height
chosen so that wave breaking will only occur in the
slower flow near the wind reversal. The results are quite
remarkable (Fig. 6). Most values of z, give a drag near
the linear theory value D = (w/4)pNUh,?, or the Long’s
model value, but in two narrow peaks it increases by
a factor of 3 or more.

The present theory can be used to partially explain
these results. With values 4,, = 300 m, Uy = 8 m s™/,
No = 0.02 s™' the nondimensional £,, = 0.75. From
Fig. 5 this requires H, = 4.15, 10.43, etc., for transi-
tional flow. The hypothesis H, = Z, allows these values
to be plotted (as bars) on Fig. 6. The magnitude of the
drag, computed from (2.15), is indicated by the height
of the bar. The theory gives no prediction of the range
of the high drag regime so the width of the bar is ar-
bitrarily chosen. The determination of this range would
probably require a time dependent model capable of
describing the upstream adjustment processes. In a nu-
merical model, the range of Z, which allows strong re-
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FIG. 6. Computed drag for flow with a wind reversal, from CP84, and the predictions of two
theories. Columns indicate position and magnitude of hydraulic high drag flow with the hypothesis
Hy=z,and with =300 m, U =8 ms™!, N = 0.025~". Arrows indicate position of linear theory
resonances associated with a free reflection at z.. Horizontal error bar indicates uncertainty in

the effective z, due to the width of shear zone.
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sponse may depend on the horizontal dimension of
the domain and the nature of the lateral boundary
conditions. '

It appears from Fig. 6 that the theoretical predictions
qualitatively agree with the numerical results of CP84.

Quantitatively, the predicted drag is too high and the -

peak slightly offset. The offset is explained if the divid-
ing streamline is assumed to fall within the shear zone,
but slightly below the zero wind point z,. in the basic
state. The lower drag in the numerical experiment
might be due to onset of the turbulent jump before the
mountain is past.

Clark and Peltier (1984) explain these peaks as res-
onances associated with wave reflection from the crit-
ical level. This would lead to linear theory singularities
at Z, = w/2, 3n/2, 57/2, Tw/2, etc. (that is z,/\, = 0.25,
0.75, 1.25, 1.75, etc.) if the reflection is from a “free”
constant pressure boundary with a reflected phase shift
of x. These values are shown as arrows in Fig. 6. A
serious objection to the resonance cavity idea, then, is
the prediction of a high drag peak near z/\; = 1.25
and its absence in the numerical results.

What is the relationship between the linear theory
“free boundary” resonances and the finite amplitude
theory? As shown in Section 2, the linear resonances
do appear as special points in the finite amplitude hy-
draulic theory as we have used a free boundary there
as well. In the hydraulic theory, however, the.free
boundary condition is not applied at a fixed level giving
a coherent reflection, but rather along a greatly de-
flected streamline of the flow. The observed clustering
of Hy values near 3x/2 has nothing to do with the linear
resonance there but in a sense is a finite amplitude
extension of the /2 singularity (see Fig. 5 for evidence
of this).

4. Flows with variable wind and stability

The outstanding problem regarding severe down-
slope winds is the prediction of when they will occur.
The present theory, while it can predict certain aspects
of the severe wind structure, is primarily a consistency
analysis and provides little help here. One simple ar-
gument would be to assume that the CP84 result-applies
more broadly; that is, whenever wave breaking is pre-
dicted from a linear or Long’s Model solution, the flow
will evolve instead to a severe wind configuration. If,
using the language of nonlinear systems analysis, the
severe wind configuration has a large enough “domain
of attraction,” it would not particularly matter exactly
where or how the wave breaking began. This possibility
would allow the Klemp and Lilly (1975) linear resonant
reflection condition to play a role in the prediction of
severe winds even though it probably has no application
to the final severe wind configuration.

‘Another way in which the atmospheric structure
might trigger the severe wind state is through the action
of a middle level inversion. The ubiquity of this feature
was discussed by Brinkman (1973) in relation to
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Boulder windstorm climatology. If the Froude number
based on the height and strength of this inversion (Fr
= U/Vg'H) is less than one but not too small, then
hydraulic acceleration and transition of the classical
type could lead to a jump on the lee side, initiating the
evolution to the severe state.

Further discussion of triggering and evolution to a
severe state is probably premature. It is based on an
untested assumption (that all wave breaking cases
would evolve to severe conditions) and ignores the ef-
fect of atmospheric structure on the final severe wind
state itself. Further numerical experiments of the type
done by Clark and Peltier are needed. The role of at-
mospheric structure and the possibility of hysteresis
need to be investigated.

5. Conclusion

The purpose of this analysis is to provide a mathe-
matical description of the severe wind state. For uni-
form incoming flow, the theory can reasonably predict
the height of the dividing streamline, the depth of the
turbulent zone, the wind speed and pressure as func-
tions of position, the location of Kelvin-Helmholtz
instability, and the total drag. For a subcritical moun-
tain height (A, < 0.85) and with an environmental
wind reversal, the theory reasonably predicts the height
of the wind reversal level which will lead to a severe
wind state, and the structure and drag of that state.
The theory is currently limited to uniform incoming
wind and stability and therefore provides only a qual-

- itative understanding of real atmospheric flows. Fur-.

thermore, by itself, it does not offer a way to predict
the occurrence of severe downslope winds.

The success of the theory leaves us with a new view
of the dynamics of severe downslope winds. The severe
wind state exists by means of an interaction between
strong smooth stratified flow and a deep turbulent
mixed “dead” region.
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the National Science Foundation under Grant ATM-
8303632.

APPENDIX A
A Tabulated Solution Curve

For use in constructing sample solutions, one so-
lution curve is given below in tabular form. These so-
lutions are for Hy = 3w/2, the case plotted in Figs. 3
and 4.

h & 4 B & 4 B

—4.48 —4.13 —1.46
—426 -3.81 —1.88
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h 0c A B Oc A B
-0.8 —4.14 -347 -2.26
-0.7 -4.02 -3.08 -—2.57
-0.6 -390 -2.66 —2.82
-0.5 -3.78 -—-2.23 -3.03
-0.4 -3.65 —-1.79 —-3.20
-0.3 -3.53 -1.32 -3.26
-0.2 —3.40 -0.88 —3.31
-0.1 -327 -0.43 -3.21
0.0 0 0 0 -3.14 0 -3.14

+0.1 —-0.27 0.08 0.26 -3.01 041 -3.04
02 -—-037 0.13 035 -2.87 077 =277
03 —-0.44 0.19 040 -2.73 1.09 -2.52
04 -0.51 025 044 -2.59 1.36 —2.19
0.5 —-057 031 048 —244 1.58 -—1.85
06 —-064 038 0.51 -2.28 1.74 —1.47
07 -071 046 054 -2.10 1.81 —1.06
08 -0.80 0.57 0.56 -—1091 1.80 —0.63
09 -093 075 0.56 —1.67 1.67 —0.17
095 —-1.04 090 0.53 -1.51 1.51 +0.09
097 —1.11 100 049 -—-1.42 1.40 +0.21
098 -—1.17 1.08 045 —-1.35 1.32 4+0.30
0.99 No Solution

APPENDIX B

The Initial and Final Density and Pressure
Fields and Mountain Drag

In the undisturbed flow the density and pressure are
given by

po = pc + pAz — Ho)
1
po=p* + gpdHo — 2) — 5 gpAz - Hy)?
where p§ the pressure at z = H,. After transition to an

accelerated flow with 4 again equal to zero,
P = pc+ pfz — 6, — HO)

P = pt + godH, — 2) + gp,

2
where we have used cos/H, = 0 and p¥ = p§ + go{H,
- H)).
Using these, we note that the horizontal pressure

force on the layer upstream and downstream of the
obstacle is

H f
PFy = p§ Hy + 3 gpcHo? — A gp:-Ho®

2 _ 2
X [H_'—f_ —~ (H, — Ho)l™" coslz — Hy(H, — Zl)]

1
PF, = ptH, +§chH12

H3 H,?
+ gpz[T‘ ~ (H, - Hol* ~ Ho 7‘].
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The momentum flux crossing the same stations: .
MF, = PUozHo
MF, = pUZ{H, — 2H, - Ho) + (H, ~ Ho)212H1/2]}-
Finally, the drag:

D = (PF, — PF\) + (MF, — MF,) — F*

where F* = P§(Hy — H)) + go{dHy — H,)%/2 is the
pressure force on the layer from the mixed region. This
reduces to

NZ
D ="~ (Ho — H\Y.

Note that this formula also applies if /(x) returns to
zero without causing flow transition, but in this case
H,=Hyand D = 0.
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