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1 Uvod

1.1 Teorija skupova u matematici

Teorija skupova grana je matematike koja se bavi skupovima. Kao što znamo, skupovi se
koriste i u svim drugim granama matematike. Intuitivno skup zamišljamo kao apstraktan
pojam koji ima elemente i mislimo da je jednostavan za pojmiti.

Ipak, naivno poimanje skupova dovodi do paradoksa, kao što je Russellov paradoks koji
slijedi

Paradoks. Neka je R skup svih skupova koji nisu elementi samih sebe. Fromalno to možemo
zapisati kao

R := {x | x /∈ x}.

Pitamo se je li R ∈ R? Pretpostavimo da je R ∈ R. Budući da je po definiciji R skup svih onih
skupova koji nisu u samom sebi, mora biti R /∈ R. Slǐcno, ako R /∈ R, onda R, budući da nije
element samog sebe, mora biti ∈ R. Dakle, niti jedno nije moguće.

Zbog ovakvih logičkih paradokasa moramo biti oprezniji pri poimanju skupova, tj. ne
možemo svaku kolekciju elemenata koju nekako opišemo nazivati skupom. Zato je po-
trebna teorija skupova, disciplina koja jasno odred̄uje što možemo smatrati skupom, osigu-
ravajući da ne dod̄e do paradoksa, a opet da skupovi budu dovoljni za potrebe matematike.
Utemeljio ju je njemački matematičak Georg Cantor u drugoj polovici 19. stoljeća.

Da se strogo logički definira teorija, nasuprot naivnoj teoriji skupova uvodimo aksiomat-
sku teoriju skupova. Ubrzo se pokazalo da je teorija skupova vrlo moćna i da se gotovo
cijela matematika može utemeljiti na njoj. Zato ova disciplina spada u temelje matema-
tike. Iako je u principu moguće da elementi skupova budu matematički objekti koji sami
nisu skupovi, pokazalo se da to nije potrebno te će svi objekti u ovoj teoriji biti skupovi.

Najpoznatija aksiomatska teorija je tzv. Zermelo–Fraenkel teorija skupova (sa ili bez ak-
sioma izbora) koju su složili matematičari Ernst Zermelo i Abraham Fraenkel početkom
20. stoljeća. Ovdje ćemo proučavati tu teoriju s uključenim aksiomom izbora.

Iako su skupovi dovoljni za većinu matematike, postoji i šira teorija, tzv. teorija klasa.
Klasama se smatraju neke kolekcije skupova koje ne mogu biti skupovi. Takve teorije nužne
su primjerice za teoriju kategorija. Ipak, ovdje se nećemo baviti klasama.
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1 Uvod

1.2 Jezik teorije skupova - osnove matemati£ke

logike

Za formalno zapisivanje izraza u teoriji skupova koriste se logički simboli tzv. logike prvog
reda. To su logičke operacije (∧, ∨, . . . ), varijable, kvantifikatori (∀, ∃), itd. Definirajmo
ih formalnije.

• Varijable su simboli koji zamjenjuju objekte. Za njih najčešće koristimo velika i mala
slova latinične abecede (x , y ,. . . ), ali ponekad koristimo i grčka ili druga slova. Svi
logički objkti za nas će biti skupovi.

• Tvrdnje o objektima nazivaju se formule ili logǐcki izrazi.

• Ako su x i y varijable, izrazi x ∈ y i x = y su formule, tzv. atomarne formule. Izraz
x ∈ y čitamo “x je element od y”, a x = y čitamo “x je jednako y”.

• Pomoću logǐckih operacija od jednih formula φ i ψ gradimo nove formule. Logičke
operacije koje ćemo koristiti su ¬φ (“nije” φ), φ ∧ψ (φ “i” ψ), φ ∨ψ (φ “ili’ ψ’),
φ→ψ (“iz φ slijediψ”, φ “implicira”ψ) i φ↔ψ (φ “je ekvivalentno s”ψ, φ “ako
i samo ako” ψ). Kada su tako složene formule istinite znamo iz prijašnjih kolegija.

• Varijable o kojima logički izraz nešto tvrdi nazivamo slobodnim varijablama. Istini-
tost takvog izraza u biti ovisi o tome koji objekt označava varijabla.

• Ako je φ logički izraz tada pomoću kvantifikatora gradimo nove izraze ∀x φ (“za
svaki x vrijedi φ) i ∃x φ (“postoji x takav da vrijedi φ”). Ako je x bio slobodna
varijabla od φ on više nije slobodna varijabla od ∀x φ i ∃x φ jer izraz u cjelini ne
govori o toj varijabli. Takvu varijablu nazivamo vezana varijabla

Ako je potrebno u pisanju koristimo i zagrade. Naveli smo u načelu sve potrebne sim-
bole za zapisivanje izraza. Njihovo je značenje intuitivno poznato. Ipak, u formalnoj logici
formalizirani su intuitivno jasni načini zaključivanja. U to ovdje nećemo duboko ulaziti.
Spomenimo samo da se koriste aksiomi jednakosti koji formaliziraju intuitivno značenje
“biti jednak”. Primjerice, za logički izraz φ(x) koji ima slobodnu varijablu x i nema vari-
jablu y (niti slobodnu niti vezanu) imamo aksiom

x = y → (φ(x)→ φ(y)) (1.1)

gdje je φ(y) isti taj logički izraz u kojem smo sve pojave varijable x zamijenili s y . Logičke
aksiome nećemo navoditi med̄u aksiome skupova nego ćemo ih smatrati jasnima.

Sve možemo zapisati u do sada objašnjenom jeziku. Ipak, za brže i jasnije zapisivanje
koristimo neke pokrate. Slijedi vjerojatno nepotpuna lista logičkih pokrata:

• ¬(x ∈ y) skraćeno pišemo x /∈ y ,

• ¬(x = y) skraćeno pišemo x ̸= y;
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1.2 Jezik teorije skupova - osnove matematičke logike

• ∀x(x ∈ y → φ) skraćeno pišemo (∀x ∈ y)φ i čitamo “za svaki x iz y vrijedi φ”;

• ∃x(x ∈ y ∧φ) skraćeno pišemo (∃x ∈ y)φ i čitamo “postoji x iz y takav da vrijedi
φ”;

• ∃y∀x(x = y ↔ φ) gdje y nije slobodna varijabla u φ skraćeno pišemo ∃!x φ i
čitamo “postoji jedinstveni x takav da vrijedi φ”.

Nadalje, za bilo koji logički izraz možemo uvesti skraćenu oznaku. Bitno je samo da se u
oznaci spomenu sve slobodne varijable. Neke ćemo uvoditi u nastavku, a neke vjerojatno
već poznate navedimo:

• x ⊆ y (“x je podskup od y”) je pokrata za ∀z ∈ x z ∈ y , što smo već uveli kao
pokratu za ∀z(z ∈ x → z ∈ y);

• x ⊂ y (“x je pravi podskup od y”) je pokrata za x ⊆ y ∧ x ̸= y;

Konačno, ako za logički izraz φ sa slobodnom varijablom y dokažemo ∃!y φ, tom jed-
ninstvenom y-u možemo dati naziv i oznaku koja ovisi o ostalim sobodnim varijablama
od φ. Primjere ćemo uvoditi u nastavku.
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2 Osnovni aksiomi

2.1 Aksiom ekstenzionalnosti

Prvi aksiom koji uvodimo formalizira intuitivnu predod̄bu da je skup potpuno odred̄en
svojim elementima, tj. ako znamo elemente skupa, znamo sve o njemu.

Aksiom 1 (Aksiom eksenzionalnosti). Ako dva skupa imaju iste elemente, oni su jednaki.
Formalno

∀z(z ∈ x↔ z ∈ y)→ x = y.

Mogli smo uvesti i obostranu implikaciju↔ pa da iskaz aksioma izgleda kao definicija
jednakosti. To med̄utim nije potrebno jer suprotna implikacija slijedi iz logičkih aksioma
jednakosti, usporedi (1.1).

Aksiom ekstenzionalnosti glavno je orud̄e za dokazivanje jednakosti skupova. Za do-
kazati da su x i y jednaki potrebno je dokazati da imaju iste elemente. To ćemo obično
utvrd̄ivati za dva smjera zasebno, tj. utvrdit ćemo da je svaki element od x element i od
y , i obrnuto. Formalno, koristit ćemo ekvivalentan iskaz aksioma

(∀z(z ∈ x → z ∈ y)∧∀z(z ∈ y → z ∈ x))→ x = y.

Koristeći pokratu s podskupovima to možemo zapisati kao

x ⊆ y ∧ y ⊆ x → x = y.

2.2 Aksiom praznog skupa

Aksiom 2 (Aksiom praznog skupa). Postoji skup koji nema elemenata. Formalno

∃x∀y y /∈ x .

Propozicija 2.1. Skup koji nema elemenata je jedinstven, formalno ∃!x∀y y /∈ x.

Dokaz. Koristimo aksiom ekstenzionalnosti. Pretpostavimo da su x1 i x2 dva skupa koji
nemaju elemente. Potrebno je dokazati da je za svaki z z ∈ x ekvivalentno sa z ∈ y . No
obje su tvrdnje uvjek netočne, pa time i ekvivalentne. Zato je x1 = x2.

Zbog jedinstvenosti tom skupu možemo dati ime i oznaku u sljedećoj definiciji.

Definicija 2.2. Jedinstveni skup bez elemenata zovemo prazan skup i označavamo ;.
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2 Osnovni aksiomi

2.3 Aksiom partitivnog skupa

Aksiom 3. Za svaki skup postoji skup njegovih podskupova, tj.

∀x∃y∀z(z ∈ y↔ z ⊆ x).

Slično kao za prazan skup, dokazat ćemo da je za svaki x takav skup jedinstven i dati
mu ime i oznaku. Postupak je već standardan, pa detalje ostavljamo za domaću zadaću.

Propozicija 2.3. Za svaki x skup njegovih podskupova je jedinstven.

Dokaz. D.Z.

Definicija 2.4. Za skup x skup njegovih podskupova nazivamo partitivni skup od x, u oznaci
P (x).

2.4 Aksiom para

Aksiom 4. Za svaka dva skupa x i y postoji skup kojem su x i y jedini elementi, tj.

∀a∀b∃y∀z(z ∈ y↔ (z = a ∨ z = b)).

Propozicija 2.5. Za svaka dva skupa x i y skup kojem su x i y jedini elementi jedinstven je.

Dokaz. D.Z.

Definicija 2.6. Za skupove x i y skup kojem su x i y jedini elementi jedinstven nazivamo
(neured̄eni) par od x i y, u oznaci {x , y}.

Ako je x = y taj par zovemo singleton od x, u oznaci {x}.

Primijetimo da je {x , y}= {y, x}.

2.5 Aksiom unije

Aksiom 5. Za svaki skup x postoji skup kojem su elementi elementi elemenata od x, tj.

∀x∃y∀z(z ∈ y↔ (∃t ∈ x)(z ∈ t)).

Propozicija 2.7. Za svaki x taj je skup jedinstven.

Dokaz. D.Z.

Definicija 2.8. Za skup x taj skup nazivamo unija od x, u oznaci ∪x.
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2.6 Shema aksioma separacije

Ovdje definirana unija jest unija svih elemenata od x . Uniju smo vjerojatno prvi put
upoznali kao oparaciju dvaju skupova koju sada definiramo kao:

x ∪ y := ∪{x , y}. (2.1)

Primijetimo da su za definiranje ove operacije potrebna dva aksioma, aksiom para i aksiom
unije.

Aksiomom para mogli smo konstruirati dvočlane skupove. Aksiom unije zajedno s ak-
siom para omogućuje nam da konstruiramo i veće skupove:

{a, b, c} := ∪{{a, b}, {c}},

{a, b, c, d} := ∪{{a, b, c}, {d}} . . .

Propozicija 2.9. Za svaki skup x vrijedi ∪P (x) = x.

Dokaz. Dokazujemo dva smjera, da je x ⊆ ∪P (x) i x ⊇ ∪P (x). Najprije uzmimo a ∈ x .
Treba dokazati da postoji t ∈ P (x) takav da je a ∈ t. No možemo uzeti cijeli x ∈ P (x) i
znamo da je a ∈ x .

Obratno, uzimom a ∈ ∪P (x). To znači da posoji t ∈ P (x) takav da je a ∈ t. Po
definiciji partitivnog skupa je t ⊆ x , pa je a ∈ x .

2.6 Shema aksioma separacije

U naivnoj teoriji skupova skupove smo željeli definirati svojstvom, tj. logičkim izrazom s
jednom slobodnom varijablom koji je ovisno o toj varijabli istinit ili lažan. No takvo nas je
razmišljanje dovelo do paradoksa. Ipak, ako se ograničimo na već poznati skup, definiranje
njegova podskupa pomoću svojstva ne dovodi do paradoksa, te se uvodi kao aksiom.

Aksiom 6 (Shema aksioma separacije ili Shema aksioma podskupa). Neka je φ(x) logǐcka
formula sa slobodnom varijablom x i bez slobodne varijable b. Tada

∀a∃b∀x(x ∈ b↔ (x ∈ a)∧φ(x)).

Navedeno nije jedan aksiom, nego po jedan aksiom za svaku logičku formulu φ. Zato
kažemo shema aksioma. Nije moguće pisati ∀φ jer φ nije objekt nego formula, a kvanti-
ficirati se mogu samo objekti u logici prvog reda.

Propozicija 2.10. Za formulu kao u aksiomu i za svaki a skup b iz aksioma je jedinstven.

Dokaz. D.Z.

Definicija 2.11. Za formuluφ(x) kao u aksiomu i za odred̄en a jedinstveni skup b iz aksioma
označavamo

{x ∈ a | φ(x)}

i kažemo da je skup definiran separacijom iz a pomoću svojstva φ.
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2 Osnovni aksiomi

Za postojanje unije trebao nam je poseban aksiom. Za postojanje presjeka to nije po-
trebno, nego će ono slijediti iz aksioma separacije. Zato ga definiramo.

Definicija 2.12. Neka je x neprazan skup. Presjek skupa x je skup

∩x = {y | (∀t ∈ x)y ∈ t}.

Primijetimo da oznaka iz definicije presjeka nije oznaka koju smo definirali u Defini-
ciji 2.11 jer nije naveden skup iz kojega separiramo. Zato ne možemo aksiom separacije
direktno primijeniti i garantirati postojanje presjeka, nego to činimo u sljedećoj propoziciji.

Propozicija 2.13. Presjek skupa x dobro je definiran, tj. postoji skup kojem su elementi točno
oni koji zadovoljavaju navedeni uvjet.

Dokaz. Jer je x neprazan, postoji a ∈ x . Elementi od ∩x moraju biti u svakom elementu
od x , pa onda i u a. Zato je

∩x = {y ∈ a | (∀t ∈ x)y ∈ t}.

Taj skup postoji po aksiomu separacije.

U nastavku ćemo ponekad definirati skupove na sličan način, tj. koristeći oblik

{oznaka za objekte skupa | uvjet koji objekti moraju zadovoljavati}. (2.2)

Da bismo mogli takvu oznaku koristiti moramo dokazati da su objekti s lijeva koji zado-
voljavaju uvjet s desna sadržani u nekom (većem) skupu, iz čega će aksiom separacije
garantirati postojanje definiranog skupa.

Napomena 2.14. Čim znamo da postoji skup koji sigurno sadrži neke tražene elemente, a
možda sadrži i još neke “uljeze”, pomoću aksioma separacije možemo konstruirati skup koji
sadrži samo tražene elemente. Zato možemo do sada uvedene aksiome napisati jednostavnije,
tako da garantiraju jednu inkluziju. Primjerice, aksiom para ekvivalentan je s

∀a∀b∃y(a ∈ y ∧ b ∈ y).

U ovoj formulaciji ne znamo sadrži li taj y možda još neke elemente osim a i b. No kakav
god taj y bio, pomoću aksoma separacije možemo definirati

{a, b} := {x ∈ y | x = a ∨ x = b},

i to je isti skup čije nam postojanje garantira originalni aksiom para.

Napomena 2.15. U tom smislu posebno je zanimljiv aksiom praznog skupa. On je ekviva-
lentan jednostavnoj tvrdnji

∃a,

jer se prazan skup može konstruirati separacijom iz bilo kojeg skupa bilo kojim svojstvom koje
je uvijek netočno, npr.

;= {x ∈ a | x ̸= x}.
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2.7 Ured̄eni par

Primijetimo pritom da je aksiom praznog skupa jedini med̄u do sada uvedenim aksiomima
koji osigurava neovisno postojanje nekog skupa. Bez njega, u bilo kojem od ekvivalentnih
oblika, bilo bi moguće da nijedan skup uopće ne postoji.

Aksiom praznog skupa (a i ostale elementarne aksiome) nastavit ćemo navoditi u original-
nom obliku prvenstveno iz pedagoških razloga. Prazan skup prvi je uveden jer je on skup od
kojeg u biti konstruiramo sve ostale skupove.

2.7 Ure�eni par

Par, tj. skup od dva elementa ne razlikuje koji je prvi, a koji drugi element. Od esencijalne
će nam važnosti biti par, označimo ga (x , y), koji neće biti isto što i (y, x) (za x ̸= y). To
se vjerojatno može postići na više načina, no sljedeći je standardan.

Definicija 2.16. Neka su x i y skupovi. Ured̄eni par skupova x i y je

(x , y) := {{x}, {x , y}}.

Idućom propozicijom provjerit ćemo da je to zaista struktura koju želimo. Prvo nam
treba jedna lema.

Lema 2.17. Neka su x, y i z skupovi. Ako je {x , y}= {x , z} onda je y = z.

Dokaz. Vrijedi y ∈ {x , y} = {x , z}, pa je po definiciji para y = x ili y = z. U potonjem
smo slučaju gotovi, pa nastavimo s pretpostavkom x = y . Analogno je z = x ili z = y ,
i opet smo ili gotovi ili nastavimo s pretpostavkom z = x . No tada su svi jednaki, pa je
takod̄er y = z.

Propozicija 2.18. Neka su a, b, c i d skupovi. Ako je (a, b) = (c, d) onda je a = c i b = d.

Dokaz. Pretpostavka kaže da je {{a}, {a, b}} = {{c}, {c, d}}. Zato je {a} = {c} ili {a} =
{c, d}. U oba je slučaja c ∈ {a}, pa je po definiciji singletona c = a.

Sada imamo {{a}, {a, b}} = {{a}, {a, d}}. Lema implicira da je {a, b} = {a, d}, pa opet
lema implicira da je b = d.

2.8 Kartezijev produkt

Definicija 2.19. Neka su a i b skupovi. Kartezijev produkt skupova a i b, u oznaci a × b,
jest skup svih ured̄enih parova (x , y) gdje je x ∈ a i y ∈ b, tj.

a× b := {(x , y) | x ∈ a ∧ y ∈ b} (2.3)

što je pokrata za
{p | (∃x ∈ a)(∃y ∈ b)p = (x , y)}. (2.4)

U ovoj definiciji ponovno nije naveden skup iz kojeg separiramo. Zato je potrebno pro-
vjeriti da takav skup postoji, tj. da je kartezijev produkt dobro definiran. Zato će nam
trebati sljedeća lema.
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2 Osnovni aksiomi

Lema 2.20. Ako je x ∈ a i y ∈ b onda je (x , y) ∈ P (P (a ∪ b)).

Dokaz. Iz x ∈ a slijedi {x} ⊆ a ⊆ a ∪ b, tj. {x} ∈ P (a ∪ b). Slično je {x , y} ⊆ a ∪ b, tj.
{x , y} ∈ P (a∪ b). Zato je (x , y) = {{x}, {x , y}} ⊆ P (a∪ b), tj. (x , y) ∈ P (P (a∪ b)).

Propozicija 2.21. Neka su a i b skupovi. Kartezijev produkt a × b dobro je definiran, tj.
postoji skup koji zadovoljava definiciju.

Dokaz. Iz leme direktno slijedi da je kartezijev produkt jednak

a× b = {p ∈ P (P (a ∪ b)) | (∃x ∈ a)(∃y ∈ b)p = (x , y)}, (2.5)

a taj skup postoji po aksiomu separacije.

Jednakost (2.5) mogli smo koristiti kao definiciju, te bi iz nje odmah bilo jasno da de-
finiramo nešto što postoji. Med̄utim tada ne bi odmah bilo jasno da su u tom skupu svi
parovi (x , y) za x ∈ a i y ∈ b, i to bi trebalo naknadno utvrditi. Oba su pristupa dobra.
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3 Relacije i funkcije

Relacije i funkcije već su poznate iz prethodnih kolegija, posebno Elementarne matematike.
Ovdje ćemo brzo proći kroz formalne definicije i dokaze, s naglaskom na specifičnostima
iz perspektive teorije skupova.

3.1 Relacije

Definicija 3.1. Relacija je skup kojem su svi elementi ured̄eni parovi.
Ako je R relacija, tvrdnju (x , y) ∈ R možemo zapisivati x R y.

Primjer 3.2. Svaki kartezijev produkt a× b je relacija. Podskup svake relacije je relacija.

Definicija 3.3. Neka su a i b skupovi. Kažemo da je relacija R izmed̄u a i b ako je R ⊆ a× b.
Kažemo da je relacija R na a ako je R ⊆ a× a.

Definicija 3.4. Neka je R relacija. Domena relacije R je

dom(R) := {x | ∃y(x R y)}. (3.1)

Slika relacije R je
rng(R) := {y | ∃x(x R y)}. (3.2)

Propozicija 3.5. Domena i slika dobro su definirane, tj. postoji skup kojem su elementi točno
oni koji zadovoljavaju navedeni uvjet.

Dokaz. Ako je (x , y) = {{x}, {x , y}} ∈ R onda su {x}, {x , y} ∈ ∪R pa i x , y ∈ ∪∪ R. Zato
deomenu i sliku možemo dobiti separacijom iz ∪∪ R.

Napomena 3.6. Svaka relacija je relacija izmed̄u svoje domene i svoje slike.

Neka je φ(x , y) logički izraz sa slobodnim varijablama x i y . Relaciju R često ćemo
definirati oznakom

x R y :⇔ φ(x , y) (3.3)

što je pokrata za
R := {(x , y) | φ(x , y)}. (3.4)

Pri tom, naravno, treba provjeriti da se relacija može dobiti separacijom iz nekog skupa.

Definicija 3.7. 1. Neka je R relacija. Inverz relacije R je relacija R−1 definirana sa

y R−1 x :⇔ x R y.
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3 Relacije i funkcije

2. Neka su R i S relacije. Kompozicija relacija R i S je relacija S ◦ R definirana sa

x (S ◦ R) z :⇔∃y(x R y ∧ y S z).

3. Neka je R relacija i c skup (obǐcno je c ⊆ domR, ali ne mora biti). Restrikcija od R na
c je

R|c := R∩ (c × rng(R)).

Propozicija 3.8. Sve relacije u prethodnoj definiciji dobro su definirane.

Dokaz. D.Z.

Definicija 3.9. Neka je R relacija.

• R je simetrična ako za svake x , y vrijedi x R y → y R x.

• R je tranzitivna ako za svake x , y, z vrijedi x R y R z→ y R z.

• R je irefleksivna ako ne postoji x takav da je x R x.

• Ako je R relacija na a i za svaki x ∈ a je x R x kažemo da je R refleksivna na a.

3.2 Parcijalni ure�aj

Definicija 3.10. Neka je a skup i R relacija na a.
Relacija R je parcijalni ured̄aj na a ako je irefleksivna i tranzitivna.
Kažemo da je (a, R) parcijalno ured̄eni skup.

Za parcijalne ured̄aje obično koristimo notaciju <, ≺, ◁ ili sl. Tada za inverznu relaciju
obično koristimo simetrične notacije >, ≻, ▷. . . Takod̄er uvodimo relaciju

x ≤ y :⇔ x < y ∨ x = y, (3.5)

koje se analogno označavaju ⪯, ⊴. . . ovisno o oznaci parcijalnog ured̄aja, te se njihove
inverzne relacije označavaju ≥, ⪰, ⊵. . .

Iako je parcijalno ured̄eni skup definiran kao ured̄eni par (a,<) često zloupotrebljavajući
notaciju kažemo da je a parcijalno ured̄eni skup ako je jasno o kojem se ured̄aju radi na
njemu.

Neka je (a,<) parcijalno ured̄eni skup i b ⊆ a. Tada je (b,< ∩ b× b) parcijalno ured̄eni
skup. Ponovno zloupotrebljavajući notaciju taj parcijalno ured̄eni skup često označavamo
s (b,<). Čim spominjemo podskup parcijalno ured̄enog skupa promatrat ćemo ga kao
parcijalno ured̄eni skup s ovako definiranim ured̄ajem.

Definicija 3.11. Neka je (a,<) parcijalno ured̄eni skup i b ⊆ a;

• x ∈ a je minimalan (maksimalan) ako ne postoji y ∈ a takav da je y < x (y > x);
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3.3 Totalni ured̄aj

• x ∈ a je najmanji element (najveći element) ako za svaki y ∈ a vrijedi x ≤ y (x ≥ y);

• x ∈ a je donja med̄a (gornja med̄a) od b ako za svaki y ∈ b vrijedi x ≤ y (x ≥ y);

• x ∈ a je supremum (infimum) od b ako je najmanja gornja (najveća donja) med̄a od
b.

Propozicija 3.12. Neka je (a,<) parcijalno ured̄eni skup.
Najmanji i najveći element u a, ako postoje, jedinsveni su.
Najmanji element je minimalan. Najveći element je maksimalan.

Dokaz. D.Z.

Primjer 3.13. Neka je a skup i neka je

⊂a:= {(x , y) ∈ P (a)×P (a) | x ⊂ y}

relacija na P (a). Lako se pokaže da je (P (a),⊂a) parcijalno ured̄eni skup.
Primijetimo da je ⊂a relacija, dok je ⊂ logǐcki izraz, no za x , y ∈ P (a) su x ⊂a y i x ⊂ y

ekvivalentni. Zato zloupotrebljavajući notaciju parcijalno ured̄eni skup često označavamo
(P (a),⊂).

U njemu je najmanji i jedini minimalni element ;, a najveći i jedini maksimalni element a.
Supremum skupa b ⊆ P (a) je ∪b. Infimum nepraznog b ⊆ P (a) je ∩b, dok je infimum od
; jednak a.

3.3 Totalni ure�aj

Definicija 3.14. Neka je (a,<) parcijalno ured̄eni skup.
Elemente x i y iz a zovemo neusporedivi ako nije x < y niti x > y niti x = y.
Ako ne postoje neusporedivi elementi u a kažemo da je ured̄aj < totalan i da je (x ,<)

totalno ured̄eni skup.

Propozicija 3.15. U totalno ured̄enom skupu pojmovi minimalnog (maksimalnog) i najma-
njeg (najvećeg) elementa su ekvivalentni.

Dokaz. Nakon Propozicije 3.12 dovoljno je dokazati da je svaki minimalan (maksimalan)
element najmanji (najveći). D.Z.

Minimalan, odnosno najmanji element u totalno ured̄enom skupu (a,<) označavamo
min a. Maksimalan, odnosno najveći element označavamo max a.

Definicija 3.16. Totalno ured̄eni skup (a,<) je dobro ured̄en ako svaki neprazan b ⊆ a ima
najmanji element.
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3 Relacije i funkcije

3.4 Relacije ekvivalencije

Definicija 3.17. Neka je a skup i ∼ relacija na a.
Relacija ∼ je relacija ekvivalencije na a ako je refleksivna na a, simetrǐcna i tranzitivna.

Lema 3.18. Neka je ∼ simetrǐcna i tranzitivna relacija.
Tada postoji jedinstveni skup a takav da je ∼ relacija ekvivalencije na a.

Dokaz. Tvrdimo da je a := dom(∼) takav skup. Zaista, ako je x ∈ dom(∼) tada postoji y
takav da je x ∼ y . Zbog simetričnosti je y ∼ x , a zatim zbog tranzitivnosti x ∼ x . Stoga
je ∼ refleksivna na dom(∼).

Skup na kojem je relacija refleksivna općenito je jedinstven jer je jednak {x | x ∼ x}.

Definicija 3.19. Neka je a skup i R relacija ekvivalencije na a.
Klasa ekvivalencije od x ∈ a s obzirom na R je

[x]R := {y ∈ A | x R y}.

Pišemo i [x] ako je relacija poznata.
Kvocijentni skup skupa a po relaciji R je skup svih klasa ekvivalencije:

a/R := {[x]R ∈ P (a) | x ∈ a}.

Propozicija 3.20. Neka je a skup, ∼ relacija ekvivalencije na a te x , y ∈ a. Tada je

1. x ∼ y ako i samo ako je [x] = [y];

2. x ≁ y ako i samo ako je [x]∩ [y] = ;.

Dokaz. D.Z.

3.5 Particije

Definicija 3.21. Neka su a i P skupovi. P je particija od a ako

• ; /∈ P;

• ∪P = a;

• za svake x , y ∈ P je x = y ili x ∩ y = ;.

Korolar 3.22. Neka je a skup i ∼ relacija ekvivalencije na a. Tada je kvocijentni skup a/∼
particija od a.

Dokaz. D.Z.

Neka je P particija na a definirajmo relaciju P̃ kao

x P̃ y :⇔∃b ∈ P({x , y} ⊆ b). (3.6)
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3.6 Funkcije

Propozicija 3.23. Neka je a skup.

1. Za svaku particiju P od a P̃ je relacija ekvivalencije.

2. Za svaku particiju P od a ta particija jednaka je kvocijentnom skupu od P̃, tj. P = a/P̃ .

3. Za svaku relaciju ekvivalencije ∼ na a vrijedi ∼=ga/∼.

Dokaz. D.Z.

Zbog prethodne propozicije svaka relacija ekvivalencije na a ima pridruženu particiju
na a, i svejedno je što od toga dvoje zadamo.

3.6 Funkcije

Prisjetimo se da se funkcija standarno definira kao ured̄ena trojka ( f , a, b) gdje je a do-
mena, b kodomena i f “pravilo preslikavanja” izmed̄u a i b. Ovdje će nam funkcija biti
samo f .

Definicija 3.24. Relacija f je funkcija ako za svake x, y1 i y2 vrijedi x f y1∧ x f y2→ y1 =
y2, tj. svaki x je u relaciji f s najviše jednim elementom.

Domenu funkcije ne treba posebno definirati jer je definirana za svaku relaciju. Kodo-
menu nećemo formalno definirati, ali ćemo koristiti sljedeću notaciju.

Definicija 3.25. Ako je f funkcija, a = dom( f ) i b ⊇ rng( f ) možemo zapisivati

f : a→ b.

Skup b u ovoj notaciji možemo zvati kodomena. Primijetimo da kodomena nije jednoz-
načno odred̄ena, svaki nadskup od slike može se koristiti kao kodomena.

Definicija 3.26. Funkcija f je injekcija ako je njen inverz f −1 funkcija.
Funkcija f : a→ b je surjekcija na b ako je b = rng( f ).
Funkcija f : a→ b je bijekcija izmed̄u a i b ako je injekcija i surjekcija na b.

Primijetimo da je svaka funkcija surjekcija na svoju sliku. Svaka injekcija je bijekcija
izmed̄u svoje domene i svoje slike.

Neka je f : a→ b. Budući da za svaki x ∈ a postoji jedinsveni y ∈ b takav da je x f b,
za taj jedinstveni y uvodimo oznaku f (x).

Primjer 3.27. Neka je a skup. Tada je

ida := {(x , x) ∈ a× a | x ∈ a} (3.7)

funkcija. Zovemo je identiteta na a. Vrijedi ida : a→ a, i ona je bijekcija izmed̄u a i a.

Inverz i kompozicija već su definirani za svaku relaciju. Koristimo ih i kod funkcija.
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3 Relacije i funkcije

Propozicija 3.28. 1. Ako je f funkcija, restrikcija f |c takod̄er je funkcija. Ako je f : a→
b i c ⊆ a, tada je f |c : c→ b.

2. Kompozicija funkcija je funkcija. Kompozicija injekcija je injekcija. Ako je f : a→ b i
g : b→ c, tada je g ◦ f : a→ c.

3. Ako je f bijekcija izmed̄u a i b, f −1 je bijekcija izmed̄u b i a.

4. Ako je f bijekcija izmed̄u a i b te g bijekcija izmed̄u b i c, onda je g ◦ f bijekcija izmed̄u
a i c.

Dokaz. D.Z.

Propozicija 3.29. Neka je f : a → b. Funkcija f je bijekcija izmed̄u a i b ako i samo ako
postoji funkcija g : b→ a takva da je g ◦ f = ida i f ◦ g = idb.

Dokaz. D.Z.

Neka su a i b skupovi. Skup svih funkcija f : a→ b označavamo s

AB = BA = { f ∈ P (a× b) | f : a→ b}. (3.8)
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4 Prirodni brojevi

Prirodne brojeve intuitivno poznajemo od početaka učenja matematike. Ipak, ovdje ih
želimo strogo definirati, odnosno navesti njihova svojstva. Vjerojatno su nam poznati Pe-
anovi aksiomi, to su posebni aksiomi koji aksiomatski opisuju prirodne brojeve. Ipak,
teorija skupova je opća teorija u kojoj definiramo prirodne brojeve, bez posebnih aksioma
samo za njih.

4.1 De�nicija

U principu se prirodni brojevi mogu definirati na više načina, no u teoriji skupova jedan je
standardan. Ideja je da svakako želimo da prirodan broj n bude neki skup s n elemenata.
Stoga je za nulu jedini mogući izbor

0 := ;. (4.1)

Nastavljamo dalje s definicijom.

Definicija 4.1. Neka je a skup. Sljedbenik od a je

a+ := a ∪ {a}.

Definirajmo nekoliko brojeva koji slijede.

1 := 0+ = {;}, (4.2)

2 := 1+ = {0,1}= {;, {;}}, (4.3)

3 := 2+ = {0,1, 2}= {;, {;}, {;, {;}}} . . . (4.4)

Definicija 4.2. Skup I je induktivan ako

• ; ∈ I ,

• za svaki x ∈ I je x+ ∈ I .

Aksiom 7 (Aksiom beskonačnosti). Postoji induktivan skup, tj.

∃I(; ∈ I ∧ (∀x ∈ I)(x ∪ {x} ∈ I)).

Osnovni aksiomi garantiraju postojanje samo konačnih skupova. Ovo je prvi aksiom koji
garantira postojanje skupa koji ne može biti konačan (kasnije ćemo formalno definirati
pojam konačnosti). Zato se ovaj aksiom zove aksiom beskonačnosti.
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4 Prirodni brojevi

Definicija 4.3. Skup prirodnih brojeva je skup

ω := {n | ∀ induktivan I(n ∈ I)}.

Skup n je prirodan broj ako je element od ω, tj. ako je element svakog induktivnog skupa.

Propozicija 4.4. Skup pridodnih brojeva dobro je definiran.

Dokaz. Aksiom beskonačnosti implicira da postoji induktivan skup, nazovimo ga s J . Pri-
rodni brojevi moraju biti elementi svakog induktivnog skupa, pa su i elementi od J . Zato
ω možemo odrediti separacijom iz J :

ω := {n ∈ J | ∀ induktivan I(n ∈ I)}.

Taj skup postoji zbog aksioma separacije.

Propozicija 4.5. 1. Skup prirodnih brojeva ω je induktivan.

2. Ako je I induktivan, onda je ω ⊆ I .

Dokaz. D.Z.

Teorem 4.6 (Princip matematičke indukcije). Neka je φ(n) svojstvo, tj. logǐcki izraz sa
slobodnom varijablom n takav da vrijedi

• φ(0),

• φ(a)→ φ(a+).

Tada je za svaki n ∈ω φ(n).

Dokaz. Neka je
S := {a ∈ω | φ(a)}.

Znamo da je 0 ∈ ω i φ(0), pa je 0 ∈ S. Ako je a ∈ S onda je a ∈ ω i φ(a). Jer je ω
induktivan slijedi da je a+ ∈ ω, a tvrdnja iz teorema implicira da je φ(a+), dakle a+ ∈ S.
Zbog toga je S induktivan, dakleω ⊆ S. Tj. svaki n ∈ω je u S, pa za njega vrijediφ(n).

Kao što imamo shemu aksioma separacije, a ne jedan aksiom, tako je i prethodni teorem
zapravo shema teorema, po jedan teorem za svaki logički izraz.

Princip matematičke indukcije često ćemo koristiti u nastavku. Upotrebljavamo stan-
dardne nazive: dokaz da je φ(0) nazivamo bazom indukcije, pretpostavku φ(a) nazivamo
pretpostavkom indukcije, a dokaz kojim iz pretpostavke indukcije izvodimo φ(a+) nazi-
vamo korakom indukcije. Ponekad ćemo u dokazima preskočiti izričito navod̄enje pretpos-
tavke indukcije ako je ona jasna.

22



4.2 Ured̄aj na prirodnim brojevima

4.2 Ure�aj na prirodnim brojevima

Propozicija 4.7. Ako je a ∈ b ∈ω onda je a ∈ω.

Dokaz. Dokažimo indukcijom po b.
Baza: b = 0. Tada nije moguće da je a ∈ 0= ;, pa je implikacije uvijek točna.
Pretpostavka: za svaki a ∈ b vrijedi a ∈ω.
Korak: neka je a ∈ b+ = b ∪ {b}. Imamo dva slučaja: a ∈ b ili a = b. U prvom slučaju

pretpostavka indukcije implicira da je a ∈ω, a u drugom znamo da je b ∈ω.

Definicija 4.8. Na ω definiramo relaciju

a < b :⇔ a ∈ b.

Lema 4.9. 1. Za svaki n ∈ω je 0≤ n;

2. za svake k, n ∈ω je k < n+ ekvivalentno s k < n∨ k = n;

3. za svaki n ∈ω je n< n+.

Dokaz. TODO

Propozicija 4.10. Relacija < je parcijalni ured̄aj, tj. (ω,<) je parcijalno ured̄eni skup.

Dokaz. TODO

Lema 4.11. Sljedbenik čuva ured̄aj, tj. za svake k, n ∈ω k < n povlači k+ < n+.

Dokaz. TODO

Propozicija 4.12. Relacija < je totalni ured̄aj, tj. (ω,<) je totalno ured̄eni skup.

Dokaz. TODO

Propozicija 4.13. Za svake a, b ∈ω a < b ekvivalentno je s a ⊂ b.

Dokaz. TODO

Teorem 4.14 (Princip jake matematičke indukcije). Neka jeφ(n) logǐcki izraz sa slobodnom
varijablom n takav da za svaki n ∈ω vrijedi

((∀k < n) φ(k))→ φ(n).

Tada je za svaki n ∈ω φ(n).

Dokaz. TODO

Propozicija 4.15. Totalno ured̄eni skup (ω,<) je dobro ured̄en.

Dokaz. TODO
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4 Prirodni brojevi

4.3 Dedekindov teorem rekurzije

Definicija 4.16. Niz je funkcija kojemu je domena prirodan broj ili ω. Ako mu je domena ω
zovemo ga beskonačni niz, a ako mu je domena prirodan broj n zovemo ga konačni niz ili
ured̄ena n-torka.

Za niz f vrijednost f (n) često zapisujemo fn.
Konačni niz f s domenom n možemo zapisivati f = ( f0, f1, . . . , fn). Ponekad i beskonačni

niz zapisujemo f = ( f0, f1, . . . ).
Neka je k ∈ ω, n > k ili n = ω te f : n→ S niz. Tada je restrikcija f |k : k → S takod̄er

niz.
Za skup t označimo s

t∗ :=
⋃

n∈ω

n t = ∪{x ∈ P (ω× t) | ∃n ∈ω(x ∈ n t)} (4.5)

skup svih konačnih nizova na t.

Napomena 4.17. Prvi član unije, 0 t, jest skup svih funkcija s praznog skupa u t, tj.

0 t = { f ⊆ ;× t | ∀x ∈ ; ∃!y(x f y)}.

Kako prazan skup nema članove uvjet ∀x ∈ ; . . . uvijek je zadovoljen. Zato je

0 t =P (; × t) =P (;) = {;}.

Dakle postoji jedna funkcija kojoj je domena ; i ona je ;.

Primjer 4.18. Fibonaccijev niz je niz f definiran sa

• f0 = 0,

• f1 = 1,

• fn+2 = fn+1 + fn.

Intuitivno nam se čini da je ovo dovoljno za definirati cijeli niz f : ω→ω. To će biti formalno
dokazano u sljedećem teoremu.

Teorem 4.19 (Dedekindov teorem jake rekurzije). Neka je t skup i F : t∗→ t. Tada postoji
jedinstvena funkcija g : ω→ t takva da je za svaki n ∈ω

g(n) = F(g|n).

Dokaz. Potrebno je dokazati da postoji jedinstvena funkcija koja nešto zadovoljava. U
konkretnom slučaju možemo definirati skup svih funkcija koje to zadovoljavaju:

Gω := {g ∈ ω t | (∀k ∈ω) g(k) = F(g|k)} (4.6)

i onda treba dokazati da Gω sadrži točno jedan element.
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4.3 Dedekindov teorem rekurzije

Za sada imamo orud̄e za tvrdnje o prirodnim brojevima, ne baš cijelom ω. Zato ćemo
prvo analizirati analogne skupove za prirodne brojeve. Za n ∈ω definirajmo

Gn := {g ∈ n t | (∀k < n) g(k) = F(g|k)}. (4.7)

Očekujemo da će Gn takod̄er biti jednočlani. Dokažimo što možemo o njima.

Tvrdnja 1. Za svaki n ∈ω skup Gn je neprazan.

Dokaz. Dokazujemo indukcijom po n.
Baza: G0 = {g ∈ 0 t | (∀k < 0) . . . }= 0 t = {;} ̸= ;.
Pretpostavka: Gn ̸= ;, tj. postoji funkcija gn : n → t takva da za svaki k < n vrijedi

gn(k) = F(gn|k).
Korak: Definirajmo gn+ : n+→ t sa

gn+(k) =

¨

gn(k) k < n
F(gn) k = n.

Provjerimo da je gn+ ∈ Gn+ , tj. da (∀k < n+) gn+(k) = F(gn+ |k). Za k < n vrijedi

gn+(k) = gn(k) = F(gn|k) = F(gb+ |k),

a za k = n direktno po konstrukciji vrijedi

gn+(k) = F(gn) = F(gn+ |n).

Sljedeću ćemo tvrdnju odmah proširiti i na Gω jer je dokaz isti.

Tvrdnja 2. Za svaki n ∈ω i za n=ω skup Gn ima najviše jedan element.

Dokaz. Pretpostavimo suprotno, da postoje različiti g, g ′ ∈ Gn. Neka je

k :=min{m ∈ω | g(m) ̸= g ′(m)}

najmanji prirodan broj u kojem se funkcije razlikuju. Tada je za svaki m< k g(m) = g ′(m),
tj. g|k = g ′|k, pa je

g(k) = F(g|k) = F(g ′|k) = g ′(k),

što proturječi izboru k.

Sada znamo da za svaki n ∈ω Gn sadrži točno jedan element. Nazovima ga gn.

Tvrdnja 3. Za svake m, n ∈ω, m< n, vrijedi gn|m = gm.

Dokaz. Dovoljno je dokazati da je gn|m ∈ Gm. Provjerimo uvjet za k < m:

gn|m(k) = gn(k) = F(gn|k) = F(gn|m|k).
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4 Prirodni brojevi

Definirajmo
g :=
⋃

n∈ω
gn = {(k, x) ∈ω× t | (∃n ∈ω) (k, x) ∈ gn}, (4.8)

i tvrdimo da je g traženi element od Gω.

Tvrdnja 4. Skup g je funkcija.

Dokaz. Pretpostavimo da su (k, x1), (k, x2) ∈ g. Tada po definiciji unije postoje n, m ∈ ω
takvi da je (k, x1) ∈ gn i (k, x2) ∈ gm. Mora vrijediti k < n i k < m. Bez smanjenja
općenitosti možemo pretpostaviti da je n≤ m. Zato je

(k, x2) ∈ gm|n = gn

zbog Tvrdnje 3. Kako su oba (k, x1), (k, x2) ∈ gn, a gn je funkcija, vrijedi x1 = x2, što je i
trebalo dokazati.

Tvrdnja 5. Domena funkcije g je ω.

Dokaz. Domene svih funkcija gn su ⊆ω, pa je i dom(g) ⊆ω.
Obratno, neka je k ∈ ω. Vrijedi k ∈ k+ = dom(gk+). Zato postoji x takav da je (k, x) ∈

gk+ ⊆ g. Dakle k ∈ dom(g).

Tvrdnja 6. Za svaki n ∈ω g|n = gn.

Dokaz. Za dokazati jednakost dvaju funkcija s domenom n treba dokazati da su jednake
za svaki k ∈ n:

gn(k) = x⇔ (k, x) ∈ gn⇒ (k, x) ∈ g⇔ g(k) = x .

Tvrdnja 7. Vrijedi g ∈ Gω, tj. za svaki k ∈ω g(k) = F(g|k).

Dokaz. Vrijedi

g(k) = g|k+(k)
Tv. 6
= gk+(k) = F(gk+ |k)

Tv. 3
= F(gk)

Tv. 6
= F(g|k).

Dakle Gω sadrži neku funkciju, a zbog Tvrdnje 2. ta je funkcija jedinstvena, što je i
trebalo dokazati.

Kod jake rekurzije, analogno jakoj indukciji, sljedeći član niza ovisi o svim vrijednostima
do tada. U praksi će često biti potrebna samo vrijednost neposrednog prethodnika. Taj
poseban slučaj navodimo u posebnom teoremu.

Teorem 4.20 (Primitivna rekurzija). Neka je t skup, s ∈ t i F : t → t. Tada postoji jedins-
tvena funkcija g : ω→ t takva da

• g(0) = s,

• ∀n ∈ω g(n+) = F(g(n)).

Dokaz. TODO
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4.4 Operacije na prirodnim brojevima

4.4 Operacije na prirodnim brojevima

TODO

4.5 Rekurzija s logi£kim funkcijama, shema

aksioma zamjene

Pokušajmo definirati funckiju rekurzivno s

• g(0) = ;,

• g(n+) = {g(n)}.

Problem je što Teorem 4.20 zahtijeva da zadamo funkciju F : t → t, dakle moramo
unaprijed znati kodomenu t tražene funkcije g. U ovom primjeru

x 7→ {x}

nije funkcije jer je preopćenito zadana, domena bi joj bila svi skupovi.
Zato želimo jači teorem rekurzije, neki u kojem će biti dovoljno zadati izraze koji će

od jednog skupa jedinstveno definirati drugi, iako nisu funkcije. Prvo definirajmo takve
izraze.

Definicija 4.21. Logǐcki izraz P(x , y) sa slobodnim varijablama x i y takav da∀x∃!y P(x , y)
nazivamo logička funkcija.

Primjer 4.22.

• y = {x}, tj. ∀t(t ∈ y↔ t = x),

• y = x+, tj. ∀t(t ∈ y↔ t ∈ x ∨ t = x).

Budući da kod logičkog izraza P(x , y) svaki x jednoznačno definira y , taj y možemo
označavati s P(x).

Takav P sam ne definira fukciju jer je odred̄en za svaki x . Možemo pokušati konstruirati
funkciju ako ga “restringiramo” na neki skup A kao:

{(x , P(x)) | x ∈ A}. (4.9)

Med̄utim niti to ne mora postojati ako ne znamo u kojem su skupu P(x). Dosadašnji
aksiomi nedovoljni su da dokažemo postojanje takvog skupa općenito. Zato uvodimo novi
aksiom, točnije shemu aksioma.

Aksiom 8 (Shema aksioma zamjene). Za logǐcku funkciju P(x , y) vrijedi∀A∃B∀x ∈ A P(x) ∈
B.

Formalnije, za logǐcki izraz P(x , y) sa slobodnim varijablama x i y i bez slobodnih varijabli
A i B vrijedi

∀A(∀x ∈ A ∃!y P(x , y)→∃B ∀y(∃x ∈ A P(x , y)↔ y ∈ B))
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4 Prirodni brojevi

To nije jedan aksiom nego shema aksioma zato što imamo po jedan aksiom za svaki izraz
P(x , y), slično kao kod aksioma separacije.

U formalnom iskazu aksioma zaobišli smo definiciju logičke funkcije tako što smo uveli
uvjet ∀x ∈ A∃!y P(x , y). Ako taj uvjet nije zadovoljen aksiom je trivijalno istinit.

Aksiom nam dozvoljava da definiramo funkcije kao u (4.9), točnije za logičku funkciju
P(x , y) i skup A definiramo

f = {(x , y) ∈ A× B | P(x , y)} (4.10)

gdje je B skup čije nam postojanje utvrd̄uje instanca aksioma zamjene s izrazom P(x , y).
Jasno je da je f funkcija.

Iznesimo sada jaču verziju teorema rekurzije.

Teorem 4.23 (Jaka rekurzija s logičkom funkcijom). Neka je F(x , y) logǐcka funkcija. Tada
postoji jedinstvena funkcija g na ω takva da je za svaki n ∈ω

g(n) = F(g|n),

tj. vrijedi F(g(n), g|n).

Primijetimo da je Teorem jake rekurzije s logičkom funkcijom shema teorema, po jedan
teorem za svaku logičku funkciju.

Dokaz. Kopiramo dokaz Dedekindovog teorema rekurzije, imajući u vidu da ne možemo
konstruirati skupove Gω i Gn. Umjesto s tim skupovima, baratat ćemo s logičkim svoj-
stvima. Pokazat će se da nije problem što ne znamo čine li objekti s tim svojstvom skup.

Neka je Gω(g) logički izraz koji kaže

Gω(g) :≡ g je funkcija∧ dom(g) =ω∧ (∀k ∈ω) g(k) = F(g|k). (4.11)

Primijetimo da je jedino što fali ovom logičkom izrazu da bi definirao skup Gω iz dokaza
Teorema 4.19 tvrdnja rng(g) ⊆ t. Pokazat će se da ona nije bitna.

Za dokazati teorem trebamo dokazati da postoji jedinstveni g takav da je Gω(g).
Nadalje, neka je G(n, g) logički izraz koji kaže

G(n, g) :≡ n ∈ω∧ g je funkcija∧ dom(g) = n∧ (∀k ∈ n) g(k) = F(g|k). (4.12)

Tvrdnja 1. Za svaki n ∈ω postoji g takav da vrijedi G(n, g).

Dokaz. Dokazujemo indukcijom po n.
Baza: Provjerimo da vrijedi G(0,;).
Pretpostavka: Postoji gn takav da vrijedi G(n, gn).
Korak: Definirajmo gn+ : n+→ t sa

gn+(k) =

¨

gn(k) k < n
F(gn) k = n.

Provjerimo da vrijedi G(n+, gn+).
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4.5 Rekurzija s logičkim funkcijama, shema aksioma zamjene

Tvrdnja 2. 1. Za svaki n ∈ω i za svake g, g ′ ako vrijedi G(n, g) i G(n, g ′) onda je g = g ′.

2. Za svake g, g ′ ako vrijedi Gω(g) i Gω(g ′) onda je g = g ′.

Dokaz. 1. Pretpostavimo suprotno, da postoje različiti g, g ′ takvi da je G(n, g) i G(n, g ′).
Posebno, vrijedi da su g i g ′ funkcije s domenom n pa za m ∈ n možemo koristiti
notacije g(m) i g ′(m). Neka je

k :=min{m ∈ n | g(m) ̸= g ′(m)}

najmanji prirodan broj u kojem se funkcije razlikuju. Tada je za svaki m< k g(m) =
g ′(m), tj. g|k = g ′|k, pa G(n, g) i G(n, g ′) impliciraju

g(k) = F(g|k) = F(g ′|k) = g ′(k),

što proturječi izboru k.

2. Analogno kao 1.

Tvrdnje 1. i 2. 1. povlače da za svaki n ∈ω postoji jedinstveni g takav da vrijedi G(n, g).
Instanca aksioma zamjene za G(n, g) tada implicira da postoji skup

S := {g | (∃n ∈ω) G(n, g)}. (4.13)

Ovo je ključan korak koji ne bismo mogli napraviti bez aksioma zamjene.
Za n ∈ω pripadni g za koji vrijedi G(n, g) nazovimo gn.

Tvrdnja 3. Za svake m, n ∈ω, m< n, vrijedi gn|m = gm.

Dokaz. Dovoljno je provjeriti da vrijedi G(m, gn|m), pa jedinstvenost (Tvrdnja 2. 1.) povlači
tvrdnju.

Definirajmo
g := ∪S =
⋃

n∈ω
gn = {(k, x) | (∃n ∈ω) (k, x) ∈ gn}. (4.14)

Tvrdnja 4. Skup g je funkcija.

Dokaz. Isto kao dokaz Tvrdnje 4 u dokazu Teorema 4.19.

Tvrdnja 5. Domena funkcije g je ω.

Dokaz. Isto kao dokaz Tvrdnje 5 u dokazu Teorema 4.19.

Tvrdnja 6. Za svaki n ∈ω g|n = gn.

Dokaz. Isto kao dokaz Tvrdnje 6 u dokazu Teorema 4.19.

Tvrdnja 7. Vrijedi Gω(g).
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4 Prirodni brojevi

Dokaz. Prve dvije tvrdnje iz Gω(g) su Tvrdnja 4 i Tvrdnja 5, a za posljednju uzmimo k ∈ω
pa vrijedi

g(k) = g|k+(k)
Tv. 6
= gk+(k) = F(gk+ |k)

Tv. 3
= F(gk)

Tv. 6
= F(g|k).

Dakle postoji g takav da vrijedi Gω(g), a zbog Tvrdnje 2 2. taj je g jedinstven, što je i
trebalo dokazati.

Teorem 4.24 (Primitivna rekurzija s logičkom funkcijom). Neka je P(x , y) logǐcka funkcija
i neka je s skup. Tada postoji jedinstvena funkcija g na ω takva da je

• g(0) = s,

• ∀n ∈ω g(n+) = P(g(n)), tj. vrijedi P(g(n), g(n+)).

Dokaz. D.Z.

Primjer 4.25 (Uvod u ordinale). Definirajmo funkciju s

• g(0) =ω,

• g(n+) = g(n)+.

Ta funkcija zadovoljava:

g(0) =ω, g(1) =ω+, g(2) =ω++, . . .

Slika od g je
rng(g) = {ω,ω+,ω++, . . . }.

U nastavku će biti zanimljiv skup

ω∪ rng(g) = {0, 1,2, . . . ,ω,ω+,ω++, . . . }.

Za nekoliko poglavlja definirat ćemo redne brojeve (ordinale) i vidjeti da su ω, ω+, ω++

i ω ∪ rng(g) ordinali. Postojanje potonjeg skupa ne bi bilo moguće utvrditi bez aksioma
zamjene.
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5 Odnosi me�u skupovima

5.1 Ekvipotentnost

Definicija 5.1. Skupovi a i b su ekvipotentni, u oznaci a ∼ b, ako postoji bijekcija f : a→ b.

Intuitivno, ekvipotentne skupove zamišljamo kao skupove koji imaju “jednak broj ele-
menata” ili su “jednako veliki”.

Propozicija 5.2. 1. Za svaki skup a vrijedi a ∼ a.

2. Za svake skupove a, b ako je a ∼ b onda je i b ∼ a.

3. Za svake skupove a, b, c ako je a ∼ b i b ∼ c onda je i a ∼ c.

Dokaz. 1. Identiteta ida = {(x , x) ∈ a× a} tražena je bijekcija.

2. a ∼ b implicira da postoji bijekcija f : a→ b. Po Propoziciji 3.28 3. je i f −1 : b→ a
bijekcija, pa je b ∼ a.

3. a ∼ b i b ∼ c implicira da postoje bijekcije f : a → b i g : b → c. Kompozicija
g ◦ f : a→ c je bijekcija po Propoziciji 3.28 4. pa je a ∼ c.

Svojstva iz propozicije sliče na svojstva relacija refleksivnost, simetričnost i tranzitivnost.
Ipak ∼ nije relacija jer nije skup. No “restrikcijom” na bilo koji skup A:

{(x , y) ∈ A× A | x ∼ y}

dobijamo stvarnu relaciju koja je refleksivna, simetrična i tranzitivna, dakle relacija ekvi-
valencije.

5.2 Kona£ni skupovi

Definicija 5.3. Skup a je konačan ako postoji n ∈ω n∼ a.
Skup a je beskonačan ako nije konačan.

Lema 5.4. Za svaki n ∈ω svaka injekcija f : n→ n je i surjekcija.
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5 Odnosi med̄u skupovima

Dokaz. Dokazujemo indukcijom po n.
Baza: Slika svake funkcije 0→ 0 je podskup od 0 = ;, pa mora biti jednaka cijelom ;,

dakle f je surjekcija.
Pretpostavimo da je svaka injekcija n → n surjekcija i neka je f : n+ → n+ injekcija.

Pretpostavimo da ona nije surjekcija, tj. da postoji rng( f ) ̸= n+. Imamo dva slučaja:

I. n /∈ rng( f ): Tada je f : n+→ n. Restrikcija f |n : n→ n ponovno je injekcija. Kada bi
f (n) bio u slici rng( f |n), postojao bi neki k < n takav da je f |n(k) = f (k) = f (n) pa
f ne bi bila injekcija. Dakle f |n nije surjekcija što proturječi pretpostavci indukcije.

II. n ∈ rng( f ): Tada postoji neki drugi k < n, k /∈ rng( f ). Neka je l ∈ n+ takav da
f (l) = n. Definirajmo funkciju g : n→ n s

g(i) =

¨

f (i) i ̸= l
k i = l.

Posebno, ako je k = l onda g = f |n. Lako se provjeri da je g dobro definirana i da je
injekcija. Analogno kao u prethodnom slučaju dokažemo da f (n) /∈ rng(g). Dakle g
nije surjekcija što proturječi pretpostavci indukcije.

Teorem 5.5. 1. Neka su n, m ∈ω. Tada n∼ m implicira n= m.

2. Za svaki konačan skup S postoji jedinstveni n ∈ω takav da je S ∼ n.

3. Za svaki konačan skup S svaka injekcija f : S→ S je i surjekcija.

4. Skup ω je beskonačan.

Dokaz. 1. Pretpostavimo suprotno, tj. da postoji bijekcija f : m→ n, i da n ̸= m. Bez
smanjenja općenitosti možemo pretpostaviti da je n < m. Restrikcija f |n : n → n
je injekcija. Restrikcijom smo izbacili par (n, f (n)) iz funkcije, pa f (n) /∈ rng( f |n).
Dakle f |n nije surjekcija, što proturječi prethodnoj lemi.

2. Postojanje je definicija konačnosti. Jedinstvenost slijedi iz prethodne točke i Propo-
zicije 5.2.

3. Jasno iz prethodne točke i Leme 5.4.

4. Pretpostavimo suprotno, tj. da postoji n ∈ω i bijekcija f : ω→ n. Dokaz se nastavlja
identičko nao u točki 1.

Zbog točke 2. prethodnog teorema možemo definirati kako slijedi.

Definicija 5.6. Neka je S konačan skup i S ∼ n za n ∈ ω. Kažemo da je n kardinalni broj
od S i zapisujemo n= |S| ili n= K(S).
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5.3 Cantorov osnovni teorem

Za beskonačne skupove još uvijek ne možemo definirati kardinalni broj, iako možemo
neformalno zapisivati K(A) = K(B) misleći A∼ B.

Propozicija 5.7. Neka je A konačan skup i B ⊆ A. Tada je B takod̄er konačan i |B| ≤ |A|.

Dokaz. Dokazujemo indukcijom po |A|.
Baza: Za |A|= 0 mora biti A= ;, pa je i B = ;, dakle konačan i |B|= 0.
Pretpostavka: Pretpostavimo da je za svaki konačan skup A takav da je |A|= n i za svaki

B ⊆ A taj B takod̄er konačan i |B| ≤ n.
Korak: Uzmimo proizvoljan A′ takav da je |A′|= n+ i B′ ⊆ A′. Postoji bijekcija f : n+→ A′.

Neka je A := rng( f |n), pa je f |n : n→ A bijekcija, dakle |A|= n. Imamo dva slučaja:

I. f (n) ∈ B′: Neka je B := B \ { f (n)}. Jasno je B ⊆ A, pa je po pretpostavci indukcije
konačan i m := |B| ≤ n. Uzmimo bijekciju g : m→ B i definirajmo h: m+→ B′ sa

h(x) =

¨

g(x) x < m
f (n) x = m.

Lako se pokaže da je h bijekcija. Dakle B′ je konačan i |B′|= m+ ≤ n+.

II. f (n) /∈ B′: Tada je B′ ⊆ A, pa je po pretpostavci indukcije konačan i |B′| ≤ n< n+.

Primjer 5.8. Neka je f : ω → ω, f (n) = n+. Funkcija f je injekcija, ali nije surjekcija jer
0 /∈ rng f . Dakle pravi podskup rng f =ω\{0} ⊂ω ekvipotentan je sω. To ne bi bilo moguće
za konačne skupove zbog Teorema 5.5 točke 3.

5.3 Cantorov osnovni teorem

Teorem 5.9 (Cantorov osnovni teorem). Neka je a skup. Skup a i njegov partitivni skup
P (a) nisu ekvipotentni.

Dokaz. Pretpostavimo suprotno, da postoji bijekcija g : a→P (a). Definirajmo

b := {x ∈ a | x /∈ f (x)}. (5.1)

Kako je f surjekcija na P (a) postoji r ∈ a takav da je b = f (r).
Je li r ∈ b? Kad bi bio, bio bi r ∈ f (r), pa po definiciji od b vrijedi r /∈ b. U suprotnom,

ako r /∈ b = f (r) po definiciji od b treba biti r ∈ b. Kontradikcija.

Uočimo sličnost navedenog dokaza s Russelovim paradoksom. Ta se ideja naziva dija-
gonalni postupak i koristi se na više mjesta u matematici.

Tvrdnja teorema intuitivno je poznata za konačne skupove. Mogli smo pomisliti da
su svi beskonačni skupovi ekvipotentni jer “imaju jednako elemenata - beskonačno”, no
Cantorov osnovni teorem implicira da nisu. Npr. ω i P (ω) nisu ekviporentni.
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5 Odnosi med̄u skupovima

5.4 Cantor-Schröder-Bernsteinov teorem

Intuitivno shvaćamo da podskup ima “manje ili jednako” elemenata od nadskupa, ili je
“manji ili jednako velik” kao nadskup. Od ideje da pravi podskup bude strogo manji od
pravog nadskupa morali smo odustati jer to ne mora vrijedi za beskonačne skupove (Pri-
mjer 5.8).

Injekcija f : B→ A je bijekcija na rng( f ) ⊆ A, pa je B “manji ili jednako velik” kao A. Ako
istovremeno postoji injekcija A→ B A je “manji ili jednako velik” kao B, dakle “jednako
su veliki”. Postoji li zaista bijekcija med̄u njima? Sljedeći teorem daje očekvan potvrdan
odgovor, iako je dokaz možda neočekivano kompleksan.

Za f : a→ b označimo s f → : P (a)→P (b) funkciju definiranu s

f →(c) := rng( f |c) = {y ∈ b | ∃x ∈ c, y = f (x)}.

Teorem 5.10 (Cantor-Schröder-Bernstein). Neka su A i B skupovi takvi da postoje injekcije
f : A→ B i g : B→ A. Tada su A i B ekvipotentni.

Dokaz. Cilj je konstruirati bijekciju h: A→ B koristeći poznate injekcije f i g, točnije neke
ćemo elemente skupova A i B spariti pomoću f , a neke pomoću g. Elemente od

C1 := A\ rng(g) = A\ g→(B)

moramo spariti pomoću f jer g−1 na njima nije definiran. Dakle želimo da je h|C1
(x) =

f (x). Nakon toga želimo definirati ostatak bijekcije izmed̄u ostataka skupova, dakle iz-
med̄u A\C1 i B\ f →(C1). Sada je kodomena manja, pa analogno zaključujemo da elemente
od

C2 := A\ g→(B \ f →(C1))

moramo spariti pomoću f . Isto će se zaključivanje nastavljati i dalje.
Dakle, formalno, rekurzivno pomoću Teorema 4.20 definiramo niz C : ω→P (A) sa

• C0 = ;,

• Cn+ = F(Cn)

gdje je F(x) := A\ g→(B \ f →(x)). Neka je C := ∪n∈ωCn. Sada definirajmo h: A→ B sa

h(x) =

¨

f (x) x ∈ C
g−1(x) x /∈ C .

Ako je x /∈ C ⊇ C1 = A \ rng(g) onda je x ∈ rng(g), tj. g−1(x) je dobro definiran, pa je h
dobro definirana. Dokažimo da je h bijekcija izmed̄u A i B.

Pretpostavimo da h nije injekcija, tj. da postoje različiti x , y ∈ A takvi da je h(x) = h(y).
Ako su oba iz C moraju biti jednaki jer je f injekcija. Ako su oba iz A\ C takod̄er moraju
biti jednaki jer je g−1 injekcija. Zato bez smanjenja općenitosti možemo pretpostaviti da je
x ∈ C i y /∈ C i onda imamo f (x) = g−1(y), tj. g( f (x)) = y . x ∈ C znači da postoji n ∈ω
takav da je x ∈ Cn. Iz toga slijedi da je f (x) ∈ f →(Cn), tj. f (x) /∈ B \ f →(Cn). Budući da je
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5.5 Sličnost parcijalno ured̄enih skupova

g injekcija slijedi da y = g( f (x)) /∈ g→(B\ f →(Cn)), tj. y ∈ A\ g→(B\ f →(Cn)) = Cn+1 ⊆ C .
To proturječi pretpostavci da y /∈ C , dakle h je injekcija.

Pretpostavimo da h nije surjekcija, tj. da postoji y ∈ B koji nije u slici od h. Kad g(y)
ne bi bio u C , onda bi bilo h(g(y)) = g−1(g(y)) = y , što bi proturječilo pretpostavci da
y nije u slici od h. Dakle g(y) ∈ C , tj. postoji n ∈ ω takav da je g(y) ∈ Cn. C0 je prazan,
pa je n > 0 i neka je n − 1 njegov prethodnik. Sada g(y) ∈ Cn = A \ g→(B \ f →(Cn−1))
implicira da y /∈ B \ f →(Cn−1), tj. y ∈ f →(Cn−1). Dakle y = f (x) za neki x ∈ Cn−1 ⊆ C , pa
je i h(x) = y .

Napomena 5.11. Primijetimo da smo u dokazu Cantor-Schröder-Bernsteinovog teorema ko-
ristili znanja o prirodnim brojevima, pa konkretno i aksiom beskonačnosti. Intuitivno bi-
smo pomislili da taj aksiom ne bi trebao biti potreban za ovaj teorem. Zaista, postoji dokaz
Cantor-Schröder-Bernsteinovog teorema koji ne ovisi o aksiomu beskonačnosti. Ideja je da se
rekurzivna definicija od C pomoću Cn+ = F(Cn) zamijeni unijom C := ∪{a ⊆ A | a ⊆ F(a)}.

5.5 Sli£nost parcijalno ure�enih skupova

Definicija 5.12. Neka su (a,<) i (b,◁) parcijalno ured̄eni skupovi i f : a→ b.
Kažemo da f čuva ured̄aj ako za svake x , y ∈ a, x < y povlači f (x)◁ g(y).
Funkcija f je sličnost izmed̄u a i b ako je bijekcija izmed̄u a i b, čuva ured̄aj i f −1 čuva

ured̄aj.
Ako postoji slǐcnost izmed̄u a i b kažemo da su a i b slični i pišemo (a,<)≃ (b,◁).

Sljedeća propozicija analogna je Propoziciji 5.2.

Propozicija 5.13. 1. Za svaki parcijalno ured̄eni skup (a,<) vrijedi (a,<)≃ (a,<).

2. Za svake parcijalno ured̄ene skupove (a,<), (b,<) ako je (a,<) ≃ (b,<) onda je i
(b,<)≃ (a,<).

3. Za svake parcijalno ured̄ene skupove (a,<), (b,<), (c,<) ako je (a,<)≃ (b,<) i (b,<
)≃ (c,<) onda je i (a,<)≃ (c,<).

Dokaz. D.Z.

Propozicija 5.14. Neka su (a,<) i (b,◁) totalno ured̄eni skupovi i neka je f : a→ b bijekcija
izmed̄u a i b koja čuva ured̄aj. Tada je f slǐcnost.

Dokaz. Samo treba dokazati da f −1 čuva ured̄aj. Neka su y1, y2 ∈ b, y1 < y2. Jer je f
bijekcija postoje x1, x2 ∈ a takvi da je f (x1) = y1, f (x2) = y2. Jer je (a,<) totalno ured̄en
x1 i x2 su usporedivi, a jer f čuva ured̄aj jedini mogući odnos je x1 < x2, što je trebalo
dokazati.

Definicija 5.15. Neka je (a,<) parcijalno ured̄en skup i x ∈ a.
(Otvoreni) početni komad od x u a je

pa(x) := {y ∈ a | y < x}. (5.2)
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5 Odnosi med̄u skupovima

Zatvoreni početni komad od x u a je

p̄a(x) := {y ∈ a | y ≤ x}. (5.3)

Neka su x , y ∈ a, x < y . Tada je početni komad od x u a istovremeno početni komad i
u početnom komadu pa(y), tj.

pa(x) = ppa(y)(x). (5.4)

Propozicija 5.16. Neka su (a,<) i (b,◁) parcijalno ured̄eni skupovi, f : a → b slǐcnost i
x ∈ A. Tada je restrikcija f |pa(x) slǐcnost izmed̄u pa(x) i pb( f (x)).

Dokaz. Ako funkcija čuva ured̄aj, čuva i njena restrikcija. Isto tako restrikcija injekcije
je injekcija pa je jedino potrebno dokazati da je f |pa(x) surjekcija na pb( f (x)). Uzmimo
y ∈ pb( f (x)), tj. y < f (x). Jer je f bijekcija postoji x ′ ∈ a takav da je y = f (x ′), a jer
čuva ured̄aj mora biti x ′ < x , dakle x ′ ∈ pa(x). Stoga je y zaista u slici restrikcije na
pa(x).

Teorem 5.17. Za svaki parcijalno ured̄en skup (a,<) postoji A⊂ P (a) takav da je (a,<)≃
(A,⊂).

Dokaz. Tvrdimo da je funkcija p̄a : a → rng(p̄a) koja svakom x ∈ a pridružuje zatvoreni
početni komad tražena sličnost. Ona je po definiciji surjekcija na A := rng(p̄a). Uvijek je
x ∈ p̄a(x) pa ; /∈ A što povlači A ̸=P (a).

Pretpostavimo da je p̄a(x) = p̄a(y). Zato je x ∈ p̄a(y), tj. x ≤ y . Analogno je y ≤ x , pa
je x = y . Dakle, p̄a je injekcija, pa i bijekcija izmed̄u a i A.

Ako je x < y tranzitivnost povlači da za svaki z ≤ x vrijedi z ≤ y , tj. p̄a(x) ⊆ p̄a(y).
Zbog injektivnosti ne mogu biti jednaki, pa je p̄a(x) ⊂ p̄a(y). Dakle p̄a čuva ured̄aj.

Sada Propozicija 5.14 implicira da je p̄a sličnost.
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6 Redni brojevi (ordinali)

6.1 Dobro ure�eni skupovi

Prisjetimo se da je totalno ured̄eni skup (A,<) dobro ured̄en ako svaki neprazan B ⊆ A ima
najmanji element, Definicija 3.16.

Lema 6.1. Neka je (A,<) dobro ured̄en skup i neka f : A→ A čuva ured̄aj. Tada za svaki
x ∈ A vrijedi f (x)≥ x.

Dokaz. Pretpostavimo suprotno, da postoji x ∈ A takav da je f (x) < x . Neka je S skup
svih takvih. Budući da je (A,<) dobro ured̄en S ima najmanji element, pa neka je upravo
x najmanji u S. Kako f čuva ured̄aj vrijedi f ( f (x))< f (x), dakle f (x) ∈ S. To proturječi
pretpostavci da je x najmanji u S.

Napomena 6.2. Tehnika “najmanjeg protuprimjera” korištena u ovom dokazu standarna je
tehnika dokazivanja kod dobro ured̄enih skupova. Ako želimo dokazati da nešto vrijedi za
svaki element dobro ured̄enog skupa, možemo pretpostaviti suprotno i uzeti upravo najmanji
koji to ne zadovoljava i dovesti do kontradikcije.

Propozicija 6.3. 1. Niti jedan dobro ured̄en skup nije slǐcan svom početnom komadu.

2. Identiteta je jedina slǐcnost dobro ured̄enog skupa sa samim sobom.

3. Ako su dobro ured̄eni skupovi slǐcni, postoji jedinstvena slǐcnost izmed̄u njih.

Dokaz. 1. Pretpostavimo suprotno, da postoji x element dobro ured̄enog skupa A takav
da postoji sličnost f : A→ pA(x). Tada je f (x) ∈ pA(x), dakle f (x) < x . Sličnost
čuva ured̄aj, pa to proturječi Lemi 6.1.

2. Neka je f : A→ A sličnost za dobro ured̄en A i neka je x ∈ A proizvoljan. Sličnost f
čuva ured̄aj pa Lema 6.1 implicira da je f (x)≥ x . Jednako tako f −1 čuva ured̄aj, pa
ista lema implicira da je x = f −1( f (x))≥ f (x), dakle x = f (x).

3. Kad bi postojale dvije različite sličnosti f , g : A→ B, tada bi g−1◦ f bila sličnost A→ A
različita od identitete, pritivno točki 2.

Teorem 6.4. Za svaka dva dobro ured̄ena skupa A i B vrijedi točno jedno od sljedećeg:

• A i B su slǐcni,

• A je slǐcan početnom komadu u B, ili
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6 Redni brojevi (ordinali)

• B je slǐcan početnom komadu u A.

U potonja dva slučaja početni je komad jedinstven.

Dokaz. Definirajmo relaciju

f := {(x , y) ∈ A× B | pA(x)≃ pB(y)}.

Dokažimo da je f funkcija. Pretpostavimo da sa za različite y1, y2 ∈ B (x , y1), (x , y2) ∈ f .
Tada je pB(y1) ≃ pA(x) ≃ pB(y2). Bez smanjenja općenitosti možemo pretpostaviti da je
y1 < y2, pa je početni komad pB(y1) ujedno i početni komad u pB(y2). Dakle pB(y2) je
sličan svom početnom komadu, što proturječi Propoziciji 6.3 1.

Analogno se dokazuje da je f −1 funkcija, tj. da je f injekcija. Dakle f je bijekcija izmed̄u
svoje domene i svoje slike.

Neka su x1, x2 ∈ dom( f ), x1 < x2. Po definiciji od f postoji sličnost izmed̄u pA(x2) i
pB( f (x2)). Po Propoziciji 5.16 restrikcija te sličnosti na pA(x1) je sličnost izmed̄u pA(x1) i
nekog ppB( f (x2))(y1) = pB(y1). Jer je f funkcija znamo da je y1 = f (x1), no sada znamo da
je f (x1) = y1 < f (x2). Dakle f čuva ured̄aj. Propozicija 5.14 implicira da je f je sličnost
izmed̄u svoje domene i svoje slike.

Dokažimo da je dom( f ) ili cijeli A ili početni komad u A. Ako nije cijeli A neka je x
najmanji element u A\ dom( f ). Dakle, svaki element manji od x je u domeni, tj. pA(x) ⊆
dom( f ). Pretpostavimo da postoji x ′ ∈ dom( f ), x ′ > x . Dakle postoji sličnost izmed̄u
pA(x ′) i nekog pB(y ′). Tada Propozicija 5.16 implicira da je restrikcija te sličnosti na x
sličnost izmed̄u pA(x) i nekog pB(y). Zato je po definici od f (x , y) ∈ f , dakle x ∈ dom( f ).
To proturječi izboru od x . Dakle zaista ne postoji x ′ ∈ dom( f ) takav da je x ′ > x , zbog
čega je dom( f ) = pA(x).

Analogno se dokazuje da je rng( f ) ili cijeli B ili početni komad u B.
Tvrdimo da je dom( f ) = A ili rng( f ) = B. Pretpostavimo suprotno, tj. da postoje x ∈ A

i y ∈ B takvi da je dom( f ) = pA(x) i rng( f ) = pB(y). No tada je sam f sličnost izmed̄u
početnih komada pA(x) i pB(y) pa po definiciji od f vrijedi (x , y) ∈ f , što proturječi
pretpostavci.

Preostaju dakle točno tri tražene mogućnosti, f je sličnost izmed̄u A i B, ili izmed̄u
A i početnog komada u B ili izmed̄u početnog komada u A i B. Još treba provjeriti da
nije moguća istovremeno još jedna opcija pomoću neke druge sličnosti. No u svakom od
slučajeva višestrukih opcija skup bi bio sličan nekog svom početnom komadu, što proturječi
Propoziciji 6.3 1.

Konačno, kad u potonja dva slučaja početni komad ne bi bio jedinstven, opet bismo
dobili sličnost izmed̄u većeg početnog komada i manjeg, koji je njegov početni komad,
protivno Propoziciji 6.3 1.

6.2 De�nicija i uvodna svojstva rednih brojeva

Definicija 6.5. Skup α je tranzitivan ako za svake x , y za koje je x ∈ y ∈ α vrijedi x ∈ α.
Ekvivalentno, skup α je tranzitivan ako za svaki x ∈ α je x ⊆ α.
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6.3 Ured̄aj na rednim brojevima

Za skup S neka je
∈S:= {(x , y) ∈ S × S | x ∈ y}. (6.1)

Primijetimo da je ∈ logička izjava s dvije varijable, dok je ∈S relacija. Ipak, ako znamo da
su oba x , y ∈ S tada je x ∈ y ekvivalentno s x ∈S y .

Definicija 6.6. Skup α je redni broj ili ordinal ako je tranzitivan i dobro ured̄en ured̄ajem
∈α.

Ordinale obično označavamo malim grčkim slovima.

Primjer 6.7. Provjerite da su ;, 1= {;} i 2= {;, {;}} ordinali.

Propozicija 6.8. Za svaki redni broj α vrijedi α /∈ α.

Dokaz. Pretpostavimo da je α ∈ α. Tada je α kao element u relaciji ∈α sa samim sobom,
tj. α ∈α α. To proturječi irefleksivnosti ured̄aja ∈α.

Propozicija 6.9. Svaki element ordinala je ordinal.

Dokaz. Neka je α ordinal i β ∈ α.
Uzmimo x ∈ y ∈ β . Jer je α tranzitivan y ∈ β ∈ α implicira y ∈ α, a potom x ∈ y ∈ α

implicira x ∈ α. Dakle sva tri x , y,β su ∈ α, pa x ∈ y ∈ β implicira relacije x ∈α y ∈α β .
Ta relacija je totalni ured̄aj na ordinalu α, pa njena tranzitinost implicira x ∈α β , odnosno
x ∈ β . Dakle β je tranzitivan.

Jer je α ordinal β ∈ α implicira β ⊆ α, pa je ∈β restrikcija od ∈α. Restrikcija dobrog
ured̄aja je dobar ured̄aj. Dakle β je ordinal.

6.3 Ure�aj na rednim brojevima

Definicija 6.10. Za redne brojeve α i β kažemo da je α manji od β i pišemo α < β ako je
α ∈ β . Sa α≤ β označavamo α < β ili α= β .

Napomena 6.11. Oznaka < nije relacija nego tek nova oznaka za već postojeću oznaku ∈.
Ipak, čim uvodimo ovakvu oznaku i terminologiju “manji od” očekivat ćemo da se ponašaju
kao ured̄aj.

Zaista, zbog Propozicije 6.9 svaki ordinal je skup ordinala koji je po definiciji ured̄en upravo
ured̄ajem ∈. To će vrijediti i za druge skupove ordinala kako ćemo vidjeti u nastavku.

Propozicija 6.12. Neka su α i β ordinali. Tada je

1. α ⊂ β ako i samo ako α < β;

2. α ⊆ β ako i samo ako α≤ β .
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6 Redni brojevi (ordinali)

Dokaz. 1. Ako je α ∈ β tranzitivnost od β implicira α ⊆ β . Propozicija 6.8 implicira da
je α ̸= β pa je α ⊂ β .

Obratno, ako je α ⊂ β onda je β \α neprazan podskup od β pa ima najmanji element
γ u ured̄aju ∈β . Dakle, svaki δ < γ nije u tom skupu pa je u α. Drugim riječima, za
svaki δ ∈ γ vrijedi δ ∈ α, tj. γ ⊆ α.

Uzmimo δ ∈ α ⊂ β . Oba γ i δ su u β , pa su usporediva ured̄ajem ∈β . Nije moguće da
je δ = γ jer γ /∈ α. Nije moguće niti da je γ ∈ δ jer bi onda tranzitivnost od ordinala
α takod̄er implicirala γ ∈ α. Dakle vrijedi δ ∈ γ. Zato je α ⊆ γ, pa i α= γ ∈ β .

2. Jasno iz 1.

Lema 6.13. Ako su α i β ordinali, α∩ β je takod̄er ordinal.

Dokaz. Neka je x ∈ y ∈ α ∩ β ⊆ α. Zato je x ∈ α. Analogno je x ∈ β , pa je x ∈ α ∩ β ,
dakle α∩ β je tranzitivan.

Restrikcija dobrog ured̄aja je dobar ured̄aj. Dakle α∩ β je ordinal.

Propozicija 6.14. Za svaka dva redna broja α i β vrijedi točno jedno od sljedećeg: ili α < β
ili α= β ili α > β .

Dokaz. Lema 6.13 implicira da je α ∩ β ordinal. Ako je α ∩ β = α onda je α ⊆ β pa
Propozicija 6.12 implicira α≤ β .

Ako je α∩ β = β analogno je β ≤ α.
U preostalom slučaju je α∩β ⊂ α i α∩β ⊂ β , pa Propozicija 6.12 implicira da je α∩β ∈ α

i α∩ β ∈ β , dakle α∩ β ∈ α∩ β , a to proturječi Propoziciji 6.8.
Lako se vidi da ne može vrijediti više tvrdnji istovremeno zbog Propozicije 6.8.

Korolar 6.15. Neka je S skup ordinala. Tada je ∈S totalni ured̄aj na S.

Dokaz. TODO

Propozicija 6.16. Neka su α i β ordinali i neka je α < β . Tada je α jednak svom početnom
komadu u β , tj.

α= pβ(α).

Dokaz. Propozicija 6.12 implicira α ⊂ β , pa je

α= {γ ∈ β | γ ∈ α},

a to je upravo traženi početni komad.

Korolar 6.17. Ako su dva redna broja slǐcna, onda su i jednaka.

Dokaz. Dokazujemo obrat po kontrapoziciji. Ako dva ordinala α i β nisu jednaka, onda
zbog Propozicije 6.14 bez smanjenja općenitnosti možemo pretpostaviti da je α < β , pa je
α početni komad u β . Zbog Propozicije 6.3 1. ne mogu biti slični.
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6.4 Skupovi ordinala

6.4 Skupovi ordinala

Propozicija 6.18. Neka je S skup ordinala. Tada je ∈S dobar ured̄aj na S.

Dokaz. Dovoljno je dokazati da svaki neprazan skup ordinala A ima najmanji element.
Uzmimo α ∈ A. Ako je α ∩ A = ;, svaki drugi β ∈ A nije element od α, pa po Propoziciji
6.14 mora biti α ∈ β , dakle α je najmanji.

Ako je α∩A neprazan, kao podskup od ordinala α ima najmanji element γ. Tvrdimo da
je on najmanji i u A. U protivnom, ako postoji β ∈ A takav da je β ∈ γ, po tranzitivnosti
od α je i β ∈ α, pa bi on bio manji od γ u α.

Korolar 6.19. Svaki tranzitivni skup ordinala je ordinal.

Dokaz. Direktno po definiciji ordinala.

Propozicija 6.20 (Burali-Fortijev paradoks). Ne postoji skup svih rednih brojeva.

Dokaz. Pretpostavimo suprotno, da postoji Ω = {α | α je ordinal}. Zbog Propozicije 6.9
element svakog ordinala je ordinal, pa je Ω tranzitivan. Zatim Korolar 6.19 povlači da je
Ω ordinal, pa je Ω ∈ Ω, a to proturječi Propoziciji 6.8.

Propozicija 6.21. Neka je S skup ordinala.

1. ∪S je ordinal.

2. ∪S je gornja med̄a od S, tj. za svaki α ∈ S je α≤ ∪S.

3. Ako S ima najveći element β , onda je ∪S = β .

4. Ako je ordinal β gornja med̄a od S, onda je ∪S ≤ β .

Dokaz. 1. Neka je x ∈ y ∈ ∪S. Tada postoji ordinal α ∈ S takav da je x ∈ y ∈ α, pa je
x ∈ α ⊆ ∪S. Dakle ∪S je tranzitivan.

Po Propoziciji 6.9 svi elementi ordinala su ordinali, pa je ∪S takod̄er skup ordinala.
Budući da je tranzitivan Korolar 6.19 implicira da je ordinal.

U nastavku ćemo više puta koristiti Propoziciju 6.12 koja kaže da je za ordinale α i β
α < β ekvivalentno s α ⊂ β te α ≤ β ekvivalentno s α ⊆ β . Bitno je prethodno provjeriti
da su oba elementa zaista ordinali.

2. Za α ∈ S je α ⊆ ∪S, pa i α≤ ∪S.

3. Za svaki α ∈ S je α≤ β , pa i α ⊆ β . Dakle ∪S ⊆ β , pa i ∪S ≤ β .

Točka 2. implicira da je β ≤ ∪S.

4. Ako je β najveći element u S tvrdnja slijedi iz točke 3. U protivnom za svaki α ∈ S
vrijedi α ∈ β pa i α ⊂ β . To implicira da je ∪S ⊆ β , pa i ∪S ≤ β .
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Definicija 6.22. Neka je S skup ordinala. Skup ∪S nazivamo supremum skupa S i označa-
vamo sup S.

Definicija je opravdana zbog točaka 2. i 4. prethodne propozicije. U nastavku ćemo
nastaviti koristiti obje oznake ∪S i sup S.

Korolar 6.23. Za svaki ordinal α je ∪α≤ α.

Dokaz. Ordinal α je gornja med̄a samog sebe, pa točka 4. propozije implicira tvrdnju.

6.5 Sljedbenik rednog broja

Propozicija 6.24. Ako je α ordinal, sljedbenik α+ takod̄er je ordinal.

Dokaz. Uzmimo x ∈ y ∈ α+ = α∪ {α}. Ako je y ∈ α, jer je α ordinal slijedi x ∈ α ⊆ α+.
Ako je x = α onda je isto y ∈ α ⊆ α+. Dakle α+ je tranzitivan.

Jasno je da je α+ skup ordinala, pa Korolar 6.19 povlači da je ordinal.

Korolar 6.25. 1. Svaki prirodan broj n ∈ω je ordinal.

2. Skup prirodnih brojeva ω je ordinal.

Dokaz. 1. Indukcijom iz propozicije.

2. Propozicija 4.7 implicira da je ω tranzitivan, pa točka 1. i Korolar 6.19 impliciraju
tvrdnju.

Propozicija 6.26. Neka su α i β ordinali. Tada je

1. α < α+;

2. α < β+ ako i samo ako α≤ β;

3. α < β ako i samo ako α+ ≤ β;

4. α < β ako i samo ako α+ < β+;

5. α+ = β+ implicira α= β;

Dokaz. 1. Jasno.

2. Jasno.

3. Neka je α+ ≤ β , tj. α+ = β ili α+ < β . U prvom slučaju točka 1., a u drugom slučaju
tranzitivnost od β i točka 1. impliciraju α < β .

Neka je α < β . Uspored̄ujemo α+ i β . Zbog Propozicije 6.14 dovoljno je isključiti
β < α+. U tom bi slučaju točka 2. povlačila β ≤ α < β što nije moguće.
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4. Jasno iz točaka 2. i 3.;

5. Pretpostavimo suprotno, pa bez smanjenja općenitosti možemo pretpostaviti α < β .
Tada točka 4. povlači α+ < β+, kontradikcija.

Definicija 6.27. Ordinal α je sljedbenik ako postoji β takav da je α= β+.
Ordinal je granični ako nije ni 0 ni sljedbenik.

Primjer 6.28. Provjerite da je svaki prirodan broj osim 0 sljedbenik i da jeω granǐcni ordinal.

Propozicija 6.29. 1. Ordinal α je sljedbenik ako i samo ako je α= (∪α)+.

2. Ordinal α je granǐcni ili 0 ako i samo ako je α= ∪α.

Dokaz. 1. Pretpostavimo da je α sljedbenik, tj. α= β+ za neki β . Tada je

∪α= ∪(β ∪ {β}) = ∪β ∪ β = β

jer je ∪β ⊆ β po Korolaru 6.23. Zato je α= (∪α)+.

Obrat proizlazi direktno iz definicije.

2. Pretpostavimo da je ∪α = α. Kada bi α bio sljedbenik onda bi po točki 1. bilo
α = (∪α)+ = α+ što proturječi Propoziciji 6.26 1. Dakle α nije sljedbenik, pa je ili 0
ili granični.

Obratno, pretpostavimo da α nije sljedbenik. Korolar 6.23 povlači ∪α ⊆ α. S druge
strane za proizvoljan β ∈ α Propozicija 6.26 3. povlači β+ ≤ α. Ne mogu biti jednaki
jer α nije sljedbenik, pa je β+ ∈ α. Budući da je ∪α gornja med̄a od α (Propozicija
6.21 2.) slijedi β < β+ ≤ ∪α, tj. β ∈ ∪α. Dakle zaista je α ⊆ ∪α, pa je α= ∪α.

6.6 Teorem enumeracije

Teorem 6.30. Svaki dobro ured̄en skup slǐcan je jedinstvenom rednom broju.

Dokaz. Neka je A dobro ured̄en skup i neka je

A′ := {x ∈ A | ∃ ordinal β takav da je pA(x)≃ β} (6.2)

skup svih elemenata od A čiji su početni komadi slični nekom ordinalu. Za svaki x ∈ A′ taj
je ordinal jedinstven zbog Korolara 6.17. Drugim riječima, logički izraz koji kaže

P(x ,β) :≡ β je ordinal ∧ x ≃ β

zadovoljava da ∀x ∈ A′ ∃!β P(x ,β), pa po aksiomu zamjene za taj P(x ,β) postoji skup

α := { f (x) | x ∈ A′}
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gdje je f (x) jedinstven ordinal sličan s x . Zbog toga postoji i funkcija f : A′→ α, x 7→ f (x).
Tvrdimo da je α tranzitivan. Uzmimo γ ∈ f (x) ∈ α. Budući da je f (x) ordinal, ordinal

je i γ. Neka je g : f (x)→ x sličnost i neka je y := g(γ). Lako se provjeri da je restrikcija
g|γ sličnost izmed̄u γ i početnog komada pA(y). Dakle y ∈ A′ i γ ∈ α. Dakle α je zaista
tranzitivan, pa je po Korolaru 6.19 ordinal.

Na gotovo identičan način dokažemo da za svaki x ∈ A′ i svaki y ∈ A, y < x implicira
y ∈ A′ (detalji za D.Z.).

Lako se vidi da f : A′ = pA(x)→ α čuva ured̄aj. Stoga je i injekcija, a po definiciji od α
je i surjekcija. Dakle ona je sličnost.

Tvrdimo da je A′ = A. Pretpostavimo suprotno i uzmimo najmanji x ∈ A koji nije u A′.
Dakle, svaki y < x je u A′, tj. pA(x) ⊆ A′.

S druge strane, ako postoji y ∈ A′ \ pA(x) postoji sličnost izmed̄u pA(y) i nekog ordinala
β . Propozicija 5.16 implicira da je restrikcija te sličnosti na pA(x) sličnosti izmed̄u pA(x)
i nekog početnog komada od β koji je po Propoziciji 6.16 ordinal. Zato je x ∈ A′ što
proturječi pretpostavci da postoji traženi y . Zaključujemo da y ∈ A′ \ pA(x) ne postoji, tj.
pA(x) = A′.

Dakle funkcija f : A′ = pA(x)→ α je sličnost izmed̄u početnog komada u A i ordinala α,
pa je x ∈ A′. To proturječi izboru od x , dakle zaista je A′ = A.

Zato imamo f : A→ α sličnost, što je i trebalo pokazati. Jedinstvenost slijedi direktno
iz Korolara 6.17.

6.7 Trans�nitna indukcija

Teorem 6.31 (Jaka transfinitna indukcija). Neka je φ(β) logǐcki izraz sa slobodnom vari-
jablom β takav da za svaki ordinal α

((∀ ordinal β < α) φ(β))→ φ(α).

Tada za svaki ordinal α vrijedi φ(α).

Primijetimo da je Teorem jake transfinitne indukcije shema teorema. Takva će biti i
većina drugih teorema o transfinitnoj indukciji i rekurziji koje ćemo spomenuti u nastavku.

Dokaz. Pretpostavimo suprotno, tj. da postoji ordinal γ za koji ne vrijedi φ(γ). Neka je

α :=min{β ≤ γ | ¬φ(β)}

najmanji ordinal manji ili jednak γ (dakle ∈ γ+ po Propoziciji 6.26) za koji ne vrijedi
φ(α). Tada za sve ordinale β < α vrijedi φ(β), pa svojstvo iz teorema implicira φ(α), što
je kontradikcija.

Napomena 6.32. Ordinal α iz dokaza definirali smo kao najmanji element skupa dobivenog
separacijom iz γ+ pomoću nekog svojstva. Postavlja se pitanje jesmo li mogli naprosto uzeti
najmanji ordinal koji ima to svojstvo, budući da su svi ordinali “dobro ured̄eni”. Odgovor je:
nismo direktno, jer ne postoji skup svih ordinala koji bi bio dobro ured̄en. Med̄utim, uvijek
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možemo napraviti trik kao u dokazu: ako postoji ordinal γ s nekim svojstvom dovoljno je
razmatrati ordinale manje ili jednake njemu, a oni čine skup, i uzeti najmanji αmed̄u njima.
Jasno je da α ne ovisi o izboru γ. Zbog toga možemo kratko reći da uzimamo najmanji ordinal
koji ima dano svojstvo, što ćemo i raditi u nastavku.

Kao što indukcija i rekurzija prirodnih brojeva mogu biti jaka - koja uzima u obzir sve
manje brojeve, i primitivna - koja uzima u obzir samo neposredne prethodnike, postoji i
primitivna transfinitna indukcija. Ipak, redni su brojevi širi pojam od prirodnih brojeva pa
je njihova primitivna indukcija nešto kompleksnija, što ćemo vidjeti u nastavku.

Teorem 6.33 (Primitivna transfinitna indukcija). Neka je φ(β) logǐcki izraz sa slobodnom
varijablom β takav da vrijedi

• φ(0);

• za svaki ordinal α φ(α) povlači φ(α+);

• za svaki granǐcni ordinal α (∀β < α) φ(β) povlači φ(α).

Tada za svaki ordinal α vrijedi φ(α).

Dokaz. Provjerit ćemo da za svaki ordinal α vrijedi uvjet Teorema 6.31, tj. implikacija
((∀ ordinal β < α) φ(β))→ φ(α).

Ako je α= 0 φ(α) vrijedi zbog prvog uvjeta.
Ako je α sljedbenik postoji γ takav da je α = γ+. Pretpostavimo da (∀ ordinal β <

α) φ(β). Konkretno, γ < γ+ = α, pa slijedi φ(γ). Sada drugi uvjet povlači φ(γ+), tj.
φ(α).

U preostalom slučaju, ako je α granični, treći uvjet ovog teorema identičan je uvjeti iz
Teorema 6.31.

Dakle u svakom slučaju vrijedi uvjeti iz Teorema 6.31, pa on povlači φ(α) za svaki
ordinal α.

6.8 Trans�nitna rekurzija

Prisjetimo se da logički izraz P(x , y) za koji vrijedi ∀x∃!y P(x , y) nazivamo logǐcka funk-
cija, Definicija 4.21. Za zadani x jedinstveni takav y označavamo s P(x). Ako je P(x , y)
logička funkcija i X skup neka je

P|X := {(x , y) | x ∈ X ∧ P(x , y)}. (6.3)

To je jasno funkcija, a njeno postojanje slijedi iz aksioma zamjene.

Teorem 6.34 (Jaka transfinitna rekurzija). Neka je F(x , y) logǐcka funkcija. Tada postoji
logǐcka funkcija P(x , y) za koju vrijedi (∀ ordinal α) P(α) = F(P|α).
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Ponovno primijetimo da je navedeni teorem shema teorema, po jedan teorem za svaku
logičku funkciju F(x , y). Prisjetimo se da se sve tvrdnje ne mogu iznijeti u jednom te-
oremu jer za logičke izraze F ne možemo koristiti kvantifikator ∀F . No za logičke izraze
ne možemo koristiti niti kvantifikator ∃, pa je tvrdnja teorema da postoji logička funkcija
P(x , y) problematična. Zaista, gore naveden iskaz teorema nepotpun je. Tvrdnja da pos-
toji neka logička funkcija zapravo je nepotpuna skraćenica tvrdnje koja eksplicitno navodi
tu logičku funkciju. Logičku funkciju P(x , y) konstruirat ćemo u dokazu i ona formalno
mora biti dio iskaza teorema. Formalno ćemo iskazati teorem, odnosno teoreme, nakon
dokaza.

Dokaz. Dokaz provodimo koliko možemo analogno dokazu Teorema 4.23.
Neka je G(α, g) logički izraz koji kaže

G(α, g) :≡ α je ordinal ∧ g je funkcija ∧ dom(g) = α∧ (∀β ∈ α) g(β) = F(g|β). (6.4)

Tvrdnja 1. Za svaki ordinal α i za svake g, g ′ ako vrijedi G(α, g) i G(α, g ′) onda je g = g ′.

Dokaz. Pretpostavimo suprotno, da postoje različiti g, g ′ takvi da je G(α, g) i G(α, g ′).
Posebno, vrijedi da su g i g ′ funkcije s domenom α pa za β ∈ α možemo koristiti notacije
g(β) i g ′(β). Neka je

γ :=min{β ∈ α | g(β) ̸= g ′(β)}
najmanji ordinal u kojem se funkcije razlikuju. Tada je za svaki β < γ g(β) = g ′(β), tj.
g|γ = g ′|γ, pa G(α, g) i G(α, g ′) impliciraju

g(k) = F(g|k) = F(g ′|k) = g ′(k),

što proturječi izboru k.

Tvrdnja 2. Neka su α i β ordinali takvi da je β < α. Ako vrijedi G(α, g) onda vrijedi i
G(β , g|β).

Dokaz. Jasno.

Tvrdnja 3. Za svaki ordinal α postoji g takav da vrijedi G(α, g).

Dokaz. Dokazujemo primitivnom transfinitnom indukcijom po α.
Baza α= 0: Provjerimo da vrijedi G(0,;).
Sljedbenik α= β+: Pretpostavimo da vrijedi G(β , gβ). Definirajmo funkciju gα s dome-

nom α:

gα(γ) :=

¨

gβ(γ) γ < β

F(gβ) γ= β .
(6.5)

Lako se provjeri da vrijedi G(α, gα).
Granični α: Pretpostavimo da za svaki ordinal β < α postoji gβ takav da vrijedi G(γ, gβ).
Tvrdnja 1 povlači da je za svaki β njegov pripadni gβ jedinstven. Stoga aksiom zamjene

povlači da postoji skup
Sα := {gβ | β ∈ α}. (6.6)

Neka je
gα := ∪Sα. (6.7)
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Tvrdnja 3.1. Skup gα je funkcija.

Dokaz. Dokazujemo slično kao Tvrdnju 4 Teorema 4.23, odnosno Teorema 4.19. Pretpos-
tavimo da su (δ, x1), (δ, x2) ∈ gα. Po definiciji unije postoje β ,γ ∈ α takvi da je (δ, x1) ∈ gβ
i (δ, x2) ∈ gγ. Mora vrijediti δ < β i δ < γ. Bez smanjenja općenitosti možemo pretposta-
viti da je β ≤ γ. Tvrdnja 2 povlači da je

gγ|β = gβ .

Zato su oba (δ, x1), (δ, x2) ∈ gβ , a kako je gβ je funkcija, vrijedi x1 = x2.

Tvrdnja 3.2. Domena funkcije gα je α.

Dokaz. Dokazujemo slično kao Tvrdnju 5 Teorema 4.23, odnosno Teorema 4.19.
Domene svih funkcija gβ su ⊆ α, pa je i dom(gα) ⊆ α.
Obratno, neka je β ∈ α. Zato je β+ ≤ α, a kako je α granični mora biti β+ < α. Vrijedi

β ∈ β+ = dom(gβ+). Zato postoji x takav da je (β , x) ∈ gβ+ ⊆ gα. Dakle β ∈ dom(gα).

Transfinitnu indukciju završavamo sljedećom tvrdnjom.

Tvrdnja 3.3. Za svaki β ∈ α vrijedi gα(β) = F(gα|β).

Dokaz. Ponovno znamo da je β+ < α. Po pretpostavci indukcije vrijedi G(β+, gβ+), pa
posebno gβ+(β) = F(gβ+ |β), tj. (β , F(gβ+ |β)) ∈ gβ+ ⊆ gα. Dakle gα(β) = F(gβ+ |β) =
F(gα|β).

Tvrdnje 3.1, 3.2 i 3.3 upravo impliciraju G(α, gα). Time je indukcija završena.

Dokazali smo da za svaki ordinal α postoji jedinsveni gα takav da vrijedi G(α, gα). Svi
ordinali ne čine skup, pa od ovoga ne možemo konstruirati generalnu funkciju na svim
ordinalima. Ipak, možemo konstruirati logički izraz P(α, x) koji kaže x = gα+(α), odnosno
formalno:

P(α, x) :≡ (α je ordinal ∧ (∀g) G(α+, g)→ (α, x) ∈ g)∨ (α nije ordinal ∧ x = 0). (6.8)

Tvrdnja 4. P(α, x) je logǐcka funkcija, tj. za svaki α postoji jedinsveni x takav da vrijedi
P(α, x).

Dokaz. Ako je α ordinal tvrdnje 1 i 3 impliciraju da postoji jedinstveni gα+ takav da vrijedi
G(α+, gα+), dakle P(α, x) kaže da je (α, x) ∈ gα+ . G(α+, gα+) izmed̄u ostalog povlači da je
gα+ funkcija s domenom α+, pa za α ∈ α+ postoji jedinstveni x za koji je (α, x) ∈ gα+ .

Ako α nije ordinal jasno je da P(α, x) vrijedi samo za x = ;.

Dodatna opcija za α koji nije ordinal neće nikada biti korištena, ona služi samo da bismo
zadovoljili formalnu definiciju logičke funkcije.

Sljedećom tvrdnjom završavamo ovaj dokaz.

Tvrdnja 5. Za svaki ordinal α vrijedi P(α) = F(P|α)
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Dokaz. Znamo da za β ∈ α vrijedi P|α(β) = gβ+(β). Tvrdnja 2 implicira da je to jednako
gα(β), pa je P|α = gα. Opet zbog tvrdnje 2 to je jednako gα+ |α.

Sada samo provjerimo da vrijedi P(α, F(gα)), tj. gα+(α) = F(gα+ |α). To direktno slijedi
iz izbora gα+ kao one funkcije koja zadovoljava G(α+, gα+).

Teorem (Formalni iskaz Sheme teorema jake transfinitne rekurzije). Neka je F(x , y) lo-
gǐcka funkcija. Tada je sljedeća tvrdnja teorem.

Teorem (Teorem jake transfinitne rekurzije za logičku funkciju F(x , y)). Neka je P(α, x)
logǐcki izraz definiran u gornjem dokazu, tj.

P(α, x) :≡ (α je ordinal ∧ ((∀g) g je funkcija ∧ dom(g) = α+ ∧
(∀β ∈ α+) g(β) = F(g|β)→ (α, x) ∈ g))

∨ (α nije ordinal ∧ x = ;).

Vrijedi sljedeće:

1. P(α, x) je logǐcka funkcija, tj. za svaki α postoji jedinstveni x takav da je P(α, x).

2. Za svaki ordinal α vrijedi P(α) = F(P|α).

Iako je navedeno fomalan logički iskaz teorema, mi ćemo i dalje neformalno govoriti
da “postoji” ili da se “može konstruirati” logička funkcija te u iskazima teorema nećemo
eksplicitno iznositi tu logičku funkciju. U konačnici nije nam bitno kako ona točno izgleda,
nego su nam bitna njena svojstva koja iznosi teorem (u ovom slučaju P(α) = F(P|α)). Prvu
primjenu vidimo u sljedećem Teoremu primitivne transfinitne rekurzije.

Teorem 6.35 (Primitivna transfinitna rekurzija). Neka je b skup te S(x , y) i G(x , y) logǐcke
funkcije. Tada se može konstruirati logǐcka funkcija P(x , y) za koju vrijedi

• P(0) = b;

• za svaki ordinal α je P(α+) = S(P(α));

• za svaki granǐcni ordinal α je P(α) = G(P|α).

Dokaz. Konstruirajmo logički izraz:

F(x , y) :≡ x = ; ∧ y = b ∨
x je funkcija∧ (∃ ordinal α) (dom(x) = α+ ∧ S(x(α), y) ∨)
x je funkcija∧ (∃ granični ordinal α) (dom(x) = α∧ G(x , y)) ∨
x nije funkcija ili mu domena nije ordinal ∧ y = ;.

Za D.Z. pokažite da je F(x , y) logička funkcija i primijenite Teorem jake transfinitne
rekurzije za tu logičku funkciju.
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6.9 Operacije na ordinalima

Slično kao kod prirodnih brojeva uvest ćemo operacije zbrajanja, množenja i eksponenci-
ranja ordinala, ovaj put pomoću transfinitne rekurzije.

Sve će one biti definirane logičkim izrazom P(α,β ,γ) takvim da za svake ordinale α i
β postoji jedinstveni γ za koji on vrijedi. Tada za navedeni γ možemo uvesti oznaku koja
koristi α i β , pa je P(α,β ,γ) ekvivalentno jednakosti γ = (ta oznaka). Iako je pomalo
neprecizno, u iskazima propozicija zbog jednostavnosti odmah ćemo koristiti tu jednakost
umjesto P, čime impliciramo svojstvo jedinstvenosti γ.

Propozicija 6.36. Može se konstruirati logǐcki izraz α+ β = γ za koji vrijedi

• za svaki ordinal α je α+ 0= α;

• za svake ordinale α i β je α+ β+ = (α+ β)+;

• za svaki ordinal α i granǐcni ordinal β je α+ β = sup{α+ γ | γ ∈ β}.

Dokaz. Direktno primjenom Primitivne transfinitne rekurzije, Teorem 6.35., za skup α te
logičke funkcije y = x+ i y = ∪rng(x).

Propozicija 6.37. Može se konstruirati logǐcki izraz α · β = γ za koji vrijedi

• za svaki ordinal α je α · 0= 0;

• za svake ordinale α i β je α · β+ = α · β +α;

• za svaki ordinal α i granǐcni ordinal β je α · β = sup{α · γ | γ ∈ β}.

Dokaz. D.Z.

Propozicija 6.38. Može se konstruirati logǐcki izraz αβ = γ za koji vrijedi

• za svaki ordinal α je α0 = 1;

• za svake ordinale α i β je αβ
+
= αβ ·α;

• za svaki ordinal α i granǐcni ordinal β je α+ β = sup{αγ | γ ∈ β \ {0}}.

Dokaz. D.Z.

Propozicija 6.39. Za svake ordinale α, β i γ vrijedi

0+α= α 1 ·α= α · 1= α α1 = α, 1α = 1

α(β + γ) = αβ +αγ αβ+γ = αβαγ

α+ (β + γ) = (α+ β) + γ α(βγ) = (αβ)γ

β < γ⇒ α+ β < α+ γ β < γ⇒ αβ < αγ za α > 0 β < γ⇒ αβ < αγ za α > 1

α+ β = α+ γ⇒ β = γ αβ = αγ⇒ β = γ za α > 0 αβ = αγ⇒ β = γ za α > 1

α≤ β ⇒ α+ γ≤ β + γ α≤ β ⇒ αγ≤ βγ α≤ β ⇒ αγ ≤ βγ

Dokaz. Sve se dokazuje transfinitnom indukcijom. D.Z.
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