

CENTRE FOR ADVANCED LASER TECHNIQUES

Fazna stabilizacija lasera i redukcija šuma u optičkim vlaknima

Ana Kardum

Projekt je sufinanciran u okviru OP Konkurentnost kohezija, iz Europskog fonda za regionalni razvoj.

© CALT

Motivacija

Precizno mjerenje vremena

Ref: Bothwell, T., Kennedy, C.J., Aeppli, A. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022)

 $\nu \simeq cR_{\infty}AF(\alpha)$

Atomski satovi

- 1950ih cezijev atomski sat
 ≈ 9.2 GHz
- 1967. redefinicija sekunde
- 1999. izum frekventnog češlja
- optički satovi: H, Ca, Hg, Al+, Yb, Sr
- Sr: $4s^2 \, {}^1S_0 \leftrightarrow {}^3P_0 \approx 430 \, \text{THz}$

Ref: Rev. Mod. Phys. 90, 025008 (2018)

Atomski satovi

- 1950ih cezijev atomski sat
 ≈ 9.2 GHz
- 1967. redefinicija sekunde
- 1999. izum frekventnog češlja
- optički satovi: H, Ca, Hg, Al+, Yb, Sr

• Sr:
$$4s^2 \, {}^1S_0 \leftrightarrow {}^3P_0 \approx 430 \, \text{THz}$$

Stroncijev sat u Grupi za kvantne tehnologije

prvi u Hrvatskoj!

- diodni laseri
- 698 nm (\leftrightarrow 430 THz) clock laser
- 461 nm, 689 nm laseri za hlađenje
- 679 nm, 707 nm *repumping* laseri

Stroncijev sat u Grupi za kvantne tehnologije

prvi u Hrvatskoj!

- diodni laseri
- 698 nm (\leftrightarrow 430 THz) clock laser
- 461 nm, 689 nm laseri za hlađenje
- 679 nm, 707 nm *repumping* laseri

Preciznost

EKSPERIMENT

СЛГТ

optičko vlakno

EKSPERIMENT

СЛГТ

Komponente - princip rada

Frekventni češalj

 koherentni modovi → ekvidistantni optički spektar

• $f_{rep} = \frac{c}{2L}$

•
$$f_{CEO} = \frac{\Delta \varphi}{T}$$

• n mod:
$$f_n = f_{CEO} + n \cdot f_{rep}$$

Slika: M. Systems, FC1500-250-ULN user manual

AOM

- akustičko optički modulator
- $f_{dif} = f + m \cdot F$
- mijenja frekvenciju!

Slika: R. Paschotta, Acousto-optic modulators, RP Photonics Encyclopedia

16

CALT

Fazni EOM

•
$$\Delta \varphi = \frac{2\pi \cdot \Delta n \cdot L}{\lambda}$$
 - mijenja fazu!

•
$$E_{mod} = E_0 e^{-i\omega t - imsin(\omega t)}$$

$$\approx J_0(m)E_0e^{-i\omega t} + J_1(m)E_0e^{-i(\omega+\omega_m)t}$$

+
$$J_1(m)E_0e^{-i(\omega-\omega_m)t}$$
 + viši redovi

Slika: J. Karlsson, Cerium as a quantum state probe for rare-earth qubits in a crystal, Ph.D. thesis, Lund University, Faculty of Engineering, LTH Department of Physics Division of Atomic Physics (2015).

Udar

- $f_{udara} = |\omega_1 \omega_2|$
- zbroj izvan dometa elektronike
- mikser slično miješanje frekvencija

Eksperimentalni postav

Stabilizacija

1) Ultra stabilni optički rezonator

1) Ultra stabilni optički rezonator

- erbij fiber jedno-modni kontinuirani laser 1542 nm
- optički rezonator
 - ULE staklo
 - visoki vakuum
 - aktivna temperaturna stabilizacija
 - zvučna izolacija
 - aktivna platforma za izolaciju od vibracija

Slika: M. Systems, UMAN ORS 1550 user manual

 aktivna platforma za izolaciju od vibracija

1) Ultra stabilni optički rezonator

•
$$f_{rep} = \frac{c}{2L}$$

• L = duljina rezonatora

(piezo kristal, unutarnji EOM)

© CALT

•
$$f_{rep} = \frac{c}{2L}$$

• L = duljina rezonatora

(piezo kristal, unutarnji EOM)

CΛLT

L = duljina rezonatora

(piezo kristal, unutarnji EOM)

30

• $f_{rep} = \frac{c}{2L}$

CΛLΤ

2) Stabilizacija frekventnog češlja

•
$$f_{rep} = \frac{c}{2L}$$

L = duljina rezonatora

(piezo kristal, unutarnji EOM)

$1 \mod$ laser frekventnog češlja 1542 (≈1542 nm) nm mikser DDS signal 35 MHz

CW

2) Stabilizacija frekventnog češlja

•
$$f_{rep} = \frac{c}{2L}$$

L = duljina rezonatora

(piezo kristal, unutarnji EOM)

CΛLT

• *f*_{CEO}

(piezo kristal, struja lasera)

CΛLT

2) Stabilizacija frekventnog češlja

 $2(n\omega_r + \omega_o)$

beat note ω_o

© CALT

2) Stabilizacija frekventnog češlja

provjera

CALT

- lijepi *phase lock*:
 - f_{rep} 1 mod • f_{CEO}

© CALT

provjera

CΛLT

- lijepi *phase lock* :
 - f_{rep} 1 mod • f_{CEO} koherencija

2) Stabilizacija frekventnog češlja

svi 🧧

CΛLT

• lijepi *phase lock* :

• f_{rep} - 1 mod • f_{CEO} $\xrightarrow{koherencija}$ svi modovi

3) Stabilizacija 698 nm lasera

3) Stabilizacija 698 nm lasera

© CALT

3) Stabilizacija 698 nm lasera

rezultat

- uski vrh
- niski šum
- širok *bandwidth* (oko pola MHz)

Eksperimentalni postav

Redukcija šuma

CΛLT

CΛLT

CΛLT

Mjerenja

• srednja vrijednost lijevog i desnog

sideband-a

- prije i poslije uključivanja PNC-a
- unutar i izvan petlje
- šum frekvencije 1-80kHz

Mjerenja

• srednja vrijednost lijevog i desnog

sideband-a

- prije i poslije uključivanja PNC-a
- unutar i izvan petlje
- šum frekvencije 1-80kHz

Mjerenja

• srednja vrijednost lijevog i desnog

sideband-a

- prije i poslije uključivanja PNC-a
- unutar i izvan petlje
- šum frekvencije 1-80kHz

Rezultati

Redukcija šuma unutar petlje

- do 10 kHz:
 - velika efikasnost
 - 35 dB redukcije, umanjenje \approx 3000 puta
- iznad 10 kHz:
 - eksponencijalni pad efikasnosti
 - negativna redukcija za 70-80 kHz !

Redukcija šuma izvan petlje

- do 10 kHz:
 - velika efikasnost
 - 30 dB redukcije, umanjenje 1000 puta
- iznad 10 kHz:
 - eksponencijalni pad efikasnosti
 - negativna redukcija za 70-80 kHz !

Zaključak

Fazna stabilizacija

- uspješno provedena
- finesa rezonatora > 200 000
- lijepi *phase lock* za f_{rep} , f_{CEO}
- lijepi *phase lock* za 698 nm laser

Fazna stabilizacija

Redukcija šuma

- uspješno provedena
- finesa rezonatora > 200 000
- lijepi *phase lock* za *f_{rep}*, *f_{CEO}*
- lijepi *phase lock* za 698 nm laser

- optimiziran i okarakteriziran rad petlje za redukciju šuma
- potvrđen efikasan rad za potrebe laboratorija
 - oko 30 dB redukcije (smanjenje 1000 puta) za frekvencije šuma ispod 10 kHz

CENTRE FOR ADVANCED LASER TECHNIQUES

Hvala na pažnji!

Projekt je sufinanciran u okviru OP Konkurentnost i kohezija, iz Europskog fonda za regionalni razvoj.

Operativni program KONKURENTNOST

