

CENTRE FOR ADVANCED LASER TECHNIQUES

Diskretna difrakcija na optički induciranim rešetkama u parama atoma rubidija

Gabrijela Galić Mentor: doc. dr. sc. Damir Aumiler Institut za fiziku, Bijenička cesta 46,10 000 Zagreb

Projekt je sufinanciran u okviru OP Konkurentnost i kohezija, iz Europskog fonda za regionalni razvoj.

Inducirana rešetka

CALT

2

a) Prikaz prolaska laserskih zraka kroz staklenu ćeliju s parom atoma rubidija.

b) Prikaz interferencije pumpnih laserskih zraka i pojave interferencijskog uzorka.

Inducirana rešetka

a) Prikaz prolaska laserskih zraka kroz staklenu ćeliju s parom atoma rubidija.

b) Prikaz interferencije pumpnih
laserskih zraka i pojave interferencijskog uzorka.

Rešetka dobivena interferencijskim zrakama

Proba fokusirana na ulazu u staklenu ćeliju

Proba fokusirana na ulazu u staklenu ćeliju

Proba fokusirana na ulazu u staklenu ćeliju

CALT

Diskretna difrakcija, rešetka = 37 μ m

Diskretna difrakcija, rešetka = 37 μ m

Snaga probnog lasera = 50 μW Snaga pumpnih lasera = 2 x 100 mW

8

CΛLT

Rubidij 87

D. A. Steck, Rubidium 87 D Line Data (2004), https://steck.us/alkalidata/

© CALT

Indeks loma

C λ L T

Eksperimentalni postav

Eksperimentalni postav

Staklena ćelija s atomima rubidija

СЛГТ

Diskretna difrakcija, rešetka = 37 µm, $\Delta_p - \Delta_C = 80 \text{ MHz}$

Snaga probnog lasera = 50 μW Snaga pumpnih lasera = 2 x 100 mW

-0.4 -0.3 -0.3 -0.2 -0.2 -0.1 -0.1 (mm)x x(mm) 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 10 0 20 30 40 50 0 10 20 30 40 50 z(mm) z(mm) -0.5 -0.5 -0.4 -0.4 -0.3 -0.3 -0.2 -0.2 **(u** ^{-0.1} 0 0.1 **(mu**) -0.1 0 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 20 10 15 25 30 45 15 20 25 z(mm) z(mm)

Svijetla pruga

Tamna pruga

Eksperimentalni rezultati

Numeričke simulacije

Diskretna difrakcija, rešetke 37 i 47 µm, $\Delta_p - \Delta_C = 80 \text{ MHz}$

Snaga probnog lasera = $50 \mu W$

Snaga pumpnih lasera = 2 x 100 mW

47 μm

Diskretna difrakcija, rešetke 37 i 47 µm, $\Delta_p - \Delta_C = 80 \text{ MHz}$

Snaga probnog lasera = 50 μW

Snaga pumpnih lasera = 2 x 100 mW

47 μm

37 µm

&

Fokusiranje probe u svijetlu prugu rešetke 140 µm

Eksperimentalni rezultati

1000 MHz Δ_{C} =Snaga probnog lasera = $50 \mu W$ Snaga pumpnih lasera = 2 x 100 mW

16

60

50

40

30

20

10

ntensity (arb.u.)

Fokusiranje probe u svijetlu prugu rešetke 140 µm

Numeričke simulacije

Izgled probe na izlazu iz staklene ćelije

 $\Delta_C = 1000 \text{ MHz}$ Snaga probnog lasera = 50 µW Snaga pumpnih lasera = 2 x 100 mW

Fokusiranje probe u tamnu prugu rešetke 140 μm

Eksperimentalni rezultati

 $\Delta_C = 1000 \text{ MHz}$ Snaga probnog lasera = 50 µW Snaga pumpnih lasera = 2 x 100 mW

Fokusiranje probe u svijetlu prugu rešetke 140 µm

Numeričke simulacije

Proba fokusirana u svijetlu prugu

Proba fokusirana u tamnu prugu

© CALT

Plavi frekventni pomak Crveni frekventni pomak

Plavi frekventni pomak

Diskretni solitoni, dvofotonski frekventni pomak na - 40 MHz

- Diskretna difrakcija
- Apsorpcija
- Solitonsko ponašanje

Diskretni solitoni

Slike probe na izlazu iz staklene ćelije u ovisnosti o dvofotonskom pomaku

Snaga probnog lasera = 1.5 mW Snaga pumpnih lasera = 2 x 200 mW Veličina rešetke = 35 µm

two photon detuning(MHz)

T = 100 °C

Diskretni solitoni

Slike probe na izlazu iz staklene ćelije u ovisnosti o dvofotonskom pomaku

Snaga probnog lasera = 6 mW Snaga pumpnih lasera = 2 x 200 mW Veličina rešetke = 35 μm

T = 100 °C

Diskretni solitoni

Slike probe na izlazu iz staklene ćelije u ovisnosti o dvofotonskom pomaku

T= 120 °C -2 a -1x(mm) 1100 MHz $\Delta_C =$ 0 1 2 -75 -50 -25 0 25 50 75 100 two photon detuning(MHz) -2 -1x(mm) $\Delta_C = 1300 \text{ MHz}$ 0 1 2 75 -75 -50 -25 25 50 100 0

two photon detuning(MHz)

Snaga probnog lasera = 20 mW Snaga pumpnih lasera = 2 x 200 mW Veličina rešetke = 35 µm

CAL

Zaključak

- Ukratko objašnjen postupak dobivanja diskretne difrakcije na optički induciranim rešetkama
- Ponašanje diskretne difrakcije ovisno o veličini rešetke i o fokusiranju probe u tamnu, odnosno svijetlu prugu
- Pojava solitona ovisno o snazi probe i frekventnom pomaku probe i pumpe
- Bogata podloga za istraživanje kompleksnih kvantnih i optičkih fenomena
- Sljedeći korak: 2D rešetka

Zaključak

- Ukratko objašnjen postupak dobivanja diskretne difrakcije na optički induciranim rešetkama
- Ponašanje diskretne difrakcije ovisno o veličini rešetke i o fokusiranju probe u tamnu, odnosno svijetlu prugu
- Pojava solitona ovisno o snazi probe i frekventnom pomaku probe i pumpe
- Bogata podloga za istraživanje kompleksnih kvantnih i optičkih fenomena
- Sljedeći korak: 2D rešetka

PT simetrija

S. Xia *et al.*, Science 372, 6537 (2021)

Zaključak

- Ukratko objašnjen postupak dobivanja diskretne difrakcije na optički induciranim rešetkama
- Ponašanje diskretne difrakcije ovisno o veličini rešetke i o fokusiranju probe u tamnu, odnosno svijetlu prugu
- Pojava solitona ovisno o snazi probe i frekventnom pomaku probe i pumpe
- Bogata podloga za istraživanje kompleksnih kvantnih i optičkih fenomena
- Sljedeći korak: 2D rešetka

PT simetrija

S. Xia *et al.*, Science 372, 6537 (2021)

2D rešetka

CENTRE FOR ADVANCED LASER TECHNIQUES

Hvala na pažnji!

Projekt je sufinanciran u okviru OP Konkurentnost i kohezija, iz Europskog fonda za regionalni razvoj.

© CALT

Dodatak Optičke Blochove jednadžbe

$$\begin{split} \frac{\partial \rho_{11}}{\partial t} &= \frac{-i\mu_{13}E_p}{\hbar}(\sigma_{13} - \sigma_{31}) + \Gamma_{13}\rho_{33}, \\ \frac{\partial \rho_{22}}{\partial t} &= \frac{-i\mu_{23}E_C}{\hbar}(\sigma_{23} - \sigma_{32}) + \Gamma_{23}\rho_{33}, \\ \frac{\partial \rho_{33}}{\partial t} &= \frac{i\mu_{13}E_p}{\hbar}(\sigma_{13} - \sigma_{31}) + \frac{i\mu_{23}E_C}{\hbar}(\sigma_{23} - \sigma_{32}) - (\Gamma_{13} + \Gamma_{23})\rho_{33}, \\ \frac{\partial \sigma_{12}}{\partial t} &= \frac{-i\mu_{23}E_C}{\hbar}\sigma_{13} + \frac{i\mu_{13}E_p}{\hbar}\sigma_{32} + [i(\Delta c - \Delta p) - \gamma_{12}]\sigma_{12}, \\ \frac{\partial \sigma_{13}}{\partial t} &= \frac{i\mu_{13}E_p}{\hbar}(\rho_{33} - \rho_{11}) - \frac{i\mu_{23}E_C}{\hbar}\sigma_{12} - \left(i\Delta p + \gamma_{13} + \frac{\Gamma_{13}}{2} + \frac{\Gamma_{23}}{2}\right)\sigma_{13}, \\ \frac{\partial \sigma_{23}}{\partial t} &= \frac{i\mu_{23}E_C}{\hbar}(\rho_{33} - \rho_{22}) - \frac{i\mu_{13}E_p}{\hbar}\sigma_{21} - \left(i\Delta c + \gamma_{23} + \frac{\Gamma_{13}}{2} + \frac{\Gamma_{23}}{2}\right)\sigma_{23}, \end{split}$$