Treasure Hunt: Search For Stop 4-body Decays

Using Methods Of Multivariate Analysis And Multiclass Neural Network Event Classification

Theoretical Framework

Legend says

There exists a symmetry between bosons and fermions not yet observed since it is of the broken sort.

Supersymmetry

			-		
ũ	U	Ĉ C charm		t t	γ̈́γγ γ photon
đ	d	S Strange		bottom	<u>g</u> gluon
ve ek	Ue ectron sutrino		ì	τ τ τ tau neutrino	Ž Z z boson
ē el	ectron	μ μ muon		T	W W W boson
standard model particles	quarks	leptons	force carriers	higgs	H H higgs boson
super- partners	squarks	sleptons	gauginos	higgsino	

- Every fermion has a corresponding bosonic supersymmetric partner
 - Spin ½ particle -> Spin 0 sparticle
 - Spin 1 force carrier -> Spin ½ gaugino
 - Higgs (spin 0) ->Higgsino (spin ½)

TOP SQUARK (STOP) \tilde{t} -

supersymmetric partner of top quark

NEUTRALINO $\widetilde{\chi_0}$ - <u>lightest</u> <u>supersymmetric particle</u> (mix of neutral electroweak gauginos and higgsino)

Particles Relevant In This Search

Stop Decay

Why 4-body decay?

Stop Decay

Stop Decay

Missing Energy

Phase Space

- Construct the phase space that is optimal for the search of stop
- 1. step: Event Selection

- Includes one lepton (one stop decays leptonically)
- Includes at least one jet
- High missing transverse energy (from two neutralinos and one neutrino)

2. step: Preselection

Cut on kinematic variables to further reduce the number of background events

Processes In The Phase Space

W Jets **Production** qν \P^{W^+} qq \overline{q}

 $t\bar{t}$ Pair

Z Jets

Other **Smaller Backgrounds**

One, two, three, four...

...five sigma

Illustration: Throwing a dice After throwing the dice 8 times and getting the same number most people would conclude that it is weighted.

The chance that such a result is due to a fluctuation is about 0.00006%

 $S = 5\sigma_{tot}$

 σ_{tot}

Neural Network Function That Produces An Output

Internal Configuration

Neural Network

PERCEPTRON (NEURON) – basic unit of neural network

Internal Configuration Neural Network

Neural Network

Choice Of Input Variables

First attempt:

1D cuts on (normalized) event distributions...

FOM = 0.027

Neural Network

Event Classification

Neural Network Training

$$\begin{aligned} \mathcal{N}_{\omega} \colon \mathbb{R}^{N} &\to \mathbb{R}^{M} \\ \mathcal{N}_{\omega}(\mathbf{x}) &= \mathbf{y} \end{aligned} \qquad \boldsymbol{\omega} = \{\boldsymbol{\omega}_{i}\} \end{aligned}$$

Vectors of kinematic variables

Data from simulation

Find the set of weights w that minimizes the loss function

$$\mathcal{L}(\omega) = \frac{1}{K} \sum_{k} \ell(y_{true}^{(k)}, y_{pred}^{(k)}(\omega))$$

 ℓ = Categorical Crossentropy or MSE

Basically, a fitting procedure.

Underfitting

Optimal fit

Loss Minimization (Batch Gradient Descent)

 \Rightarrow Split the dataset into smaller batches and do the same procedure!

Neural Network Training

Event Balancing

Give in the neural network training larger weight to events that are more likely to happen:

$$\mathcal{L}(\omega) = \frac{1}{K} \sum_{k} \widetilde{w}_{k} \,\ell(y_{true}^{(k)}, y_{pred}^{(k)}(\omega))$$

Treat the weights of each class separately:

$$\mathcal{L}(\omega) = \frac{1}{K} \sum_{C=1}^{5} \sum_{k_c=1}^{N_c} \widetilde{w}_{k_c}^C \,\ell(y_{true}^{(k_c)}, y_{pred}^{(k_c)}(\omega))$$

Larger weight means larger error for misidentification → "Neural network is more focused on events that are given larger weight"

<u>5 CLASSES</u>: C = "Signal", "Wjets", "TTbar", "Z2nu", "Other"

Number of events in class C

- Scaling factor
- Doesn't have large effect on the performance
- Chosen for numerical reasons

 Reflects local differences
(within a single class) on an event-to-event basis

Put all classes on equal footing

-

All classes are equally

numbered – summation over

all the events of a given class

gives 1

 W_i^c - number of i-th events that is expected to be seen in the experiment (~ probability that a given event will occur)

<u>5 CLASSES</u>: C = "Signal", "Wjets", "TTbar", "Z2nu", "Other"

$$\widetilde{w}_{i}^{C} = \frac{w_{i}^{C}}{\sum_{j} w_{j}^{C}} N_{S} \times f_{C}$$

In principle, f_C could be any positive real number...

Bookkeeping Suggestion:

 $\Rightarrow \text{ Divide by the average value: } \widetilde{w}_i^C = \frac{w_i^C}{\sum_j w_j^C} N_S \times \frac{f_C}{\overline{f}} \qquad \overline{f} = \frac{1}{5} \sum_C f_C$

Multiplying the scaling factor by a constant doesn't influence the performance of the neural network (doesn't change position of the minimum in the loss function)

$$f_C \iff \alpha f_C; \ \alpha = const.$$

 \rightarrow Idea: Scaling factors $\{f_c\}$ that have the same $\{F_c\}$ result in the same overall performance

Def.
$$F_{\mathcal{C}} = \frac{f_{\mathcal{C}}}{\overline{f}}$$
 $\overline{f} = \frac{1}{5} \sum_{\mathcal{C}} f(\xi_{\mathcal{C}})$

With given choices for f_c classes are gradually getting more and more balanced...

$$f_C = \xi_C + \delta$$

$$\delta = 0, 1, 2, 3, 4, 5, \infty$$

```
... this is reflected in the values of the F_c factors.
```


Results

For six different balancing schemes characterized with δ ten neural network trainings were conducted and FOM maximized

<u>Average of the FOM over these 10 trainings</u> and its standard deviation are reported...

Results

Results

What is the best choice?

Depends on what is the goal...

(2)

Signal region

(Areas in phase space enriched in signal)

Events behind the cut that maximizes FOM on the **signal node** of NN output

"Find signal"

Control regions

(Areas in phase space that are enriched in dominant SM backgrounds) Events distributed on the **background nodes** of NN output

Improves the precision of the final analysis (Reduces uncertainty)

Signal Node

Control Regions

Monitor... ... SIGNAL CONTAMINATION ... CROSS CONTAMINATION

δ=0 = δ=1 = δ=2 = δ=3 = δ=4 = δ=5 = δ=∞

Conclusion

Two possible lines of work:

(1) Use multiclass neural network as a binary classifier (<u>choose $\delta = 0$ </u>)

<u>Benefit</u>: Large figure of merit FOM=2.6 <u>Shortcoming</u>: Control regions are searched in phase space orthogonal to the one where search of the signal region is conducted (affects precision of final analysis)

Use multiclass neural network in a standard way (<u>choose $\delta=2$ </u>)

<u>Benefit</u>: Control regions are found in the same space where signal search is conducted (better precision of the final analysis)

Shortcoming: Slightly lower value of the figure of merit FOM=2

Previous research (binary classifiers): FOM(BDT)=1.6 FOM(NN)=1.8