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Local convertibility is a powerful tool to investigate entanglement properties of many-body sys-
tems, since it is a local probe of long-range entanglement. Here, we investigate local convertibility of
spin-1/2 XY chain and the effects of frustration on local convertibility. We show that local convert-
ibility is generally not a property of a quantum phase, and observe qualitative differences between
frustrated and unfrustrated XY chains, even in thermodynamic limit. Results are also relevant
for other frustrated spin models that share the approximate generalized W state structure of their
ground states.

I. INTRODUCTION

Entanglement is one of the most distinctive phenom-
ena in quantum mechanics. It is conceptually central
to quantum physics, but it is very distant from what
we observe in everyday life and it has no counterpart in
classical physics. Presence of entanglement makes our de-
scription of the physical world inherently non-local since
a state describing a set of spatially separated particles
cannot be decomposed to states of individual particles.
With the rapid experimental advances in recent years, en-
tanglement is no longer just a theoretical curiosity, but a
keystone of novel technologies such as quantum comput-
ing.

A deep understanding of entanglement properties is
necessary not only for quantum technologies, but also to
gain insight in behavior of interacting quantum many-
body systems, that can lead to exotic new phenomena
in condensed matter and atomic physics [1–3]. In fact,
studying entanglement allows us to make connections be-
tween many-body quantum physics and quantum com-
puting since entanglement present in many-body quan-
tum systems can be viewed as a resource for quantum
computation, and many-body systems such as atoms in
optical lattices can be used as quantum simulators [4].
Furthermore, entanglement properties are crucial to un-
derstand if a quantum system can be efficiently classi-
cally simulated or not, and it is only in the latter case
that quantum advantage can be obtained when a system
is used as a quantum simulator. However, it is generally
a difficult problem to determine if a quantum system is
classically simulatable and there are some types of highly
entangled states that can be efficiently classically simu-
lated [5]. Thus, for a state of a many-body system, distri-
bution and possibility of effectively using entanglement
can be even more important than the sheer amount of it
[6, 7].

An elegant way to investigate some properties of entan-
glement in many-body systems is by studying local con-
vertibility. Given a many-body quantum system AB that
is partitioned to subsystems A and B, a quantum state

FIG. 1: Antiferromagnetic interactions, periodic
boundary conditions and odd number of spins lead to

frustration.

|ψ1⟩ of the system AB is locally convertible to state |ψ2⟩
if |ψ1⟩ can be transformed to |ψ2⟩ through Local Oper-
ations and Classical Communication (LOCC) restricted
to subsystems A and B [8]. It can be shown that |ψ1⟩
is locally convertible to |ψ2⟩ if and only if |ψ2⟩ is less
entangled than |ψ1⟩. Correspondingly, absence of local
convertibility implies presence of long-range coherence
between A and B that cannot be captured classically.

Here, we study local convertibility of ground states in
one-dimensional spin-1/2 XY chain. More specifically,
we choose a path in space of parameters that determine
the Hamiltonian of XY model, and determine if ground
states of the Hamiltonian are locally convertible when the
parameters are changed along the path. Although seem-
ingly artificial, 1D spin models are relevant both because
they can capture the essential physics of more complex
models and because they can be directly experimentally
implemented, e. g. using cold atom quantum simulators
[9]. We also investigate the effects of topological frus-
tration on local convertibility. Topological frustration is
present in a system with frustrated boundary conditions
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(FBC), i. e. periodic boundary conditions with antifer-
romagnetic interactions and odd number of spins. FBCs
prevent the simultaneous minimization of all interaction
terms in the Hamiltonian as illustrated on Fig. 1. This
leads to higher degeneracy of ground state and various in-
teresting effects such as the presence of a quantum phase
transition induced by boundary conditions [10]. We show
that presence of topological frustration has significant ef-
fects on local convertibility, especially in the part of frus-
trated XY chain parameter space known as the chiral
region [11].

The seminar is structured as follows: in section 2 we
discuss general properties and phase diagram of the XY
model, and we outline the procedure for investigating lo-
cal convertibility by evaluating Renyi entropies and their
derivatives. In section 3 we present and discuss the re-
sults we obtained for unfrustrated XY chain, first we
briefly expose the results for Ising chain and edge state
recombination mechanism that can destroy local convert-
ibility, and then we discuss the effects of so-called factor-
ization line which are in some cases reminiscent of a phase
transition. In section 4, we discuss the results obtained
for frustrated XY chain and relate our findings to a more
general class of frustrated spin chains by investigating lo-
cal convertibility of generalized W states. After that, we
give our concluding remarks in section 5.

II. MODEL AND METHODS

XY model is a paradigmatic spin chain that is exactly
solvable in one dimension. It was first proposed in 1961
by Lieb, Schultz and Mattis [13], and can be desribed
with the Hamiltonian

H = J

N∑
j=1

(
1 + γ

2
σx
j σ

x
j+1 +

1− γ

2
σy
j σ

y
j+1 − hσz

j ), (1)

where σα
j are Pauli-α matrices (α = x, y, z) at j-th site of

the chain, γ is the anisotropy parameter and h is trans-
verse field strength. Symmetries allow us to consider only
the region in parameter space with h ≥ 0, γ ≥ 0 because
π/2 rotation around z-axis corresponds to γ → −γ trans-
formation, and reflection about xy-plane corresponds to
h → −h transformation. FBCs are present in a system
with antiferromagnetic interactions (J > 0, without loss
of generality we can choose J = 1), odd chain length N ,
and periodic boundary conditions σα

j = σα
j+N . The ex-

act solution of transverse-field XY chain can be obtained
by mapping the Hamiltonian (1) to a free fermionic form
[13], and it is briefly described in the Appendix for a
frustrated chain.

Phase diagram of the XY chain at zero temperature is
shown on Fig. 2. There are two quantum phase tran-
sitions (i. e. phase transitions with the system in the
ground state at zero temperature due to changing param-
eters of the Hamiltonian): (anti)ferromagnetic to para-
magnetic transition at h = 1 and interval 0 ≤ h ≤ 1 of

FIG. 2: Phase diagram of XY chain. h > 1 region is
paramagnetic phase, and h < 1 region is

(anti)ferromagnetic phase, depending on sign of J . For
h < 1 we can further distinguish oscillatory region

h2 + γ2 < 1 for unfrustrated XY model [12] (inside the
factorization circle) and chiral region h < 1− γ2 for

frustrated XY model (inside the h = 1− γ2 parabola)
[11]. For γ = 1, XY model reduces to Ising model.

γ = 0 line, also called XX model. We also note that the
famous Ising model is a special case of XY model with
γ = 1.

In unfrustrated XY model, on the h2 + γ2 = 1 circle,
ground state is exactly twofold degenerate and there is a
factorized (i. e. not entangled) state in the ground state
subspace. Above the factorization line (h2 + γ2 > 1),
ground state always has even parity, where parity oper-
ator is defined with Πz =

∏N
i=1 σ

z
i . On the other hand,

parity of the ground state in h2 + γ2 < 1 region has
a series of crossovers between even and odd, with the
crossovers becoming more and more dense with increas-
ing N . On the factorization line, ground states in even
and odd sectors have the same energy leading to the
aforementioned degeneracy. Factorization line does not
exist in the frustrated model, but again there is a region
of parameter space with even ground state parity and
region with crossovers in ground state parity. Border of
these two regions is h = 1 − γ2 parabola. Region with
crossovers is h < 1 − γ2, which is also called the chiral
region since the ground state is exactly twofold degener-
ate, and ground state subspace is spanned by two states
with opposite momenta (see the Appendix).

In order to study local convertibility of XY chain
ground states, we divide the chain in two subchains with
L and N−L spins and investigate entanglement between
the subchains when the whole chain is in XY model
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ground state |ψ⟩. Technically, we quantify the amount
of entanglement between the subchains through Renyi
entropies, which are defined with

Sα =
1

1− α
log

(
Tr(ραA)

)
(2)

Here, reduced density matrix (RDM) is defined with
ρA = TrB |ψ⟩ ⟨ψ|, and α ∈ [0,∞] is a parameter that
tunes the relative importance of RDM eigenvalues. For
example, S0 = logR depends only on number of non-
zero eigenvalues (where R is the Schmidt rank of a
state), S1 = −Tr(ρA log ρA) is the von Neumann en-
tropy, and S∞ = − log(λmax) depends only on the largest
RDM eigenvalue. Schmidt decomposition guarantees
that Renyi entropies for subsystems A and B are the
same. A standard result in quantum information theory
[14, 15] allows us to reformulate the statement "|ψ1⟩ is
locally convertible to |ψ2⟩ if and only if |ψ2⟩ is less en-
tangled than |ψ1⟩" in a more precise way: |ψ1⟩ is locally
convertible to |ψ2⟩ if and only if Sα(ρ1) ≥ Sα(ρ2) for all
α ∈ [0,∞], where ρ1,2 = TrB |ψ1,2⟩ ⟨ψ1,2|.

Typically, we would expect entanglement between the
subsystems to increase when parameters in the Hamilto-
nian are moved closer to a phase transition. Specifically,
Schmidt rank R of a state increases as correlation length
increases, because more degrees of freedom become en-
tangled. This leads to increasing S0, and generally small-
α Renyi entropies. However, if there is long-range entan-
glement (LRE) that cannot be captured with local cor-
relations, and if LRE decreases with correlation length,
it is possible that Renyi entropies with higher α decrease
when we approach a phase transition [16]. Thus, absence
of local convertibility in all directions indicates that there
is LRE in the system’s ground state. Furthermore, study
of local convertibility allows us to detect LRE by only
considering small subsystems. An example of a physical
mechanism that causes decrease of LRE as phase tran-
sition is approached is edge state recombination. Edge
states are states that are localized around the boundaries
of the system, and they usually exist as a consequence of
topological order [17]. When a system is divided into
subsystems, new edge states appear at the boundaries
between the subsystems, and if the size of a subsystem
becomes comparable to correlation length in vicinity of a
phase transition, edge states can undergo recombination
that reduces LRE between them.

The easiest way to evaluate Renyi entropies in our
case is through spin correlation functions, as correlation
matrix has only O(L2) elements for subsystem size L.
RDM has O(2L) elements which makes direct calculation
from RDM eigenvalues numerically intractable except for
small L. Correlation functions can be conveniently ex-
pressed using Majorana fermions Ai, Bi, which are de-
fined in the Appendix. When we make a partition of the
system with N spins to 2 blocks of L and N −L consec-
utive spins, Renyi entropies of RDMs of the subsystems

(a)

(b)

FIG. 3: Pairing of Majorana fermions: (a) on-site
interactions stronger than inter-site interactions, (b)

inter-site interactions stronger than on-site interactions,
leading to existence of edge states. Figure taken from

Ref. [19].

are given with [16, 18]

Sα =
1

1− α

L∑
j=1

log

(
(
1 + νj

2
)α + (

1− νj
2

)α
)

(3)

Here νj are positive eigenvalues of 2L × 2L hermi-
tian correlation matrix defined with C2i,2j+1 = ⟨AiBj⟩,
C2i+1,2j = ⟨BiAj⟩, C2i,2j = ⟨AiAj⟩ − δi,j , and
C2i+1,2j+1 = ⟨BiBj⟩ − δi,j . RDM eigenvalues can be
obtained as [16]

{λl} =

L∏
j=1

(
1± νj

2
) (4)

with all possible combinations of plus/minus signs. If the
trajectory in γ − h plane is parametrized by t, from Eq.
(3) we obtain the expression for the derivative of Sα:

dSα

dt
=

α

1− α

L∑
j=1

(1 + νj(t))
α−1 − (1− νj(t))

α−1

(1 + νj(t))α + (1− νj(t))α
dνj(t)

dt

(5)
If all Renyi entropies have the same sign of derivative,
local convertibility is present (at least in one direction),
and otherwise it is absent. From Eq. (5) we can see that
absence of local convertibility is related with not all of
the eigenvalues having the same sign of derivative dνj

dt ,
which we will use to interpret the results in the following
sections.

III. RESULTS FOR UNFRUSTRATED XY
CHAIN

A. Ising chain

Local convertibility in unfrustrated Ising chain was
studied in Ref. [16]. Here we will summarize some of
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the key ideas and results. As described in the Appendix,
Ising (and more generally XY) model is exactly solved
through Jordan-Wigner transformation that nonlocally
maps the Hamiltonian (1) to a system of free, spinless
fermions. This mapping creates a Kitaev chain [19] which
can support Majorana fermion edge states. Generally,
each Dirac fermion satisfying {ψ,ψ} = 0 and {ψ,ψ†} = 1
can be used to define two Majorana fermions with

c1 = ψ† + ψ, c2 = i(ψ − ψ†), (6)

and Majorana fermions satisfy c†i = ci, {ci, cj} = 2δij .
Thus, each fermionic site is doubled in two Majorana
fermionic sites. Edge states form at the boundaries of a
system (or subsystem) if parameters of the Hamiltonian
are such that the interactions between Majorana fermions
belonging to neighboring sites are stronger than the on-
site interactions, as illustrated on Fig. 3. In XY chain,
on-site interactions correspond to interaction with exter-
nal magnetic field and inter-site interactions correspond
to interactions between the spins, which are dominant for
h < 1, i. e. in (anti)ferromagnetic phase [16].

Results for sign of derivative of Renyi entropies as field
strength h is varied are shown on Fig. 4. In paramag-
netic phase, local convertibility is always present, and en-
tanglement decreases as h is increased which is expected
since for in the limit of very large h Ising model reduces to
almost independent spins in external field. On the other
hand, for h < 1 and small subsystem size (e. g. L = 2),
local convertibility is absent in both directions due to
edge state recombination. When L is increased, edge
state recombination effects become less prominent since
subsystem size is much larger than correlation length,
except in close vicinity of phase transition. As L is in-
creased more and more, region where local convertibility
is absent gets smaller and smaller, and local convertibility
is restored through almost all of h < 1 phase.

Further insight in relevant physics can be gained by
directly looking into correlation matrix eigenvalues νj
(Fig. 4b). From Eq. (4) we can see that correlation
matrix eigenvalues can be interpreted as kind of occu-
pation numbers for excitations of a block that corre-
sponds to the subsystem of interest [16], with νj = 0
(boundary eigenvalue) indicating half-filled excitation in
ground state and νj = 1 (bulk eigenvalue) indicating ei-
ther completely occupied or completely absent excitation.
In h < 1 phase, there is an excitation that is neither oc-
cupied nor empty, corresponding to unpaired Majorana
edge states that were generated by partitioning the chain.
As h increases, occupation number of this excitation also
increases, most rapidly around the h = 1 critical line,
which is a direct mark of edge state recombination.

B. Effects of factorization line

Choosing a trajectory that crossed the factorization
circle h2 + γ2 = 1 leads to qualitative changes in be-
havior of local convertibility, although there is no phase

(a)

(b)

(c)

FIG. 4: Ising model with N = 100. Sign of dSα

dh (a) and
correlation matrix eigenvalues (b) for L = 2; sign of dSα

dh
for L = 20 (c).

transition. On the factorization line, ground state is ex-
actly degenerate even for finite N and a factorized state
exists in the ground state subspace. In spite of the fact
that factorized state does not have definite parity, and in
our calculation we follow the ground state with definite
parity, for large L there is a minimum of entanglement
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(a)

(b)

(c)

FIG. 5: Unfrustrated XY model, trajectory with
constant γ = 0.5. Sign of dSα

dh for L = 50, N = 151 (a),
correlation matrix eigenvalues (b) and sign of dSα

dh (c)
for L = 3, N = 101. Factorization circle is denoted as a

black vertical line.

on the factorization line, and signs of dSα

dt are changed.
For any L, Schmidt rank of even ground state on factor-
ization line is 2, so Renyi-0 entropy is equal to log 2 and
small α Renyi entropies always have a minimum on the
factorization line. The change of signs of dSα

dt is clearly
seen on Fig. 5a in the limit of a large subsystem, where
effects of edge state recombination are negligible.

Typical behavior of local convertibility for small L can
be seen on Fig. 5c. Because of edge state recombi-
nation, local convertibility is absent through the part
of (anti)ferromagnetic phase outside of the factorization
line. However, in the oscillatory region, there are al-
ternating subregions where local convertibility is present
and absent. As noted before, small α Renyi entropies
decrease as factorization line is approached, while higher
Renyi entropies can both increase and decrease because
of oscillations of the boundary eigenvalue (Figure 5b).
Local convertibility is restored if all eigenvalues have the
same sign of derivative and this is typically the case close
to the factorization line.

By choosing different L, N and for different trajec-
tories in parameter space, we can see that qualitatively
local convertibility depends only on the region of param-
eter space we are moving through. Contrary to expecta-
tion, even in N → ∞ limit, local convertibility is not a
property of the quantum phase as it can be both present
and absent along trajectories in the oscillatory region. It
only becomes a property of the phase if both system and
subsystem sizes are large, leading to suppression of edge
state recombination and oscillations of eigenvalues in the
oscillatory region, but even in that case signs of Renyi
entropy derivatives are changed on the factorization line.

IV. RESULTS FOR FRUSTRATED XY CHAIN

Presence of frustration modifies the correlation func-
tions and affects local convertibility in qualitatively dif-
ferent ways depending on the region of XY model param-
eter space. In paramagnetic phase, correlation functions
are not modified at all in a frustrated system. In region
with 1 − γ2 < h < 1, energy associated with exciting π
momentum mode becomes negative, leading to a modi-
fication of correlation functions (Eqs (A11) and (A15)).
Finally, in the chiral region (h < 1 − γ2), ground state
becomes exactly two-fold degenerate, its parity switches
between even and odd and it acquires momentum (see
Eq. (A16) and the discussion in the Appendix). Cor-
responding Majorana correlation functions are given by
Eqs (A21) and (A22). Since there is a finite number of
correction terms to correlation functions that arise from
frustration, and these terms are scaled with 1/N , in ther-
modynamic limit correlation functions converge to un-
frustrated ones. Because of this, for large N there is a
change in local convertibility behavior as the factoriza-
tion line h2 + γ2 = 1 of unfrustrated model is crossed,
although the factorization line does not exist for a frus-
trated XY chain.
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(a)

(b)

FIG. 6: Approach of bulk correlation matrix eigenvalue
to thermodynamic limit (a), and sign of dSα

dh for
frustrated Ising model with L = 2, N = 101 (b).

A. Approach of correlation functions to
thermodynamic limit

Some properties of approach of correlation functions to
thermodynamic limit can be inferred analytically from
the scaling of Frobenius norm of correlation matrices.
Frobenius norm is defined with ||M || =

√∑
ij |Mij |2.

We look into scaling of ||C−Cnf || with system size N . C
and Cnf denote frustrated and non-frustrated correlation
matrices, respectively.

From the Majorana correlation functions derived in the
Appendix, we can see that in antiferromagnetic phase
there are O(L2) contributions from frustration to the cor-
relation matrix, and each of these contributions scales as
O(1/N). Therefore, if L is fixed, in the thermodynamic
limit frustrated correlation matrix will converge to the
non-frustrated one. However, as non-frustrated corre-
lation matrix converges to its thermodynamic limit very
quickly, Frobenius norm ||C−Cnf || will be dominated by
contributions from frustration and it converges to zero

slowly, as 1/N . Correspondingly, effects of frustration
on correlation functions and local convertibility can be
non-negligible even for large N . On the other hand, if L
is scaled with N so that L/N ratio is kept fixed, num-
ber of contributions to the correlation matrix scales with
O(N2), and Frobenius norm converges to a fixed limit,
limN→∞ ||C − Cnf || = 2

√
2 L
N .

Unfrustrated systems with large L and N generally
have L − 1 bulk eigenvalues that are close to 1, and
a single boundary eigenvalue that is approximately 0
through the h < 1 phase. Frustrated systems have an
additional eigenvalue different from 1 that converges to
1 − 2L/N , which is consistent with the limit of Frobe-
nius norm. Physical interpretation of the eigenvalue ap-
proaching 1 − 2L/N is that it comes from a single ex-
citation present in a frustrated system that is equally
distributed along the chain, which can be seen from its
contribution (1± νj)/2 to RDM eigenvalues.

B.
√

1− γ2 < h < 1 region

Between the factorization circle and h = 1 critical line,
for small L generally there is no local convertibility due
to edge state recombination. However, there are excep-
tions when local convertibility is partially or completely
restored for finite N . This happens because in a frus-
trated model, bulk eigenvalues are not equal to 1 at the
h2 + γ2 = 1 circle except in thermodynamic limit. If
bulk eigenvalues happen to have the same sign of deriva-
tive as the boundary eigenvalue, local convertibility will
be restored. An example can be seen on Figure 6 for
Ising model whose antiferromagnetic phase is contained
in this region. The factorization point corresponds to the
classical point (γ, h) = (1, 0).

If L/N ratio is kept constant in thermodynamic limit,
typically the additional non-bulk eigenvalue has the same
sign of derivative as the boundary eigenvalue through
h >

√
1− γ2 region, and the opposite sign from the bulk

eigenvalues. This leads to the absence of local convertibil-
ity for finite N , as higher α Renyi entropies will decrease
towards the h = 1 critical line. However, in the N → ∞
limit local convertibility is restored as the derivatives of
all eigenvalues tend to 0.

C. 1− γ2 < h <
√

1− γ2 region

Local convertibility is at least partially restored for any
L and N through the region between the h = 1 − γ2

parabola and factorization line (Fig. 7). This is due to
the fact that bulk eigenvalues increase towards the fac-
torization line, where they reach a maximum that corre-
sponds to zero entanglement on the factorization line for
the unfrustrated system. The mechanism by which local
convertibility is restored is the same as in the last sub-
section: the boundary eigenvalues increase through the
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(a)

(b)

FIG. 7: Frustrated XY chain, trajetory with constant
γ = 0.5, L = 30, N = 91. (a) Correlation matrix

eigenvalues, (b) S1 (von Neumann) and S∞ Renyi
entropies.

antiferromagnetic phase, so their sign of derivative coin-
cides with signs of derivatives of bulk eigenvalues close
to the factorization line. It is interesting to note that
the frustrated XY chain can "see" the existence of fac-
torization line in unfrustrated chain due to the fact that
correlation functions of both chains are the same in ther-
modynamic limit.

D. h < 1− γ2 region

In the chiral region, we observe that correlation matrix
eigenvalues oscillate because of changing ground state
momentum. Furthermore, as for finite N allowed mo-
menta are discrete changes, ground state momentum
changes discontinuously and correlation matrix eigenval-
ues also have discontinuities along the path in parameter

FIG. 8: Sign of dSα

dh for frustrated XY model with
L = 100, N = 201, trajectory along h = 0.5(1− γ2)

parabola.

space. This implies that the derivatives of correlation
matrix eigenvalues and Renyi entropies cannot be de-
fined, we can only study finite Renyi entropy differences
between two points in parameter space and infer local
convertibility properties from these differences.

Despite this, for fixed L and in N → ∞ limit, frustra-
tion becomes a vanishing contribution, and there are no
discontinuities in ground state momenta. The local con-
vertibility behaviour for large N is determined by local
correlations that are the same as in unfrustrated model
which leads to qualitatively similar results for frustrated
and unfrustrated models.

On the other hand, if L/N ratio is kept fixed while N is
increased, local convertibility is absent because of oscil-
lations and discontinuities in correlation matrix eigenval-
ues (Fig. 7). Oscillations are the largest for the bound-
ary eigenvalue, and consequentially for high-α Renyi en-
tropies. For other eigenvalues and for small-α Renyi en-
tropies, unfrustrated contributions from bulk eigenvalues
dominate. In N → ∞ limit, both the amplitude and the
period of oscillations decrease as 1/N . Thus, correlation
matrix eigenvalues also become continuous, but nowhere
differentiable functions of trajectory parameter t.

To avoid discontinuities in ground state momenta, we
can fix both ground state momentum and parity by
choosing a trajectory in γ − h plane along h = c(1− γ2)
parabola, with 0 ≤ c ≤ 1. Generally the bulk eigen-
values increase when we move from γ = 0 critical line
towards the classical point (γ, h) = (1, 0) which lies on
the factorization line. As the boundary eigenvalues de-
crease towards the classical point, local convertibility is
absent for finite size systems as shown on Fig. 8, but it
is recovered in thermodynamic limit as the derivatives of
all eigenvalues tend to zero.
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(a)

(b)

FIG. 9: RDM eigenvalues (a) and Renyi entropies (b) of
generalized W states with N = 35, L = 11. Scattered
points are evaluated at allowed momenta, lines show

results from Eq. (9) for continuous momenta.

E. Generalized W states

Important insights in local convertibility properties of
topologically frustrated models can be gained from local
convertibility of W states generalized to finite momen-
tum, defined with

|Wq⟩ =
1√
2N

N∑
j=1

exp(iqj)(|j⟩+ |j′⟩) (7)

|j⟩ = |...+−++−+...⟩ and |j′⟩ = |...−+−−+−...⟩
denote kink states with 2 aligned spins on positions j and
j + 1, while |+⟩ and |−⟩ are eigenstates of σx operator,
σx |±⟩ = ± |±⟩. Allowed lattice momenta q for a chain
with N spins are q ∈ {πn

N }2N−1
n=0 . Generalized W states

have the same entanglement properties as the original W

states [20]

|W ⟩ = 1√
N

N∑
j=1

σz
j |−⟩⊗N

, (8)

and can be obtained from them using a Clifford circuit
which can be efficiently simulated on a classical com-
puter.

Close to the classical point, ground state of a topo-
logically frustrated spin chain can be approximated with
|Wq⟩ state that has the same momentum [21]. Classical
point is defined as the point in parameter space where the
Hamiltonian reduces to Ising model in zero external field.
Thus, we can study the contribution to entanglement and
local convertibility that originates from topological frus-
tration by considering the properties of generalized W
states.

For subsystem size L ≥ 2, RDM of W state always has
exactly 4 non-zero eigenvalues. The non-zero eigenvalues
are given with

λ1,...,4 =
1

4N

(
N + 2χ cos(qL)±

±
√

(N − 2L)2 + 4N(1 + χ cos(qL))− 4 sin2(qL)
)
,

(9)

where χ = ±1. RDM eigenvalues have oscillations with
period in momentum equal to 2π/L, as seen from Eq.
(9) and on Fig. 9a. This corresponds to L/2 full peri-
ods between q = 0 and q = π, which is the same as the
number of oscillations observed for a frustrated XY chain
(Fig. 7) It is also straightforward to show by differentia-
tion that RDM eigenvalues have minima and maxima at
kπ/L, k ∈ Z. In thermodynamic limit, two eigenvalues
tend to L/2N , and the other two tend to (N − L)/2N ,
independently of momentum q. Amplitude of oscillations
scales as 1/N , except in the case when L is scaled with
N so that N = 2L + const., when the amplitude scales
as 1/

√
N (see the Appendix). If L is scaled linearly with

N , period of oscillations also scales as 1/N , so the eigen-
values become constant, but nowhere differentiable func-
tions of momentum.

Due to the oscillations of eigenvalues, there are also
oscillations in Renyi entropies. Between any two allowed
momenta, all Renyi entropies either increase or decrease
(see Fig. 9b and the Appendix), implying presence of
local convertibility. However, Renyi entropies oscillate
with a period of π/L and have a series of minima and
maxima, so the direction of local convertibility changes
and local convertibility is not present if q is swept along
the whole range of W state momenta. For fixed L, oscilla-
tion period is constant, and their amplitude goes to 0 for
large N , so local convertibility is restored in thermody-
namic limit. However, if L is scaled with N , oscillations
in α = ∞ Renyi entropy S∞ = − log(λmax) will scale
as 1/N (or 1/

√
N if N = 2L + const.), and S∞(q) will

tend to a constant, nowhere differentiable function. Am-
plitude of oscillations in α < ∞ Renyi entropies scales
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as 1/N2, so the oscillations disappear in thermodynamic
limit.

V. CONCLUSION

Our results reveal several features of local convertibil-
ity in XY chain and more broadly topologically frustrated
systems. Somewhat unexpectedly, we found that local
convertibility is not a property of quantum phase except
if both system and subsystem size are taken to infin-
ity. This is the case for both frustrated and unfrustrated
models. Also, the presence of factorization line in unfrus-
trated and chiral region in frustrated XY model can have
effects on local convertibility and entanglement that are
in some aspects reminiscent of a phase transition.

We have shown that features of the unfrustrated
model, more specifically the factorization line, can signif-
icantly influence the local convertibility of the frustrated
model. This is explained by the fact that correlation
functions of frustrated model converge to those of unfrus-
trated model for large system size. We can expect such
"cross-talk" of frustrated and unfrustrated XY chain to
show up in other topologically frustrated models, too, as
there is always a single excitation from frustration whose
contribution to correlation functions vanishes in thermo-
dynamic limit.

In the chiral region of frustrated XY chain, due to dis-
continuities in ground state momentum we can no longer
define Renyi entropy derivatives and we observe com-
pletely different behavior of local convertibility. Perhaps
the most interesting effect is the appearance of fractal-
like structure when Renyi entropies are evaluated, since
both amplitude and period of oscillations scale as 1/N
in N → ∞ limit. These oscillations lead to absence of
local convertibility for any finite system size. Also, to ob-
serve the effect, we have to simultaneously take N → ∞
and L → ∞ limits while keeping L/N = const., because
the effect is completely absent if we take N → ∞ limit
independently of L. In the latter case, corrections to cor-
relation functions due to FBC go to zero, while neglecting
the growing number of corrections in the correlation ma-
trix which leads to a finite effect. Physically, this means
that there is another relevant length scale in the system,
which is the system size N . In unfrustrated models, the
only length scale relevant for local convertibility was the
correlation length, and increasing correlation length was
able to destroy local convertibility through edge state re-
combination as phase transition is approached. Presence
of frustration is introduced by choosing the boundary
conditions, so the only scale related to it is the system
size. Relevance of system size for local convertibility of
frustrated systems is directly confirmed by the fact that
we need to consider subsystem size that is scaled with N
in order to fully characterize local convertibility and to
observe effects such as the aforementioned oscillations of
Renyi entropies.

Finally, we have connected the local convertibility

properties of frustrated XY model to a wide class of topo-
logically frustrated models by analyzing local convert-
ibility of generalized W states that form the underlying
structure of ground states near the classical point. We
showed that Renyi entropies of W states oscillate due to
the changing momentum and have the same oscillation
period, and for finite size chains they also have disconti-
nuities because of discrete lattice momenta. These oscil-
lations lead to absence of local convertibility along a path
in parameter space, even though the states correspond-
ing to the end points of the trajectory are always locally
convertible. If subsystem size is scaled with the system
size, the oscillations persist in thermodynamic limit in
the sense that Renyi entropies are not differentiable func-
tions of momentum. All these results are in direct corre-
spondence with the results for frustrated XY chain and
allow us to gain deeper understanding of our numerical
results, and to conclude that the effects of frustration on
local convertibility we observed in XY chain are a general
property of frustrated spin chains.

Appendix A: Frustrated XY chain solution and
correlation functions

The solution presented here is based on [11]. Spin op-
erators in Eq.(1) are mapped to (Dirac) fermionic ones
through Jordan-Wigner transformation:

σ−
j =

∏
l<j

σz
l ψ

†
j , σ+

j =
∏
l<j

σz
l ψj , σz

j = 1− 2ψ†
jψj

(A1)
Fermionic operators satisfy standard anticommutation
relations

{ψi, ψj} = 0, {ψi, ψ
†
j} = δij , (A2)

which can be shown from their definition and Pauli ma-
trix commutation relations.

The Hamiltonian becomes (h.c. stands for hermitian
conjugate)

H =

N−1∑
j=1

(ψ†
jψj+1 + γψj+1ψj + h.c.)+

+ 2h

N∑
j=1

ψ†
jψj +Πz(ψ

†
1ψN + γψ1ψN + h.c.), (A3)

which can be decomposed into even and odd parity sec-
tors as

H =
1 + Πz

2
H+ 1 + Πz

2
+

1−Πz

2
H− 1−Πz

2
(A4)

where H± are quadratic in fermionic operators. The
Hamiltonian can be diagonalized by performing Fourier
transform

ψq =
e−iπ/4

√
N

N∑
j=1

e−iqjψj (A5)
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followed by Bogoliubov rotation

bq = cos θqψq + sin θqψ
†
−q (A6)

Here q ∈ Γ− = { 2πn
N }N−1

n=0 in the odd parity sector, or
q ∈ Γ+ = { 2π(n+1/2)

N }N−1
n=0 in the even parity sector and

θq =
1

2
arctan

(
γ sin q

h+ cos q

)
, q ̸= 0, π, θ0,π = 0 (A7)

With these transformations, we obtain the Hamiltonians
in odd and even parity sectors:

H− =
∑

q∈Γ−−{0}

Λ(q)(b†qbq −
1

2
) + ϵ(0)(b†0b0 −

1

2
) (A8)

H+ =
∑

q∈Γ+−{π}

Λ(q)(b†qbq −
1

2
) + ϵ(π)(b†πbπ − 1

2
) (A9)

Dispersion relation is given with

Λ(q) = |h+ cos q + iγ sin q|; q ̸= 0, π (A10)

ϵ(0) = h+ 1, ϵ(π) = h− 1 (A11)

For h > 1 and 1 − γ2 ≤ h ≤ 1, ground state has even
parity and is non-degenerate for a finite number of spins
(if 1 − γ2 ≤ h ≤ 1 energy gap closes in thermodynamic
limit). When h < 1−γ2, ground state is two-fold degener-
ate even for finite number of spins and its parity switches
between even and odd sectors depending on precise val-
ues of h, γ and N , with progressively denser crossings for
large N .

To calculate correlation functions, we introduce Majo-
rana fermionic operators

Ai = ψ†
i + ψi, Bi = i(ψi − ψ†

i ) (A12)

Using Wick’s theorem, all spin correlation functions can
be calculated from ⟨AlAj⟩, ⟨BlBj⟩ and ⟨AlBj⟩ (anticom-
mutation relations imply ⟨BjAl⟩ = −⟨AlBj⟩).

In unfrustrated XY chain, the ground state is Bogoli-
ubov vacuum, and it can be shown that

⟨AlAj⟩ = ⟨BlBj⟩ = δlj (A13)

⟨BjAj+r⟩ =
i

N

∑
q∈Γ+

(sin(2θq) sin(qr) + cos(2θq) cos(qr))

(A14)
This expression is valid in the whole parameter space.
For h > 1, there are no differences between frustrated
and unfrustrated correlation functions, and in both cases
ground state is the Bogoliubov vacuum state in the even
parity sector |0+⟩ (state that is annihilated by all opera-
tors bq).

For 1 − γ2 ≤ h ≤ 1, energy associated with π mo-
mentum mode in frustrated chain becomes negative, but
ground state is still the Bogoliubov vacuum |0+⟩ due to
parity constraints. We still have ⟨AlAj⟩ = ⟨BlBj⟩ = δlj ,
but there is an additional contribution to correlation
functions ⟨BjAj+r⟩:

⟨BjAj+r⟩ =
2i(−1)r

N
+

+
i

N

∑
q∈Γ+

(sin(2θq) sin(qr) + cos(2θq) cos(qr)) (A15)

For h < 1−γ2, the dispersion relation has two minima
at q = ±q̃, where

q̃ = arccos

(
h

γ2 − 1

)
(A16)

For finite number of sites, q̃ is generally not allowed
momentum, so we define q̃+ and q̃− as allowed mo-
menta closest to q̃ in even and odd sector, respectively.
States with lowest energy in odd parity sector are [11]
|±q̃−⟩ = b†±q̃− |0−⟩, with energy

Eo = Λ(q̃−)− ϵ(0)

2
− 1

2

∑
q∈Γ−−{0}

Λ(q) (A17)

while in the even parity sector, states with lowest energy
are |±q̃+⟩ = b†±q̃+b

†
π |0+⟩ with energy

Ee = Λ(q̃+) +
ϵ(π)

2
− 1

2

∑
q∈Γ+−{π}

Λ(q) (A18)

Ground state is exactly two-fold degenerate even for finite
system size, and its parity switches between even and odd
sectors depending on h, γ and N . However, by moving
along the parabola h = c(1− γ2) with 0 ≤ c ≤ 1, ground
state momentum and parity can be fixed.

We can write the ground state as∣∣g−〉 = (ub†q̃− + vb†−q̃−)
∣∣0−〉 (A19)

if it belongs to the odd parity sector (|u|2 + |v|2 = 1), or∣∣g+〉 = b†π(ub
†
q̃+ + vb†−q̃+)

∣∣0+〉 (A20)

if it belongs to the even parity sector. The Majorana
correlation functions are:

⟨AjAj+r⟩ = ⟨BjBj+r⟩ = δ0,r +
2i

N
(|v|2 − |u|2) sin

(
rq̃±

)
(A21)

⟨BjAj+r⟩ =
i

N

∑
q∈Γ±

(sin(2θq) sin(qr)+cos(2θq) cos(qr))−

− 2i

N
((sin

(
2θq̃±

)
sin

(
q̃±r

)
+ cos

(
2θq̃±

)
cos

(
q̃±r

)
)+

+
4i

N
|uv∗| cos

(
q̃±(r + 2j) + α

)
(A22)

where α = arg(uv∗), + sign is used if ground state is in
even sector, and - sign is used if ground state is in odd
sector.
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Appendix B: Analytical results for generalized W
states

All analytical results for generalized W states can be
derived starting from the definition of Renyi entropies

Sα =
1

1− α
log(λα1 + λα2 + λα3 + λα4 ) (B1)

and the expression for RDM eigenvalues (Eq.(9)). By
differentiating Eq. (9) w.r.t. q, we obtain that all eigen-
values have extrema for q = kπ/L, k ∈ Z. λ1 and λ4 have
maxima at q = 2kπ/L and minima at q = (2k + 1)π/L,
while λ2 and λ3 have minima at q = 2kπ/L and maxima
at q = (2k + 1)π/L.

Scalings of oscillation amplitude can be determined
by expanding Eq. (9) in Taylor series for large N . If
N = cL + d, where c ∈ [0, 1/2] is kept constant as N is
increased, we obtain

λ1,...,4 =
1

4
+

χ

2N
cos(qL)±

± x

4

(
1 +

2

x2N
(1 + χ cos(qL))

)
+O(N−2), (B2)

where x = limN→∞(N − 2L)/N , x ∈ ⟨0, 1]. If c = 0.5,
i.e. x = 0, we get

λ1,...,4 =
1

4
± 1

2
√
N

√
1 + χ cos(qL) +O(N−1) (B3)

Renyi entropies have oscillation period of π/L, be-
cause translation in momentum q → q + π/L corre-
sponds to interchanging λ1 ↔ λ2 and λ3 ↔ λ4, so Renyi
entropies remain the same. Therefore, we can map a
point with arbitrary momentum to [0, π/L] interval and
study the behaviour of Renyi entropies on this inter-
val. Furthermore, we can map q 7→ q, q ∈ [0, π/2L],

and q 7→ π/L − q, q ∈ ⟨π/2L, π/L]. This corresponds to
another interchange λ1 ↔ λ2 and λ3 ↔ λ4, so we can
confine ourselves to the interval q ∈ [0, π/2L]. Deriva-
tives of Renyi entropies are given with

dSα

dq
=

α

1− α

1

λα1 + λα2 + λα3 + λα4
×

× (λα−1
1

dλ1
dq

+ λα−1
2

dλ2
dq

+ λα−1
3

dλ3
dq

+ λα−1
4

dλ4
dq

) (B4)

For general α this expression is not easily simplified, but
we ascertained numerically that regardless of α, N and
L, all Renyi entropies have minima at kπ/L and maxima
at (k + 1/2)π/L, and that they are increasing functions
of q for q ∈ [0, π/2L]. To compare Renyi entropies of
two generalized W states and determine the direction of
local convertibility, we map their momenta to [0, π/2L]
interval and just determine which momentum is closer
to 0. It should be noted that although allowed lattice
momenta are not continuous, eigenvalues are well-defined
and continuous functions of q generalized to continuous,
real numbers and Renyi entropies can be compared using
continuous q because Renyi entropies are monotonous on
[0, π/2L].

Scaling of amplitude of S∞ Renyi entropy oscillations
is obtained by expanding S∞ = − log(λmax) in Taylor
series for large N . For q ∈ [0, π/2L], λmax = λ1. The
result is

∆S∞ = S∞(π/2L)− S∞(0) =
2

xN
+O(N−2) (B5)

for x ̸= 0, and

∆S∞ = S∞(π/2L)− S∞(0) = (2
√
2− 2)

√
1

N
+O(N−1)

(B6)
for x = 0.
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