Poll

No polls currently selected on this page!

Repository

Repository is empty

Physics of Semiconductors

Code: 51083
ECTS: 3.0
Lecturers in charge: prof. dr. sc. Ivan Kokanović
Lecturers: prof. dr. sc. Ivan Kokanović - Exercises
Take exam: Studomat
Load:

1. komponenta

Lecture typeTotal
Lectures 30
Exercises 15
* Load is given in academic hour (1 academic hour = 45 minutes)
Description:
COURSE GOALS: Introduce students to the basic theoretical background of the phenomenon semiconductivity, describe the type of semiconductors, transport, electrical, magnetic and optical properties of semiconductors, related experimental techniques and the role of defects in semiconductors. Introduce students to the industrial application of semiconductor compounds.

LEARNING OUTCOMES AT THE LEVEL OF THE PROGRAMME:
1. KNOWLEDGE AND UNDERSTANDING
1.1. demonstrate a thorough knowledge and understanding of the fundamental laws of classical and modern physics
1.2. demonstrate a thorough knowledge and understanding of the most important physics theories (logical and mathematical structure, experimental support, described physical phenomena)
1.5. demonstrate knowledge and understanding of basic experimental methods, instruments and methods of experimental data processing in physics
2. APPLYING KNOWLEDGE AND UNDERSTANDING
2.1. identify and describe important aspects of a particular physical phenomenon or problem
2.3. recognize and follow the logic of arguments, evaluate the adequacy of arguments and construct well supported arguments
3. MAKING JUDGMENTS
3.4. accept responsibilities in planning and managing teaching duties
4. COMMUNICATION SKILLS
4.2. present complex ideas clearly and concisely
4.3. present their own research results at education or scientific meetings
5. LEARNING SKILLS
5.1. search for and use professional literature as well as any other sources of relevant information
5.2. remain informed of new developments and methods in physics, informatics and education
5.3. develop a personal sense of responsibility for their professional advancement and development

OUTCOMES SPECIFIC FOR THE COURSE:
After successful completion of the course Physics of Semiconductors, the student will be able to:
1. explain the theories behind the phenomenon semiconductivity;
2. describe the role and ways of introducing defects in semiconductors;
3. specify and describe the transport, electricity, magnetic and optical properties of semiconductors and related experimental techniques;
4. specify and describe the type of semiconductors;
5. describe the industrial applications of semiconductor compounds.

COURSE DESCRIPTION:
1. Definition of semiconductors, important early works and chemical approach semiconductivity.
2. Theory of semiconductors, Energy bands.
3. Intrinsic and extrinsic semiconductors.
4. Origin and classification of defects. Controlled introduction of defects.
5. The concentration of charge carriers in thermal equilibrium.
6. Type of semiconductors, n-type and p-type semiconductors.
7. Scattering of charge carriers and transport properties of semiconductors.
8. Electrical conductivity, thermoelectric power and Hall effect. Recombination of charge carriers.
9. The optical properties of semiconductors. The absorption of radiation and photoconductivity.
10. Experimental determination of basic parameters of semiconductors. Electrical and optical methods.
11. Semiconductor compounds. Crystalline, amorphous and glassy semiconductors. Superlattices.

REQUIREMENTS FOR STUDENTS:
Students are required to regularly attend and actively participate in solving problems during exercises. As part of the course the student is required to visit the research semiconductor group, create a seminar related to the current research and present it.

GRADING AND ASSESSING THE WORK OF STUDENTS:
The final exam consists of written and oral exams. Written exam can be replaced by successful solving of two colloquiums.
Literature:
  1. B. Sapoval and C. Hermann, Physics of Semiconductors, Springer Verlag, New York, 1995.
  2. R.A. Smith, Semiconductors, 2nd Edition, Cambridge University Press, London, 1978.
Prerequisit for:
Enrollment :
Attended : Quantum Physics
Attended : Statistical Physics
8. semester
Izborni - fizika 3 - Regular study - Physics and Technology Education
Consultations schedule: