Code: |
41033 |
ECTS: | 7.0 |
Lecturers in charge: |
prof. dr. sc.
Marijan Kovačić
doc. dr. sc. Frane Marković |
Lecturers: |
prof. dr. sc.
Marijan Kovačić
- Practicum doc. dr. sc. Frane Marković - Practicum |
Take exam: | Studomat |
English level:
1,0,0 |
All teaching activities will be held in Croatian. However, foreign students in mixed groups will have the opportunity to attend additional office hours with the lecturer and teaching assistants in English to help master the course materials. Additionally, the lecturer will refer foreign students to the corresponding literature in English, as well as give them the possibility of taking the associated exams in English. |
Load: | |||||||
|
|||||||
Description: | |||||||
Sedimentary cycle. Standard methods of study of sediments in the field and in the laboratory. Chemical and physical weathering. Breakdown products, newly formed minerals, dissolved material. Soil-forming factors (climate, relief, substrate, vegetation). Paleosols. Erosion, transport and deposition. Properties of fluids. Transport by fluids. Bedload transport (gravel, sand). Bedforms and their stability. Suspension transport and deposition. Sediment gravity flows. Rheological properties of flows and dominant particle-support mehanisms. Depositional features diagnostic for particular type of gravity flows. Primary depositional structures and their formation. Erosional structures. Post-depositional sedimentary structures. Biogenic structures. Paleocurrent analysis. Clastic sediments: A) Sandstones, conglomerates and breccias. Sediment texture and textural maturity. Interpretation of textural parameters. Terrigenous detrital components (Q, F, Lt, heavy minerals, others). Matrix problem. Compositional maturity. The main sandstone and conglomerate types and principles of classification. Petrofacies. Principal provenance terranes in the context of plate tectonics. Diagenetic processes and environments. Compositional modification. Modification of primary porosity and permeability and their influence on quality of rocks as hydrocarbon or water reserviers. Sandstone and conglomerate bodies. Depositional environments; B) Fine-grained siliciclastic deposits-mudstones: textures, structures and mineral constituents. Organic rich black shales. Diagenetic processes in mudstones. Main types of mudrocks. Depositional environments. Marls; C) Volcanoclastic deposits. Processes and products. Diagenesis. Carbonate deposits. Mineralogy. Limestones: skeletal and non-skeletal grains, lime mud-micrite and their origin. Microbial processes and products. Limestone texture. Main types of limestones - principles of classification. Depositional and early diagenetic structures. Depositional environments: shallow marine including reefs, deep-water, non-marine. Carbonate diagenesis. Diagenetic environments. Marine, meteoric, burial diagenesis. Neomorphism. Dolomitization, dedolomitization, silicification. Evaporites. Mineralogy (gypsum, anhydrite, halite). Depositional environments. Resedimentation. Diagenesis: recrystalisation, dissolution, replacement. Evaporite sequences. Chert petrology. Cherts of biogenic origin. Cherts of anorganic origin. Phosphorites: Mineralogy. Phosphorous as essential element of live cells. Early diagenetic origin of marine phosphorites. Depositional environments. Resedimentation. Bone breccias. Guano. Sedimentary iron and manganese deposits. Environmental factors controlling their precipitation. Organic deposits. Coal: petrology, the rank stages of coal, formation and occurrence of coal. Oil shales. Formation of kerogen. The principal phases of hydrocarbons generation. Mineralogy, occurrence, genesis and geological meaning of bauxites and laterites. How knowledge about sediments is used in human activity: excavation, tunnelling, different buildings, environments protection, mining etc. |
|||||||
Literature: | |||||||
|
|||||||
Prerequisit for: | |||||||
Enrollment : |
4. semester |
Mandatory course - Regular study - Geology |